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Abstract
Observations show that the globalmean surface temperature has increased steadily since the 1950s
and this warming trend is particularly strong and linear over land after 1979. This paper analyzes the
relationship between surface temperature trends observed over land for the period 1979–2012 and
enhanced vegetation index (EVI), a satellitemeasured vegetation greenness index, by large-scale
ecoregion. The land areas between 50°S and 50°N are classified into various large-scale ecoregions
based on the climatological EVI values. The regionalmean temperature trends exhibit significant
spatial dependence on the regionalmean EVI. In general, thewarming rate increases dramatically with
decreasing EVI, with the strongest warming rate seen over the driest ecoregions.When anthropogenic
and natural forcings are included, climatemodels are generally able to reproduce observedmajor
features of the spatial dependence.When only natural forcings are used, none of the observed features
are simulated. Furthermore, the simulated temperature changes in the latter aremostly far outside the
range of those in the former. These results suggest stronger warming amplification over drier
ecoregions in the context of global warming, pointingmainly to human influence.

1. Introduction

The global mean surface temperature has increased by
about 0.85 °C since 1880 andmuch of thewarming has
occurred in the last several decades (IPCC 2013). Both
observations and model simulations have attributed
the global warming since 1950 mostly to the increase
in anthropogenic greenhouse gases (GHGs) in the
atmosphere (IPCC 2013). The GHGs-induced posi-
tive radiative forcing is global-scale and roughly
spatially uniform but can be amplified or dampened
by various feedbacks at regional scales (Hansen
et al 2010, Thorne et al 2011). For example, the
warming is much greater over land than oceans, over
higher latitudes (Lu and Cai 2010) and over higher
elevations (e.g., Naud et al 2013, Rangwala et al 2013).

Over non-polar land surfaces, the warming rate
differs substantially among ecosystems due to their
differences in thermal and hydrological properties.

The GHGs-induced positive radiative forcing at the
surface can be largely weakened by evapotranspiration
(ET) with increasing amounts of vegetation and soil
moisture (Koster et al 2004, 2009, Zhou et al 2007,
Jeong et al 2009, Georgescu et al 2011). Lim et al
(2005) showed that the warming rate is larger for bar-
ren lands. Zhou et al (2007, 2009, 2010) found
that the warming trend of minimum temperature and
the decreasing trend of diurnal temperature range are
stronger over drier regions. ET is a primary process
driving energy and water exchanges between the
hydrosphere, atmosphere and biosphere (Wang
and Dickinson 2012) in regions where soil moisture
is the main controlling factor for ET. With
decreasing soil moisture content, particularly over
very dry ecosystems, the soil moisture–ET coupling
weakens dramatically. Thus, such spatial variations of
ET may determine surface warming rates among dif-
ferent ecosystems. However, few studies have
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quantified such spatial variations in the warming rates
over land.

Quantifying and attributing this spatial dependence
is important for understanding climate sensitivity to
anthropogenic forcings, uncovering mechanisms of
spatiotemporal patterns of climate change, and asses-
sing climatic impacts.Hereweuse the enhanced vegeta-
tion index (EVI), an optimized vegetation greenness
index measured by the MODerate resolution Imaging
Spectroradiometer (MODIS) satellite sensor (Huete
et al 2002), to examine the spatial dependence of
observed surface warming rates on large-scale ecor-
egions. Similar analyses are also performed to historical
simulations of global coupled atmosphere-ocean gen-
eral circulation models (AOGCMs) developed for the
Coupled Model Intercomparison Project phase 5
(CMIP5) (Taylor et al 2012), which are generally able to
reproduce the observed warming, especially after the
1950s (Simmons et al 2010, IPCC 2013). EVI does not
saturate, even over dense forests, and correlates highly
with ET, particularly at large scales (Suzuki and
Masuda 2004, Nagler et al 2005). This study focuses
only on the modern satellite data era for the period
1979–2012 to maximize spatial coverage of measure-
ments. Furthermore, after adjusting observations to
remove the estimated impacts of known factors on
short-term temperature variations, the global warming
signal from 1979 through 2010 is particularly strong
and steadily linear (Foster andRahmstorf 2011).

2.Data andmethods

This study uses the most recent versions of global
gridded monthly surface air temperature (T) datasets:
CRU (Harris and Jones 2014), GISS (Hansen et al 2010)
and NCDC (Vose et al 2012) for the period 1979–2012,
which have beenwidely used for long-termT variability
and trend analysis. Despite sharing some similarities in
input data sources, these three datasets differ substan-
tially in their data processing approaches. For example,
satellite data is used extensively in GISS, used very
limited in NCDC, and not used at all in CRU (Vose
et al 2012). In addition, monthly data of GPCP
precipitation (Adler et al 2003) for the period
1979–2012 and MODIS EVI (Huete et al 2002) for the
period 2000–2012 are also used. More specifics of each
dataset are detailed in supplementary table S1.

We analyze monthly output of historical simula-
tions from the CMIP5 archives, which include time-
evolving changes in anthropogenic (GHGs and sulfate
aerosols) and/or natural (solar and volcanic) forcing
agents for the period 1860–2006, extended for the
years 2006–2012with the RCP4.5 scenario runs. These
simulations are divided into two groups: one with
anthropogenic and natural forcings (referred to as
ALL) and the other with only natural forcings (refer-
red to as NAT). Althoughmost of CMIP5models have
performed multi-member ensemble runs, we choose

only one ensemble ‘r1i1p1’ from 12 AOGCMs (sup-
plementary table S2) that have required variables in
ALL, NAT and RCP45 simulations. As averaging over
multiple members enhances the forcing signal and
reduces noise from internal variability and errors from
individual models, we simply average the 12 simula-
tions to obtain the multi-model ensemble mean for
the period 1979–2012 in ALL and the period
1979–2005 inNAT.

All variables are spatially re-projected into grid
boxes of 2.5° latitude by 2.5° longitude. The monthly
EVI and precipitation are aggregated to create the
annual climatology, and themonthly temperatures are
temporally averaged to generate annual mean anoma-
lies. For a time series at a given grid box, a linear trend
is estimated using least squares fitting and a two-tailed
student’s t test is used to test whether the trend differs
significantly from zero. For simplicity, we refer to the
temperature trend asTtrend.

We focus only on the land areas that have at least 10
months of data for each year and at least 26 years of data
(i.e., 75%) during the period 1979–2012 in all three
observational T datasets following the selection criteria
of Vose et al (2012). The land beyond 50°N and 50°S is
excluded to minimize snow/ice-albedo feedbacks that
dominate the high-latitude warming. Annual mean T
anomalies are used tomaximize large-scale long-termT
trends as the GHGs-induced radiative forcing is likely a
dominant driver on these scales (e.g., Zhou et al 2007,
2009, 2010). Seasonal or monthly T anomalies are also
affected by other factors such as sea surface temperature
(Cohen et al 2012) and cloud cover (Tang and
Leng 2013). The three datasets show similar T changes
and thus their ensemble mean is mostly used to reduce
redundancy. In addition, only those grids with annual
Ttrend that is statistically significant (p<0.1) are con-
sidered to exclude regions with no trends or unrealistic
trends due to data uncertainties or gaps. In total, among
the 1537 land grid boxes of 2.5° by 2.5° between 50°S
and 50°N, 1338 are considered as the study region.
CMIP5 simulations are sampled so that coverage corre-
sponds to that of the observations.

This study evaluates Ttrend at the aggregated large-
scale level to minimize grid-level data noise and varia-
bility. We classify the 1338 grids into 7, 14, 21, 28, and
35 large-scale ecoregions from barren to dense vegeta-
tion based on the climatological EVI values (referred
to as EVI ), and then analyze how Ttrend varies with
EVI by ecoregion via least squares fitting. The good-
ness of fit (R2) is used tomeasure how successful the fit
is in approximating the fraction of the data variations.
Different classifications are used to test whether the
fitted Ttrend−EVI relationship is robust. For each clas-
sification, every ecoregion contains about the same
number of grid boxes. The regional mean time series is
calculated using area-weighted averaging over land
grids within each ecoregion, and its trend is estimated
as done at the grid level. For brevity, only results of 7
and 35 ecoregions, which represent the least and most
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ecoregions classified, are shown in figures, while those
of other classifications are listed in tables.

3. Results

3.1.Observational temperature trends
Figure 1(a) shows the observed Ttrend over all the 1537
land grids between 50°S and 50°N for the period

1979–2012, together with the climatology of EVI
(figure 1(d)) and precipitation (figure 1(e)). T
increased almost everywhere except for parts of
Northern Australia. Among the 1537 land grids, 87
and 84% exhibit a linear trend that is statistically
significant at the 10 and 5% level, respectively. The
three T datasets of CRU, GISS and NCDC display very
similar warming features in both spatial patterns and

Figure 1. Spatial patterns ofTtrend (°C/10 yr) from (a) observed, (b) ALL and (c)NAT for the period 1979–2012, (d) climatological
EVI (unitless) for the period 2000–2012, and (e) climatological precipitation (mm d−1) for the period 1979–2012, in 2.5° × 2.5° grid
boxes over land. Stippling indicates regionswhereTtrend is statistically significant (p<0.05). The ensemblemean of three observational
temperature datasets (CRU,GISS andNCDC) is used to calculate the observedmeanTtrend.

3

Environ. Res. Lett. 10 (2015) 064012 LZhou et al



magnitude (not shown), except for several particular
regions in the CRU data (e.g., Amazon and Central
Africa) where limited observations were used to
interpolate the gridded data (Harris and Jones 2014).
Significant warming occurs mostly in arid and semi-
arid regions such as Northern Africa, Middle East,
Northern China, and Western US. EVI (figure 1(d))
and precipitation (figure 1(e)) resemble each other
geographically (with a spatial correlation of 0.90;
n= 1338)—the region with the least amount of
precipitation has the least amount of vegetation or vice
visa. Overall the warming trend is generally strongest
over the driest or least vegetated regions such as the
Sahara desert and the Arabian Peninsula.

Figure 2 illustrates the 7 and 35 large-scale ecor-
egions classified based on the climatology of EVI,
representing the range of the least andmost ecoregions
considered in this study. As expected, most ecoregions
are spatially coherent and resemble the geographic dis-
tribution of the climatology of precipitation
(figure 1(e)). Figure 3 shows regional mean T anoma-
lies from 1979 to 2012 for the three individual T data-
sets. Four ecoregions were chosen to represent the
ones with the least and most amount of vegetation or
the driest and wettest climate. In every ecoregion, the
three T datasets exhibit similar interannual variability
and comparable warming trends that are statistically

significant (p< 0.001), with stronger warming rates
over drier ecosystems. For example, the warming
trend in NCDC is 0.39 ± 0.05 and 0.19 ± 0.03 °C/10 yr
for the driest and wettest regions, respectively, in the
case of 7 ecoregions. The corresponding values are
0.39 ± 0.06 and 0.21 ± 0.03 °C/10 yr for the 35 ecor-
egion case. The GISS and CRU data show very similar
warming trends as those inNCDC.

Figure 4 shows Ttrend as a function of EVI in terms
of 7 and 35 ecoregions. Evidently, the warming rate
depends strongly on ecoregions. Ttrend increases dra-
matically with decreasing EVI, particularly over very
dry areas, indicating the lower the vegetation green-
ness, the stronger the warming trend. Five different
regression lines (exponential, linear, logarithmic,
polynomial and power) are fit between Ttrend and EVI
but the negative logarithmic function works best, with
R2 = 96 and 89% for the 7 and 35 ecoregions, respec-
tively (figures 4(a) and (b)). Other clarifications of
ecoregions (table 1) agree that the negative logarith-
mic function best describes the Ttrend−EVI relation-
ship by ecoregion. Furthermore, the CRU, GISS and
NCDC datasets display very similar relationships indi-
vidually (figures 4(c) and (d)). Note that the R2 values
in CRU are smaller than those in GISS and NCDC
because CRUhasmissing or low-quality data over sev-
eral data-scarcity regions asmentioned previously.

Figure 2.Classificationmap of (a) 7 and (b) 35 large-scale ecoregions defined based on the climatological EVI values in 2.5° × 2.5° grid
boxes over land.Note that among the 1537 land grid boxs between 50°S and 50°N, only those (1338 in total) with annualTtrend that is
statistically significant (p<0.1) are considered for analysis at the aggregated large-scale ecoregion level (seemore detail in themain
text).
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To examine whether the negative logarithmic
Ttrend−EVI relationship varies with observational
datasets and depends on how the ecoregions are classi-
fied, we perform the same fitting by ecoregion for
other ecoregion classifications (table 2) and for each
dataset (supplementary table S3). The negative loga-
rithmic fit performs better than the linear fit and this is
consistent across all classifications and in all the data-
sets. The fitted coefficient (A0) decreases slightly with
the increasing number of ecoregions, and so does R2.
When more ecoregions (or EVI bins) are considered,
R2 decreases because more small-scale factors affect
the spatial variations of Ttrend. As the estimated trends
may be sensitive to start or end points of data record,
we also perform the same analyses as done above but
consider other study periods (e.g., 1979–2010 and
1981–2012) by changing the start and/or end dates.
Again, the negative logarithmic relationship remains
robust.

One way to validate the robustness of the above
Ttrend−EVI relationship by ecoregion is to simply

reconstruct the spatial patterns ofTtrend from the ecor-
egionmap of EVI clusters (figures 2(a) and (b)) multi-
plied by the average temperature trend for each of
these clusters (figures 4(a) and (b)). If the recon-
structed Ttrend resembles (the first order) the observed
trend (figure 1(a)), this supports the idea that the
warming rate depends mostly on the ecoregions and
the classification of warming rates based on ecoregions
is useful. Figure 5 shows the spatial patterns of recon-
structed Ttrend, which exhibit warming patterns simi-
lar to the observed at large scales. The strongest
warming rates are consistently seen over the driest
ecoregions. The spatial correlation at the grid level is
0.55 (between figures 1(a) and 5(a)) and 0.58
(between figures 1(a) and 5(b)), respectively. These
correlations are statistically significant at p< 0.001
(n= 1338).

3.2. Temperature trends inCMIP5 simulations
Figure 1(b) shows the spatial patterns of ALL Ttrend
over land for the period 1979–2012. The warming is

Figure 3.Regionalmean temperature anomalies (°C) for the period 1979–2012 fromNCDC,GISS andCRU in terms of (a), (c) 7 and
(b), (d) 35 large-scale ecoregions. Only two of the 7 and 35 ecoregions, representing thosewith the least (upper) andmost vegetation
(lower), are shown. Linear trends (°C/10 yr) plus one standard deviationwith ‘***’ are statistically significant (p< 0.001).
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ubiquitous and the strongest warming occurs primar-
ily in arid and semi-arid regions such as Northern
Africa,Middle East, andWesternUS. All the land grids
(50°S–50°N) exhibit a statistically significant linear
trend (p< 0.05), which is much higher than the

observations. The observed Ttrend−EVI relationship
remains true also in ALL (figure 6). The R2 value for
the logarithmic (linear) fit is 99 and 92% (92 and 85%)
for the 7 and 35 ecoregions, respectively. Other
ecoregion clarifications (table 2) support consistently

Figure 4. (a) and (b) Relationship between observedTtrend (°C/10 yr) for the period 1979–2012 and the climatological EVI by large-
scale ecoregion. Least squaresfittings offive functions (exponential, linear, logarithmic, polynomial, and power) are considered. The
fitted coefficients and the goodness offit (R2) are listed.Here only the results for the cases of (a) 7 and (b) 35 ecoregions are shown. The
ensemblemean of three observational temperature datasets (CRU,GISS andNCDC) is used to calculate the observedmeanTtrend. (c)
and (d) Same as (a) and (b) but only for the logarithmic fit from three individual temperature datasets (CRU,GISS andNCDC).

Table 1.The goodness offit (R2) for different fitting functions between observedTtrend (°C/
10 yr) and the climatological EVI (EVI)by large-scale ecoregion.

Ecoregions Power Polynomial Logarithmic Linear Exponential

7 0.93 0.94 0.96 0.92 0.95

14 0.90 0.91 0.93 0.88 0.91

21 0.90 0.91 0.93 0.88 0.91

28 0.88 0.89 0.91 0.86 0.89

35 0.86 0.88 0.89 0.85 0.87

The ensemble mean of three observational temperature datasets (CRU, GISS and NCDC) is

used to calculate themeanTtrend.
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that the negative logarithmic fit better describes the
Ttrend−EVI relationship by large-scale ecoregion than
the linear fit. Overall ALL largely reproduces the
observed warming spatial patterns and the negative
logarithmic Ttrend−EVI relationship by ecoregion. At
the grid level, the spatial correlation is 0.75 (n= 1338)
between the observed and ALL Ttrend, indicating that
some regional biases in ALL simulations due to

models’ difficulties in simulating T change at small
scales.

Figure 1(c) displays the spatial patterns of NAT
Ttrend over land for the period 1979–2005. The warm-
ing trend is strongest in several arid and semi-arid
zones. For the 1537 land grids (50°S–50°N), only 27
and 13% exhibit a linear trend that is statistically
significant at the 10 and 5% level, respectively.

Figure 5. Spatial patterns ofTtrend (°C/10 yr) reconstructed from the ecoregionmap of EVI clusters (figures 2(a) and (b))multiplied
by the average temperature trend for each ecoregion (figures 4(a) and (b)) in terms of (a) 7 and (b) 35 ecoregions, for the period
1979–2012.Note that only 1338 grids with annualTtrend that is statistically significant (p< 0.1) are considered (also see figure 2 for
detail).

Figure 6. Same asfigure 4 but for the CMIP5multi-model ensemblemeanTtrend (°C/10 yr) fromALL andNAT.Only the linear and
logarithmic fitting functions are considered.
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The corresponding large-scale Ttrend−EVI relation-
ship (figure 6) displays larger warming rates over drier
(or lower EVI) ecoregions as shown in ALL, but has a
much smaller warmingmagnitude than ALL. The spa-
tial pattern of Ttrend (figure 1(c)) and the Ttrend−EVI
relationships by ecoregion in NAT differ substantially
from the observations andALL (figure 6; table 2), indi-
cating that anthropogenic forcings should play a key
role in determining the observed Ttrend−EVI
relationships.

The histogram of Ttrend for the CMIP5 ALL and
NAT simulations, together with that from the three
observational T datasets, is shown in figure 7. In gen-
eral, ALL Ttrend is within the observed Ttrend range but
has a narrower distribution skewed to the right
(warming) side, indicating higher warming rates and
stronger spatial coherence in ALL than observed. This
is expected as the multi-model ensemble mean in ALL
represents primarily the forced signal (Dai 2013), and
ALL slightly overestimates the warming trends for the
period 1979–2012 because the simulated T anomalies
are higher than observed during the global warming
hiatus (IPCC 2013). In contrast, NAT shows small and
equal possibilities of cooling and warming trends,
which are mostly skewed to the left side (cooling and
small warming) and outside the range of ALL simula-
tions and observations, indicating again that the role

of anthropogenic forcing in reproducing the observed
warming patterns.

4.Discussion and conclusions

This paper explores spatial relationships between the
observed land surface warming rates and the climato-
logical EVI in terms of large-scale ecoregions for the
last three decades. The regional mean temperature
trends exhibit significant spatial dependence on the
regional mean EVI. In general, the warming rate
increases dramatically with decreasing EVI, with the
strongest warming rate over the driest ecoregions.
When anthropogenic and natural forcings are
included, climate models are generally able to repro-
duce observed major features of the spatial depen-
dence. When only natural forcings are used, none of
the observed features are simulated. Furthermore, the
temperature changes simulated in NAT are mostly far
outside the range of those simulated in ALL and
observed. These results indicate stronger warming
amplification over drier ecoregions, pointing mainly
to human influence.

We focus our analysis mostly on the negative loga-
rithmic Ttrend−EVI fit because it generally has the
highest R2 than other fitting functions. However, all fit
functions indicate consistently the strongest warming
rates over the driest ecosystems for the period
1979–2012. The warming rate of Ttrend is determined
by the magnitude of the surface radiative forcing and
any feedbacks involved related to land surface and
atmospheric boundary layer processes (Hassel-
mann 1976, Betts et al 1996, Zhou et al 2007, 2009,
2010, McNider et al 2012, Guo and Dirmeyer 2013,
Dirmeyer et al 2013, Davy and Esau 2014). Evidently,
the finding of the strongest warming in very dry
regions needs a newmechanism to explain it. Our fur-
ther analyses ofmultiple observational variables, com-
bined with reanalysis data and CMIP5 simulations,
could attribute the spatial dependence of warming on
ecosystem to much stronger water vapor and ecosys-
tem feedbacks in response to the positive large-scale

Table 2.The fitted coefficients and goodness offit (R2) of
the linear and logarithmic fits between EVI andTtrend
(°C/10 yr) fromobservations andCMIP5 simulations by
large-scale ecoregion.

y=A0*EVI +C0

y=A0*ln (EVI)

+C0

Ecoregions A0 R2 A0 R2

Observed

7 −0.42 0.92 −0.09 0.96

14 −0.42 0.88 −0.09 0.93

21 −0.42 0.88 −0.09 0.93

28 −0.42 0.86 −0.09 0.91

35 −0.41 0.85 −0.09 0.89

CMIP5—ALL

7 −0.34 0.92 −0.07 0.99

14 −0.34 0.89 −0.07 0.96

21 −0.34 0.88 −0.07 0.95

28 −0.33 0.86 −0.07 0.93

35 −0.33 0.85 −0.07 0.92

CMIP5—NAT

7 −0.10 0.69 −0.02 0.66

14 −0.09 0.65 −0.02 0.62

21 −0.09 0.63 −0.02 0.60

28 −0.09 0.60 −0.02 0.57

35 −0.09 0.60 −0.02 0.57

The ensemble mean of three observational temperature

datasets (CRU, GISS and NCDC) is used to calculate the

observedmeanTtrend.

Figure 7.HistogramofTtrend (°C/10 yr) fromobservations
(OBS), ALL andNAT. The ensemblemean of three observa-
tional temperature datasets (CRU,GISS andNCDC) is used
to calculate the observedmeanTtrend (OBS-Mean).
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GHGs enhanced longwave radiative forcing over drier
areas, whichwill be detailed in futurework.

Our results suggest a fundamental pattern of glo-
bal warming over land that depend on the dryness of
ecosystems in mid-and low-latitudes. The ecoregion-
dependent warming may reflect primarily the large-
scale thermodynamic component of global warming
linked to changes in the water and energy cycles over
different ecosystems. It is very likely that the recon-
structed Ttrend (figure 5) provides the first order esti-
mate of this pattern and its differences from the
observed Ttrend are related to the dynamical compo-
nent linked to changes in mean circulation. So this
analysis provides a new way to break down the total
global warming patterns into the dynamical and ther-
modynamic components and thus help us to under-
stand whether they reinforce or counteract each other
over different ecosystems. For example, the recon-
structed Ttrend from observations (figure 5) resembles
the CMIP5 ALL Ttrend (figure 1(b)) because they share
similar large-scale thermodynamic responses and
feedbacks to global warming; the stronger warming
trend over Central USA and Amazonia in the observa-
tions than in the reconstructions have been linked to
increases in local drought conditions associated with
sea surface temperature patterns (e.g. McCabe
et al 2004, Harris et al 2008), which in turn have been
linked to aerosol changes (e.g. Cox et al 2008, Booth
et al 2012). This warming amplification over very dry
surfaces might help interpret and attribute global
warming and assess climate impacts. The presence of
the much stronger warming over arid regions in ALL
than in NAT indicates that increasing GHGs may play
a crucial role in the enhanced warming in the driest
ecosystems. Hence our work points to new potential
fingerprints of anthropogenic warming that could be
used to further distinguish observed temperature
trends fromnatural variations.
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