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Abstract
Black carbon (BC) aerosols impact climate and air quality. Since BC from fossil versus biomass
combustion have different optical properties and different abilities to penetrate the lungs, it is
important to better understand their relative contributions in strongly affected regions such as South
Asia. This study reports thefirst year-round 14C-based source apportionment of elemental carbon
(EC), themass-based correspondent to BC, using as regional receptor sites the internationalMaldives
ClimateObservatory inHanimaadhoo (MCOH) and themountaintop observatory of the Indian
Institute of TropicalMeteorology in Sinhagad, India (SINH). For the highly-pollutedwinter season
(December–March), the fractional contribution to EC frombiomass burning (fbio) was 53 ± 5%
(n= 6) atMCOHand 56± 3%at SINH (n= 5). The fbio for the non-winter remainder was 53 ± 11%
(n= 6) atMCOHand 48± 8% (n= 7) at SINH. This observation-based constraint on near-equal
contributions frombiomass burning and fossil fuel combustion at both sites comparewith predictions
from eight technology-based emission inventory (EI)models for India of (fbio)EI spanning 55–88%,
suggesting thatmost current EI for Indian BC systematically under predict the relative contribution of
fossil fuel combustion. A continued iterative testing of bottom-up EIwith top-down observational
source constraints has the potential to lead to reduced uncertainties regarding EC sources and
emissions to the benefit of bothmodels of climate and air quality as well as guide efficient policies to
mitigate emissions.

1. Introduction

Black carbon (BC) aerosols have multiple negative
impacts, including on human respiratory health (e.g.,
Janssen et al 2012) and on climate (e.g., IPCC 2013).
The large uncertainties in BC emissions both with
respect to absolute fluxes and the relative contribution
from fossil versus biomass combustion sources com-
plicate our ability both to accurately understand and
model the multiple BC climate effects, as well as to
efficiently mitigate emissions to reduce the health

impact. Hence, a major challenge with respect to both
climate and air quality aspects of BC and other aerosols
are to assess and reduce the large uncertainties in
existing BC emission inventories (EI) (e.g., Zhao
et al 2011, Bond et al 2013). Comparisons between
predictions based on bottom-up technology-based EI
and estimates based on atmospheric observations
suggest that EI-driven models underestimate the BC
climate effects by a factor of 2–3 (Andreae and
Ramanathan 2013, Bond et al 2013, Cohen and
Wang 2014). Further, the relative contribution of
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fossil versus biomass sources to BC, suggested by
bottom-up EI, appear to systematically under-predict
the fossil contribution relative to top-down source
apportionment based on the source-diagnostic 14C
composition of BC aerosols in the actual atmosphere
of both South and East Asia (e.g., Gustafsson
et al 2009, Chen et al 2013). However, such observa-
tion-based source constraints have to this point been
limited to shorter campaigns (weeks–month) and
there is no single year-round 14C-based assessment of
BC sources for Asia or anywhere in theWorld.

Natural abundance radiocarbon (Δ14C) analysis is
a powerful method for quantitatively differentiating
between fossil versus biomass sources of carbonaceous
aerosols in the actual atmosphere. Such information is
important for diagnosing and reducing the current
large uncertainties in EI of OC and BC aerosols. The
present study provides, for the first time, measure-
ments for a full-year cycle in Asia of 14C of elemental
carbon (EC)-the common thermal-optical mass-
based correspondent to optical BC. Aerosol samples
were collected at two well-established regional recep-
tor sites in South Asia: Sinhagad (SINH) at a moun-
tain-top in Western India and at the international
Maldives Climate Observatory on the island of Hani-
maadhoo (MCOH).

2.Methods andmaterials

2.1. Sampling locations and approach
Sampling was conducted at two regional receptor sites
in South Asia (figure 1). The MCOH (latitude 6°78′N,

longitude 73° 18′E, 15masl) is located at the Northern
tip of Hannimadhoo, a small island in the Republic of
the Maldives in the Indian Ocean. The other site,
Sinhagad (SINH, 18° 21′Nand 73° 45′ E, 1450masl) is
a rural-high altitude site on a mountaintop in the
Western Ghat mountain ranges in Western India.
Both MCOH (e.g., Corrigan et al 2006, Ramanathan
et al 2007, Granat et al 2010, Sheesley et al 2012, Bosch
et al 2014) and SINH (e.g., Momin et al 2005, Gustafs-
son et al 2009, Kirillova et al 2013, Budhavant
et al 2014), are frequently used for studies of S. Asian
aerosols. Samples were collected near-continuously at
both sites during fifteen months in 2008–2009 (83%
coverage at SINH and >99% coverage at MCOH),
comprising two dry winter seasons, a monsoon season
and the transition periods. The large mass of aerosol
EC required to meet accelerator mass spectrometry
detection limits for microscale 14C measurements,
were obtained using high-volume total suspended
particle (TSP) samplers operated at 14–19 m3 hr−1.
The samples were collected on 140 mm quartz fibre
filters (Tissuquartz filters from Pall Gelman) in
custom-built filter holders as described earlier (e.g.,
Gustafsson et al 2009, Sheesley et al 2012, Kirillova
et al 2013). The TSP approach (which collects all
aerosols smaller than approximately 30 μm in aero-
dynamic radius) was used in this study as it was desired
to assess the sources of the full population of aerosol
EC, as opposed to using a finer cut-off such as PM2.5

selecting mainly for respiratory particles. The sam-
pling interval at MCOH was ∼one week during the
non-monsoon periods and ∼two weeks during

Figure 1.Map depicting average aerosol optical depth (AOD) at 550 nmduring the January 2008 toApril 2009 campaign. The
locations of theMaldives ClimateObservatory atHanimaadhoo (MCOH) and SinhagadObservatory (SINH) are shown. Coloured
arrows indicate broadly the predominant BTs differentiated in two different clusters: dry season (red) andmonsoon (blue). Individual
and detailed back trajectory cluster analysis for this campaign is available in Sheesley et al (2012) andKirillova et al (2013).
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monsoon seasons. The SINH site was maintained at a
near-constant one-week sample duration. Filter
blanks were collected approximately once per month
for each site. Quartz fibre filters were pre-baked at
450 °C for 12 h and individually stored in aluminium
foil envelopes in double Ziploc bags in the freezer.
More details about sampling sites and operation as
well as detailed air mass back trajectories for this
campaign are described in earlier studies reporting on
other aerosol carbon fractions (Sheesley et al 2012,
Kirillova et al 2013).

2.2. Carbon aerosolmass concentration and isotope
analyses
Organic carbon (OC) and EC concentrations and
radiocarbon composition were measured using pre-
viously established methods. Quantification of OC
and EC used a thermal-optical transmission analyzer
(Sunset Laboratory, Tigard, OR, USA) using the
National Institute for Occupational Safety and Health
5040 method (Birch and Cary 1996). The average of
the concentrations of the field blanks was taken into
account for the calculation of atmospheric concentra-
tions (SINH, OC= 0.063 μg m−3; MCOH,
OC= 0.075 μg m−3 and EC= 0.001 μg m−3). Tripli-
cate analyses of laboratory standards and field refer-
ence material showed that the analytical uncertainties
were less than 5%.

The isotope composition of other carbon aerosol
fractions have earlier been measured and reported for
this campaign, including for total OC and soot carbon
(Sheesley et al 2012) as well as for water-soluble
organic carbon (WSOC; Kirillova et al 2013). The cur-
rent study reports on the important EC fraction,
which was isolated for offline 14C analysis by separa-
tion and cryogenic isolation of the CO2 evolved from
the EC peak, as described in detail by Chen et al
(2013). The subsequent 14C analysis was then con-
ducted collaboratively with the US National Ocean
Sciences Accelerator Mass Spectrometry Facility in
Woods Hole, MA, USA as described earlier (e.g., Zen-
cak et al 2007a, 2007b, Gustafsson et al 2009, Chen
et al 2013). The radiocarbon data are reported as frac-
tion modern (fm) which is converted to the Δ

14C scale
(Zencak et al 2007b). By constraining S Asia specific
source end-member values for both biomass combus-
tion of Δ14Cbiomass = +199‰ (Gustafsson et al 2009)
and a fossil fuel combustion end member of
Δ14Cfossil =−1000‰, the fraction biomass (fbio) of the
EC may be established directly from the Δ14C sig-
nature of the sample using the followingmass-balance
relation:

( )f fC C 1 C .

(1)

14
sample bio

14
biomass bio

14
fossilΔ Δ Δ= + −

The fraction EC contributed by fossil fuel combustion
(ffossil) is thus 1− fbio.

A recent community inter-comparison of 14C
measurements on aerosol samples demonstrated
comparable results for aerosol total carbon (Szidat
et al 2013). There is a need for future such compar-
isons of different techniques and operational defini-
tions for isolating the EC fraction for 14C
measurements. While there certainly are some uncer-
tainties, the current top-down 14C-based EC source
apportionment study is based on the same commonly
employed thermal-optical transmission method that
is also used to determine EC emission factors for dif-
ferent combustion systems used in the EC EI (e.g.,
Bond et al 2004, 2013, Wang et al 2014). Hence, since
the same operational definition of EC is used in both
the bottom-up EI and the present top-down source
apportionment this allows for a direct comparison
between the two. To test the sensitivity of the obtained
14C-based source apportionment results to a putative
exchange in the isolation between method-induced
pyrolysis of WSOC and ambient EC, a sensitivity ana-
lysis, based on instrument-generated pyrogenic C
(PyrC) and our earlier reported 14C-WSOC has been
performed (supplementary information text S1 and
table S2). The results suggest at most amoderate influ-
ence of such a hypothetical instrument-methodologi-
cal process, well within the existing variability of the
14C–ECdata.

3. Result and discussion

3.1. Seasonal variations of EC andOC
The South Asian climate is governed by the monsoon
system, with rainy summers and dry winter periods,
and two transitional periods, the pre-and post-mon-
soon phases. The monsoon period is characterized by
Southerly winds and, over land, by an elevated atmo-
spheric boundary layer. In contrast, the dry period
have on average Northerly winds and a shallower
boundary layer. The onset of the different seasons
depends on the passing of the Intertropical Conver-
gence Zone, and is thus different for the two presently
investigated sites: Sinhagad (SINH) and theMCOH.

As a result, the surface concentrations of carbo-
naceous aerosols show significant seasonal variations
(Sheesley et al 2012, Kirillova et al 2013, Krishna
et al 2013, Kompalli et al 2014) with elevated con-
centrations during the dry winter season (December–
March) and lowest concentration during the summer
monsoon season (June–September) with intermittent
levels during the transition periods. Our 16 month
continuous measurements are consistent with this
pattern of seasonal variability in OC and EC con-
centrations at both MCOH and SINH (figures 2(A)
and (C)). Higher mean concentrations of OC and EC
were obtained in the dry season and lower mean con-
centrations were observed in the wet season. The EC
concentrations of week-long samples varied in wide
ranges of 0.03–0.54 μg m−3 for wet season and
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0.12–8.24 μg m−3 for dry season at SINH, and with
0.06–0.40 μg m−3 for wet season and 0.07–10.8 μg m−3

for dry season inMCOH.
A correlation between OC and EC concentrations

may indicate similar source and geographic origin of
carbonaceous particles. Significant correlations were
observed between OC and EC both at MCOH (Pear-
son’s correlation coefficient, r2 = 0.79, p< 0.0001 for
39 samples) and at SINH (r2 = 0.34, p< 0.0001 for 55
samples). These co-varying patterns suggested that the
ambient concentration levels of carbonaceous species
were controlled largely by processes such as primary
source emissions and atmospheric dispersion rather
than by secondary OC formation. This is consistent
with findings by Kirillova et al (2013) for OC, and
especially for WSOC, based on dual δ13C–Δ14C data
for this same campaign. When split seasonally, OC
and EC presented somewhat different correlations. At
MCOH, they were highly correlated in all the seasons
with r2 value ranging from 0.57 (p< 0.005) to 0.59
(p< 0.0001), while at SINH they were strongly corre-
lated in the dry winter season of 2009 with r2 = 0.83
(p< 0.0001), but not distinctly correlated in the mon-
soon and dry season of 2008 with r2 value ranging
from only 0.18 to 0.20. The lower correlation coeffi-
cient during the SINH summer suggests contributions
from different sources for OC and EC (e.g., biogenic

secondary organic aerosol (SOA) to OC), effects of
atmospheric processing on (primarily) OC or differ-
ential contributions from long-range versus regional
emissions during thewet season.

3.2.OC/EC ratios
Themass ratio of OC to EC (OC/EC) reflects multiple
processes in the atmosphere. (1) The OC/EC ratio is
typically higher from biomass combustion than from
fossil sources (e.g., Ram and Sarin 2010), (2) the OC/
EC ratio is elevated by (mainly) biogenic SOA
contributions (e.g., Saarikoski et al 2008), (3) the OC/
EC ratio is affected by atmospheric processing (e.g.,
aging) of organic chemicals (e.g., Kroll et al 2011) and
(4) the atmospheric lifetime for OC is shorter due to
higher chemical reactivity and greater tendency for
washout during rain events. Here, the OC/EC ratios
ranged from 0.9 to 26 with an average of 8.0 ± 5.4 at
SINH, and from 1.1 to 42with an average of 7.4 ± 10 at
MCOH (figure 2). The highest values were observed
during the monsoon season for both sites (26.3 (13.7)
for SINH and 38.3 (23.2) for MCOH, bracket values
represents mean), whereas the lowest values were
found during the dry winter period (0.88 (6.29) for
SINH and 1.13 (3.51) for MCOH). These distinct
seasonal trends suggests comparably larger contribu-
tions from biogenic SOA or pollen to OC during the

Figure 2.Time series 16month data for panels (A) and (C): organic carbon (OC), elemental carbon (EC), OC/EC ratio and, panels
(B) and (D): 14C-based source apportionment of EC in SAsia. The length of the horizontal scale bar reflects duration of each long-
term sample collection. Blue horizontal lines represent average value of the fractional contribution formbiomass burning (fbio).
Vertical shaded bars indicate themonsoonal transition periods (May andNovember).
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wet monsoon period, which is also expected from the
warmer and wetter weather conditions during this
phase, which favours biological activity (e.g., Genberg
et al 2011).

3.3. Year-round source apportionment of EC
aerosols
The 14C/12C characteristic of carbonaceous aerosol
samples is a direct indication of the relative contribu-
tion of biomass (fbio) and fossil fuel (ffossil) combustion
sources (equation (1)). The studied receptor sites were
each influenced by seasonally-varying air masses with
different geographical origins. Nevertheless, the fbio
varied over the 16 months of observations over a very
similar range for both SINH (36–64%) and MCOH
(31–59%) (figures 2(B) and (D) and SI table 1). At
SINH, the total dry season (winter) average fbio for EC
was 56 ± 3% (n= 5; table 1). The remainder of the year
(summer monsoon and transition periods) exhibited
a mean fbio for SINH EC of 48 ± 8% (n= 7; table 1).
The winter season aerosol samples at SINH experi-
enced influence by air masses from East/North East
and Central India (detailed back trajectory cluster
analyses shown in Sheesley et al 2012, Kirillova
et al 2013). These times, the EC may be influenced
from high emissions of aerosols due to biomass
burning as suggested by the MODIS active fire counts’
data (SI figure 1) that show higher incidences of fires
over India and Bangladesh during the 2009 dry
months. This may be due to burning of agricultural
crop residues from primarily wheat and rice. Large-
scale emissions from paddy-residue burning does
however fall slightly outside the winter period during
October–November and the same for wheat-residue
burning in April–May. However, the timing of these
activities are not absolute and they are ubiquitous
features in the Indo-Gangetic Plain (IGP) (Badarinath

et al 2009, Rajput et al 2014). The estimated emission
budgets from the agricultural-waste burning on an
IGP scale contributes a predicted ∼22% of primary
OC [252 ± 34 Gg y−1] and 21% of EC [59± 2 Gg y−1]
(Rajput et al 2014). On the other hand, aerosols in the
monsoon were associated with air masses primarily
from Southwest i.e. from the Northern Indian Ocean
and the Arabian Sea. The overall 2008-annual average
value of fbio at SINHwas 51 ± 8% (table 1).

A similar source apportionment of EC between
biomass versus fossil fuel combustion was observed at
MCOH. There fbio at MCOH was indistinguishable
between the winter (53 ± 5%; n= 6; table 1) and non-
winter seasons (53 ± 11%; n= 6; table 1). High fbio at
MCOH may be related to the fact that during the
Southwest monsoon season; winds have been touch-
ing the Southeast coast of the African continent before
passing through Indian Ocean and reaching the sam-
pling location at MCOH. On a global scale, the largest
open-burning emissions happen in Africa (Bond
et al 2013). The major types of biomass burning in
Africa include forest and savanna fires (Mkoma
et al 2013). Field burning of agriculture residues and
forest/wild fires occur in dry season (July–October) in
Southern Africa and Madagascar (Schultz et al 2008,
Mkoma et al 2013). Active fire spots (SI figure 1) were
observed fromMODIS satellite images during the dry
season (wet season for MCOH) in June–October in
Southern Africa and Madagascar, from where the air
masses travelled more frequently to the sampling site
at MCOH than to SINH. Hence, it is likely that bio-
mass burning in SE Africa andMadagascar could have
contributed to ambient carbonaceous aerosols
atMCOH.

During dry season, air masses originated mainly in
and around the Indian sub continent (figure 1), con-
tributing to the high fbio (EC) values at both stations.

Table 1.Annual and seasonal source apportionment based on 16month continuous 14C–ECobservations forHanimaadhoo,Maldives
(MCOH) and Sinhagad, India (SINH). (±) indicate the variability in the sampling.

Number of samples Fractionmodern (Fm) Standard deviation Fraction biomass (fbio)

Sinhagad (SINH)

2008 annual 9 0.61 0.09 51 ± 8%

Winter (December–March)a 5 0.68 0.03 56 ± 3%

Non-winter (March–November)a 7 0.58 0.10 48 ± 8%

March–April 2006b 3 54 ± 2%

Maldives ClimateObservatory atHanimaadhoo (MCOH)

2008 annual 9 0.64 0.09 53 ± 9%

Winter (December–March)a 6 0.64 0.05 53 ± 5%

Non-winter (March–November)a 6 0.63 0.12 53 ± 11%

January–March 2006b 5 41 ± 4%

February–March 2012c 8 59 ± 4%

a Includes 2008 and 2009.
b Gustafsson et al (2009).
c Bosch et al (2014).
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This is consistent with the earlier picture of about
equal contributions from fossil and biomass combus-
tion during the high-aerosol impact from the highly
polluted IGP spreading over great South Asian scales
during dry periods (e.g. Lawrence and Lelieveld 2010,
Sheesley et al 2012, Kirillova et al 2014). These year-
round 14C-based averages in EC source apportion-
ment, suggest similar source attributions but with a
somewhat smaller divergence in the biomass con-
tribution to EC at the two regional sites than was
apparent in the shorter 2006 campaign (Gustafsson
et al 2009). These new winter results are inseparable
from those reported forMCOH for a three-week high-
intensity campaign in 2012 (Bosch et al 2014)
(table 1).

3.4. Understanding the emission sources of
carbonaceous aerosols in SouthAsia
Bottom-upEI of BC,which feed into climate and other
atmospheric chemical-transport and health/air quality
models, are challenged by large uncertainties related to
both activity (tons fuel burnt) and especially the
emission factor (kgBC/ton fuel burnt) for different
sources (Zhao et al 2011, Bond et al 2013). These
uncertainties, relating to the total amount of BC, also
propagate into the estimates of the fractional contribu-
tions from different sources, e.g., fraction biomass
(Chen et al 2013). The recent global high-resolution
bottom-up EI for BC by Wang et al (2014) gives a
fbio = 0.47 for the Indian peninsula (defined as 6–32°N
and 68–90°E) for the year 2007. This is significantly
lower than the results from Bond et al (2004) of
fbio = 0.75 (for year 2000), the GAINS-IASA model
(fbio = 0.70, for 2010) and the results from Venkatara-
man et al (2005) for this region. However, the higher
fossil contributions found by Wang et al (2014) are in
better agreement with the year-round observationally-
based 14C-constrained source apportionment of the
present study, with fbio = 0.53 ± 0.08% at MCOH and
fbio = 0.51 ± 0.08% at SINH, which in turn also are
consistent with previous shorter-term 14C-source
forensics estimates (Gustafsson et al 2009). It should
be emphasized, however, that a direct comparison
between bottom-up EI data and top-down constraints
is also associated with some uncertainties owing to, for
instance, the variability of airmass transport.

Taken together, the present and first-ever year-
round study of 14C–EC based source apportionment
shows that both fossil and biomass combustion pro-
cesses are about equally responsible for the emission of
EC to the extensive Atmospheric Brown Cloud phe-
nomena over South Asia. This highlights the impor-
tance of long-term campaigns, which gives a more
comprehensive picture of the sources of climate-
affecting aerosol carbon in this dynamically changing
region.
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