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Abstract
A significant fraction of anthropogenic CO2 emissions is assimilated by tropical forests and stored as
biomass, slowing the accumulation of CO2 in the atmosphere. Because different plant tissues have
different functional roles and turnover times, predictions of carbon balance of tropical forests depend
on how earth systemmodels (ESMs) represent the dynamic allocation of productivity to different tree
compartments. This study shows that observed allocation of productivity, biomass, and turnover
times ofmain tree compartments (leaves, wood, and roots) are not accurately represented inCoupled
Model Intercomparison Project Phase 5 ESMs. In particular, observations indicate that biomass
saturates with increasing productivity. In contrast,mostmodels predict continuous increases in
biomass with increases in productivity. This biasmay lead to an over-prediction of carbon uptake in
response toCO2 or climate-driven changes in productivity. Compartment-specific productivity and
biomass are useful benchmarks to assess terrestrial ecosystemmodel performance. Improvements in
the predicted allocation patterns and turnover times by ESMswill reduce uncertainties in climate
predictions.

1. Introduction

Due to anthropogenic activities, atmospheric CO2

concentrations have increased from ∼280 ppm in
1750 (IPCC 2013) to current levels of ∼400 ppm (Tan
and Keeling 2014), with increases projected to con-
tinue (IPCC 2013). Concomitant to increases in atmo-
spheric CO2 concentrations is an increase in air
temperatures (IPCC 2013). Tropical forests assimilate
a large amount of atmospheric CO2, accounting for
∼34% (42 PgC yr−1) (Beer et al 2010) of total global
terrestrial gross primary production (GPP). Part of
this carbon is lost to the atmosphere during metabo-
lism (autotrophic respiration, Ra) and the remaining
flux (net primary production, NPP) in tropical forests
represent ∼35% (22 PgC yr−1) of the total global NPP
(Pan et al 2013, Fernandez-Martinez et al 2014). Most
NPP is stored as biomass and tropical forests contain

about 66% (∼262 PgC) (Pan et al 2013) of global
terrestrial biomass, equivalent to ∼1.7 times the
terrestrial carbon sink since 1850 (Boden et al 2010, Le
Quéré et al 2014), contributing to reduce global
warming effects (IPCC 2013). Therefore tropical
forests are key components of the carbon cycle and an
important regulator of global climate.

NPP and biomass are fundamental variables of the
global carbon cycle representing net absorption and
net storage of carbon respectively. At steady state, for-
est biomass is the balance between productivity and
losses (characterized by turnover times) in tree com-
partments (Malhi et al 2011):

τ= ×Biomass NPP , (1)i i i

where i = leaves, wood, and roots (i.e., the main tree
compartments) and τi is the turnover time of indivi-
dual compartments (total biomass is the sum of all
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biomass compartments). The mechanisms that con-
trol the allocation of productivity and biomass in trees
are not fully understood ( Chambers and Silver 2004,
Cleveland et al 2011, Malhi et al 2011, De Kauwe
et al 2014, Michaletz et al 2014). However, in tropical
forests, patterns of productivity allocation (Aragao
et al 2009, Cleveland et al 2011, Malhi et al 2011),
biomass allocation (Poorter et al 2012, Fernandez-
Martinez et al 2014, Mitchard et al 2014), biomass
turnover time (Stephenson and van Mantgem 2005,
Malhi et al 2011, Stephenson et al 2011, Malhi 2012,
Carvalhais et al 2014), and covariation of productivity
and biomass (Keeling and Phillips 2007, Malhi
et al 2011, Pan et al 2011, Malhi et al 2015) have been
observed. These observations provide valuable con-
straints on terrestrial carbon cycle models, as demon-
strated here.

The latest versions of earth system models (ESMs;
global models which couple the physical climate sys-
tem with the carbon cycle (Bonan 2008, Shao
et al 2013, Friedlingstein et al 2014) are part of the fifth
phase of the Coupled Model Intercomparison Project
(CMIP5) (Taylor et al 2012) and allow for an inte-
grative study of the Earth system. These models pre-
dict the allocation of biomass and productivity. Thus,
howCMIP5 ESMs reproduce observed allocations and
biomass–productivity relationships in tropical ecosys-
tems can be used to test models and provide specific

suggestions for model improvements. This work,
therefore, has the following objectives:

(i) To compare observations and CMIP5 ESM pre-
dictions of allocations of productivity and bio-
mass, and turnover times of main tree
compartments (leaves, wood, and roots).

(ii) To determine whether CMIP5 ESMs reproduce
the observed spatial patterns of NPP and biomass
in tropical forests.

2.Data andmethods

2.1. Study area
This study focuses on tropical forests (180°W–180°E,
23.43°S–23.43°N) (figure 1(a)). Tropical forest areas
were selected using the moderate resolution imaging
spectroradiometer (MODIS) land cover type climate
modeling grid (CMG) product (MCD12C1 Version
051, 0.05°, available at https://lpdaac.usgs.gov/)
(Friedl et al 2010) for the year 2001. The International
Geosphere-Biosphere Program global vegetation clas-
sification (Loveland and Belward 1997) of evergreen
broadleaf forests was used to identify tropical forests.
A conservative mask of tropical forested areas was
created by considering only pixels with good quality

Figure 1. (a) Tropical forests (green areas) considered in this study. Data shown are at 1° spatial resolution. Data is fromMODIS land
cover type climatemodeling grid (CMG) product (MCD12C1). (b)GPP/(Ra-Rh) over tropical forests from1971 to 2000 forCMIP5
ESMs. CMIP5 predictions include the annual values for each grid cell for each year over tropical forests. GPP is gross primary
production, Ra is autotrophic respiration, andRh is heterotrophic respiration, all inMgCha−1 yr−1. (c) Percentage of grid cells with
1− δ⩽GPP/(Ra +Rh)⩽ 1 + δ, where δ represents the nearness of grid cells to the steady state condition. The error bars represent the
standard deviation across allmodels.
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(flag 0 in quality control files), forest land cover greater
than 80% and reliability (assessment) greater than
85%. This forest mask was applied to all model
simulations analyzed here, and correspond to CMIP5
cells with⩾40% of forest cover (figure S1, supplemen-
tary data).

2.2. CMIP5models
Monthly fields from historical simulations for the
period 1971–2000 from 22 CMIP5 ESMs models
(available at http://cmip-pcmdi.llnl.gov/) were used in
this study (table S1). Since models from the same
institution produce similar results (Masson and
Knutti 2011, Knutti et al 2013) we chose one model
per institution to present and discuss: bcc-csm1-1 m
(hereinafter referred as bcc), BNU-ESM (BNU),
CanESM2, CESM1-BGC (CESM1), GFDL-ESM2G
(GFDL), HadGEM2-ES (HadGEM2), MIROC-ESM
(MIROC), MPR-ESM-LR (MPI), and NorESM1-M
(NorESM1). Results for the 22models are presented in
supplementary data (see section 3).

CMIP5 ESMs historical simulations are coupled
simulations where the increase of atmospheric CO2

affects both the climate and the carbon cycle compo-
nents of the models, and can be compared directly
with current observations (Taylor et al 2012). In
CMIP5 models, total biomass is represented by cVeg
and the biomass in the main tree compartments are
cLeaf, cWood, and cRoot (coarse + fine roots). Net
primary productivity is identified as npp which is dis-
aggregated into nppLeaf, nppWood, and nppRoot.
For simplicity, total productivity will be referred to as
NPP (MgC ha−1 yr−1) and total biomass as cVeg
(MgC ha−1). The ensemble members available at the
time of this study per each CMIP5 model were aver-
aged andmonthly data integrated annually (January to
December). The annual data per each CMIP5 model
were used in our analyses. The ratio of nppLeaf,
nppWood, and nppRoot, to NPP and the ratio of
cLeaf, cWood, and cRoot to cVeg were compared
with observations. Ratios between predicted fluxes
and pools (nppLeaf/cLeaf, etc) were compared with
observed turnover times calculated in an analogous
manner.

The CMIP5 ESM predicted association between
NPP and cVeg were presented and discussed with
respect to observational studies. We explored quad-
ratic (cVeg = a+ b×NPP+ c×NPP2) and linear
(cVeg = a+ b×NPP) models to explain predicted
NPP versus cVeg relationships. The MPFIT fitting
package (http://purl.com/net/mpfit) (Markwardt
2009) for the interactive data language (IDL, Exelis
Inc., McLean, VA) was used for this task. If the linear
and quadratic models had statistically similar variance
(significance level of 95%), determined by the F-test
(Wilks 2006), then the linearmodel was preferred over
the quadratic model because fewer parameters were
required (Wilks 2006). If the models had statistically

different variance, then the model with lower fitting
errors (lower χ2 Wilks 2006) was preferred. A visual
inspection was performed to complement this
comparison.

In CMIP5 ESMs, disturbances such as fire and
drought can produce dramatic departures from steady
state conditions. CMIP5 ESMs with a fire module
include CESM1, IPSL, MPI, and GFDL. Under steady
state conditions, carbon inputs (GPP) balance outputs
(Ra, and soil heterotrophic respiration, Rh), and
equation (1) is valid. To ensure that grids cells are not
disturbed forests the following condition was con-
sidered: 1− δ ⩽ GPP/(Ra +Rh)⩽ 1 + δ. The selection
of δmust be small to better approximate a steady state
condition. For simplicity we selected a common value
of δ for allmodels analyzed.

2.3. NPP and biomass data
Mean NPP value for lowland tropical forests was
estimated to be 11.86 ± 2.47 MgC ha−1 yr−1 (mean ±
SD) (Malhi et al 2011) with a range from 8.4 to
29.8 MgC ha−1 yr−1 (Cleveland et al 2011) (table S2).
This mean NPP agrees with another recent tropical
estimate (11.08 ± 1.2 MgC ha−1 yr−1, Cleveland
et al 2015). The observationally-based fractional
allocation of NPP to leaves, wood, and roots was
34 ± 6%, 39 ± 10%, and 27 ± 11%, respectively (Malhi
et al 2011). However, these authors considered only
fine roots (in CMIP5 models nppRoot includes coarse
and fine roots). Coarse root NPP is difficult to assess
but represents a small fraction (4%) of total NPP
(Clark et al 2001). Similarly, fine root production is
not measured directly and observational assessments
have serious limitations (Lukac 2012). Since estimated
values of coarse root NPP are in the range of the
uncertainties of NPP allocation (Malhi et al 2011) we
did not attempt to correct these values. Therefore, the
fractional allocation of NPP to nppRoot was directly
compared with the observed value. Mean tropical
biomass was taken to be 144 ± 54MgC ha−1 (Saatchi
et al 2011) (ftp://www-radar.jpl.nasa.gov/projects/
carbon/datasets/), with a range from 50 and 350MgC
ha−1 (Malhi et al 2011, Saatchi et al 2011, Baccini
et al 2012, Lewis et al 2013). The mean biomass agrees
well with the value of 151MgC ha−1 found by Baccini
et al (2012) (table S2). Biomass was divided into leaves,
stems, and roots as 4 ± 2%, 78 ± 4%, 18 ± 2%, respec-
tively (Poorter et al 2012, Fernandez-Martinez
et al 2014).We combined equation (1), themean ± SD
values of biomass and productivity (taken as represen-
tative of tropical forests), and allocation fractions (to
leaves, wood, and roots) to calculate turnover times
(yr) (using a Monte Carlo simulation with 10 000
iterations) and compare with independent observa-
tionally-based values.
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3. Results

Most CMIP5 tropical forest were close to steady state
(figure 1(b)), but departures from this condition exist.
Figure 1(c) shows that between 10% and 60% of data
per model satisfy 1− δ⩽GPP/(Ra +Rh)⩽ 1 + δ for
δ= 0.025. δ= 0.1 encompassed most of the data. In
this study we choose δ = 0.1 as the cut off for steady-
state conditions, so that only cells satisfying
0.9⩽GPP/(Ra +Rh)⩽ 1.1 were used in the following
analyses. For the purposes of this study, the selection
of δ had little to no effect on our results as observed in
allmodels studied (figure S2).

Mean NPP model predictions varied from
4.8MgC ha−1 yr−1 (GFDL) to 15.4 MgC ha−1 yr−1

(HadGEM2), and BNU, CESM1, and Nor-
ESM1simulated values (average of 11.7 MgC ha−1

yr−1), close to observations (figure 2, and table S3).
CESM1, IPSL, and NorESM1, corresponding to two
distinct land models (CLM4 and ORCHIDEE, table
S1), provided the components of NPP allocated to
leaves, wood, and roots. These models allocated NPP
to (1) roots consistent with observations; (2) wood
higher than observations (56% versus 39%); and (3)
leaves lower than observation (19% versus 34%). On
average, predicted nppLeaf, nppWood, and nppRoot
represented 19%±2%, 56%±1% and 21%±1%
ofNPP.

The models that better reproduced mean NPP
(BNU, CESM1, and NorESM1) performed worse for
mean biomass (cVeg) (figure 2(b), table S3), simulat-
ing the highest values (average of ∼257MgC ha−1)
among the CMIP5 models we analyzed. HadGEM2
(157MgC ha−1) and IPSL (183MgC ha−1) predicted
biomass values close to observations. The bcc,
MIROC, and MPI predictions were the lowest among
models. With respect to the allocation of biomass in
the main tree compartments, all models predicted a
smaller fraction of cVeg allocated to cLeaf than
observed, a feature that may be related to the lower
NPP allocated to this compartment (figure 2(a)). Also,
all models showed a large fraction of cVeg allocated to
cWood consistent with observations, but there were
several differences. Relative to observations, the frac-
tion of biomass in wood was high in BNU, CESM1,
HadGEM2, and MIROC; this fraction was low in the
bcc model. The higher wood allocation relative to
observations in productivity and biomass in models
using CLM4 could explain higher total biomass (top
panel figure 2(b)). Finally, the fraction of biomass in
roots varied among models. cRoot was over predicted
in bcc and NorESM1 models, and under predicted in
BNU, HadGEM2, and MIROC, relative to observa-
tions. The fraction of biomass in cRoot simulated by
CanESM2 and IPSL were close to observations. Two
contrasting patterns in the fractions of biomass in

Figure 2.Tropical forest productivity (NPP) and biomass (cVeg) predicted byCMIP5 ESMs. The contribution of leaf, stem (wood),
and root as fractional contributions toNPP and cVeg are also shown. The horizontal gray band is themean± SD forNPP (Malhi
et al 2011) and biomass (Saatchi et al 2011), and the allocations in themain tree compartments (leaves, wood, and roots) forNPP
(Malhi et al 2011) and biomass (Poorter et al 2012, Fernandez-Martinez et al 2014). Box plots: boxes enclose the 25th quartile, the
median value, and the 75th quartile, thewhiskers extend to the largest and smallest valueswithin 1.5 times the interquartile range
(IQR; either the IQR75 or IQR25 and outliers weremarkedwith dots). The horizontal line in the box is themedianmodel predictions.
Mean values are discussed in themanuscript.Models that do not reportNPP or biomass in each pool are left blank.
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wood and root pools are evident: a set of models with
close to zero root biomass and close to 100% wood
biomass, and a set of models with ∼20–30% root and
70–80% wood, suggesting that the definition of wood
and roots is inconsistent across the CMIP5 models
(some labeling coarse roots as wood and some labeling
coarse roots as roots). Although CMIP5 ESMs also
provide biomass for other minor tree pools, cLeaf,
cWood, and cRoot encompass the dominant propor-
tion of total biomass, representing on average 1%,
85%±10%, and 12%±10%of cVeg.

We found that τleaf varied between 0.39 and 3.3 yr,
and comparable with observed values (1 yr) in tropical
forests (Chave et al 2010). τwood varied between 11 and
54 yr. Using tropical forests plots Galbraith et al (2013)
found τwood between 23 and 129 yr and a median of
50 yr that reflect the high diversity of taxa in tropical
forests. In this study we considered τwood between 11
and 129 yr. Finally, τroot varied between 3 and 23 yr,
values that are larger than site estimates (1 to 7 yr)
(Jimenez et al 2009). This difference may be explained
by the fact that measurements of root turnover are
achieved by indirect means resulting in high uncer-
tainties (Lukac 2012). Estimates using 14C to estimate
fine-root turnover in temperate trees has indicated
that a spectrum of turnover times exist, with two
dominant peaks of ∼1 and ∼10 yr (Riley et al 2009,
Gaudinski et al 2010). The range of τroot from 1 to
23 yr was considered in this study. Figure 3 shows
these turnover times compared with turnover time
obtained frommodels. For the CMIP5 ESMs that pro-
vided sufficient information to calculate these turn-
over times, the mean leaf lifetime was 3 to 6 months
longer than the mean observed value (τleaf = 1 yr). The
predicted turnover time of woody biomass was 10–30

yr shorter than the median of 50 years observed in tro-
pical forests, and roots hadmean turnover times about
50% larger than the mean value (9 yr, but see Jimenez
et al 2009). NorESM1models used the same base land
model (CLM4) as used in CESM1. However, numer-
ous physical parameterizations were changed in the
CLM version used by NorESM1 (Bentsen et al 2013),
potentially explaining the differences between these
models.

Three patterns of NPP versus cVeg emerged from
the CMIP5 models (figure 4, and figure S3): (A) con-
cave up: CESM1, MPI and NorESM1; (B) linear: bcc,
BNU, CanESM2, GFDL, IPSL and MIROC; and (C)
concave down: HadGEM2. CESM and NorESM1 use
the same land model (CLM4) and therefore their
NPP–cVeg patterns were very similar. In CLM4, the
fractional allocation to wood increases as a function of
increasing NPP (Thornton and Zimmermann 2007),
which is responsible for the concave-upwards curve.
TheHadGEM2models produced the only simulations
with a saturating relationship that appears to arise
from the TRIFFID vegetation dynamics underlying
HadGEM2. In TRIFFID the allocation to woody
growth for range expansion of a given PFT (plant
functional type) decreases when that PFT occupies a
large fraction of a cell, resulting in a density-dependent
vegetation turnover time. In addition,HadGEM2NPP
and cVeg maps (figure S4) showed that
NPP>∼15MgC ha−1 yr−1 and cVeg <∼190MgC
ha−1 were observed contouring the borders of tropical
forests. These forest grid cells included also grasses
(figure S5) that are highly productive and have low
biomass which may partially explain the decrease of
cVeg with an increase in NPP for NPP>∼15MgC
ha−1 yr−1 (and which is a mechanism different than

Figure 3.CMIP5 turnover times formain tree compartments (leaves, wood, and roots). The observed turnover times are shown in
gray based on equation (1), Galbraith et al (2013),Malhi et al (2011), Saatchi et al (2011), and Jimenez et al (2009). Box plot
description followsfigure 2.Models that did not report inputs ormass of carbon to each plant tissue pool are left blank.
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represented in the observed benchmark relationship,
which only considers trees).

4.Discussion

A full understanding of processes that govern alloca-
tion remains elusive. Despite this limitation, models
attempt to reproduce allocation using schemes that
vary between models and depend on the PFT. CMIP5
models calculate allocation to leaves, wood, and roots
using (1) allometric relationships and leaf area index,
LAI, (as in AVIM2 in bcc, JULES in HadGEM2, table
S1); (2) NPP (CLM4 in CESM1 and NorESM1,
JSBACH in MPI. The land model used by BNU is the
CoLM that is based on previous versions of CLM4),
(3) allometry and resource availability (as CETEM in
CanESMandORCHIDEE in IPSL), (4) environmental
conditions at the tree level (as in SEIB-DGVM in
MIROC), and (5) tree height (as LM3.0 in GFDL).
Our results suggest that the schemes used by CMIP5
models did not accurately represent the observed
allocations in leaves, wood, and roots. Additionally,
the strategies used to calculate allocation in the CMIP5
models have advantages and disadvantages. For
instance, models based on the allometric approach
lack the inherent ecosystem adaptation component to
predict the effects of environmental variability and
climate change (Franklin et al 2012).

Model predicted NPP and biomass values agreed
well with the observational range but models seem to
be capable of reproducing either the observed mean
NPP or the observedmean biomass but not both. This
pattern is likely related to the embedded model
schemes that calculate NPP and biomass allocations.
Models whose allocations are based on NPP better

reproduced the observed mean NPP (BNU, CESM1
and NorESM1) and models using allometry better
reproduced the observed mean biomass (HadGEM2
and IPSL). The models that report pool-specific allo-
cation consistently overestimate the fraction of pro-
ductivity allocated to wood, and underestimate the
fraction of productivity allocated to leaves, when com-
pared with observations. The allocations to root pro-
ductivity and leaf biomass appear to be close to
observations across most CMIP5 models. CMIP5
models have fractional biomass in leaves at the low end
of the mean observational range, and their fractional
biomass in roots and wood show a bimodal pattern
that suggests an inconsistent definition of coarse roots
as either roots or wood between the models. CMIP5
woody parts contain the largest fraction of biomass in
agreement with observations but have faster turnover
time in that component (10–30 yr faster than the
observed median of 50 yr), resulting in predictions of
higher productivity or lower biomass. Our analysis
was limited due to lack of available model data for the
main compartments of NPP and biomass. We sug-
gested that all ESM’s participating in future inter-
comparison projects include and consistently define
the main pools (leaves, wood, and root) of productiv-
ity and biomass to better understand their predictions.

Models predict a continuous increase in biomass
with increased productivity. For instance, CLM4
adopts a continuous increase in the fraction of carbon
allocated to wood with increases in NPP (Oleson
et al 2010). However observational studies show a dif-
ferent pattern. Keeling and Phillips (2007) found that
biomass saturates at high productivity values (figure
S6), and recent studies confirm this pattern (Malhi
et al 2011, Stephenson et al 2011, Malhi 2012). The
saturation of biomass to high productivity occurs

Figure 4.Relationship between productivity (NPP) and biomass (cVeg) over tropical forests usingCMIP5models. Allmodels but one
show continual increasing biomass as a function ofNPP,while observations show a saturating response.
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because highly productive forests have short residence
times and their tree species prioritize fast growth that
results in low wood density and therefore low biomass
(Malhi et al 2015). The fact that ESMs do not repro-
duce the observed saturation response of biomass at
high NPP raises a critical question about model pre-
dictions of carbon cycle responses to global change:
Do the same saturating conditions hold for the higher
productivity environments expected as a result of ele-
vatedCO2 conditions (Norby et al 2005) as for the cur-
rent spatial patterns? If so, and since themodels do not
represent the mechanisms behind this saturating
response, we expect the models will likely over predict
carbon uptake in response to CO2 or climate-driven
changes in productivity. These functionally incorrect
responses imply model structural uncertainty asso-
ciatedwith vegetation tradeoffs.

Biomass per unit area was found to be larger in
Asia, followed by Africa and then Amazonia (Lewis
et al 2013, Slik et al 2013, Banin et al 2014). IPSL and
CanESM2 appears to capture this regional pattern
(figure S7). However, a close observation revealed that
in CanESM2 lower values of biomass in Amazonia
were produced by extremely (and unrealistically) low
values of biomass over a large fraction of Amazonia
(figure S4). In addition, observational studies show
that Northwestern Amazonia is the most productive
area in the Amazon (Malhi and Davidson 2009, Cleve-
land et al 2011, Malhi et al 2011) and the most diverse
(ter Steege et al 2013), but it also has lower biomass
due to faster turnover time (Aragao et al 2009, Malhi
and Davidson 2009, Quesada et al 2012, Galbraith
et al 2013). CMIP5models were consistent with obser-
vations in predicting higher NPP in Northwestern
Amazonia relative to the Amazon basin but incon-
sistent with observations by simulating higher bio-
mass in this region (figure S4). The models’ limited
ability to reproduce the decrease of cVeg at high NPP
raises concerns about predictions in areas with high
productivity. It also raises concerns about carbon
stocks projections associated with projected increase
in productivity due increase in atmospheric CO2

(Wieder et al 2015).
Observational data used to benchmark the CMIP5

ESMs are of great value but contain their own uncer-
tainties (Malhi et al 2011, Samanta et al 2011, Mitch-
ard et al 2014, Cleveland et al 2015, Malhi et al 2015).
Yet, patterns in productivity and biomass emerge that
models were unable to capture and that likely affect
model predictions. For instance, to be comparable
with observation models need to increase NPP alloca-
tion to leaves that in turn may increase LAI and affect
climate predictions through changes in albedo, evapo-
transpiration, and CO2 surface fluxes (Negrón-Juárez
et al 2007, 2009, Myneni et al 2007, Bonan 2008). The
continuous increase of biomass with increased NPP in
all models suggest, for instance, that mortality
mechanisms are inaccurate in models. Improved
representation of mortality is needed, since tree

mortality has a large impact on carbon storage (Del-
bart et al 2010, Malhi 2012, Stephenson et al 2014,
Malhi et al 2015). For instance, an important form of
tree mortality in Amazonia are windthrows (Nelson
et al 1994, Chambers et al 2013), that are not repre-
sented in CMIP5ESMs, but have a strong effect on for-
est dynamics and composition (Negrón-Juárez
et al 2010, Negrón-Juárez et al 2011, Chambers
et al 2013,Holm et al 2014,Marra et al 2014).

5. Conclusion

The CMIP5 models used in this study did not
reproduce the observed allocation of productivity,
biomass, and turnover time in the main tree compart-
ments (leaves, wood, and roots) in tropical forests. All
models systematically predict an increase in biomass
with an increase in NPP in the lower NPP range
observed in tropical forests. Observations also suggest
a limit for this increase, a pattern not simulated by the
models. The models inability to reproduce the
observed patterns of allocation of NPP and biomass
raises concerns about climate projections, in particular
whether the limitations to vegetation accumulation
under high productivity conditions also hold for the
responses of forest vegetation carbon stocks under
future global change. Regional differences of predicted
biomass andNPPwere observed acrossmodels.Model
improvements in representing observed allocations of
productivity and biomass in the main tree compart-
mentsmay lead to changes in climate predictions.
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