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Abstract
The impacts of cloud radiative heating on the East Asian SummerMonsoon (EASM) over
southeasternChina (105°–125°E, 20°–35°N) are addressed by using theCommunity Atmosphere
Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds
leads to a positive effect on the local EASMcirculation over southeasternChina.Without the radiative
heating of clouds, the EASMcirculation and precipitationwould bemuchweaker than that in normal
conditions. The longwave heating of clouds dominates the changes of EASMcirculation. The positive
effect of clouds on EASMcirculation is explained by the thermodynamic energy equation, i.e. the
different heating rate between cloud base and cloud top enhances the convective instability over
southeasternChina, which consequently enhances updraft. The strong updraft would further result in
a southwardmeridional wind above the center of the updraft through Sverdrup vorticity balance.

1. Introduction

East Asian Summer monsoon (EASM) has prominent
impacts on the local climate of East Asia (Wang and
Li 2004). In each boreal summer, the southwesterly
wind along the southern flank of the western Pacific
subtropical high carries moist warm air from the
Pacific and meets the cold continental air mass over
Southeastern China. The East Asian subtropical front
is thus established, which weakens the baroclinicity
significantly and increases the frequency of deep
convections (Ding and Chan 2005, Wang et al 2008).
Along the frontal zone, a significant portion of the
convective precipitation extends from the Yangtze
River valley eastward to Japan, due to the high
occurrence frequency of deep convections (Ding and
Chan 2005). Correspondingly, prevailing low clouds
in winter are replaced by high clouds in summer over
southeastern China, including deep cumulus and
cirrus (e.g., Yu et al 2001, Luo et al 2009).

The cloud is traditionally regarded as a result of
atmospheric circulation changes associated with the

EASM system. It is well recognized that the latent heats

released by lifting condensations lead to positive

effects in the development of EASM. However, the

radiative effects of clouds are somewhat overlooked.

Clouds are generally thought to warm the underlying

atmosphere by their greenhouse effects, and cool the

atmosphere underneath the cloud and heat the cloud

aloft through their reflection and absorption of short-

wave radiation. Such a vertical difference in heating

rates between the cloud base and cloud top is strong

enough to cause convective instability in anvils (Ack-

erman et al 1988, Mather et al 2007). We thus hypo-

thesize that clouds can feedback on the EASM

circulation through its different radiative heating

effects between the underlying air and cloud top. This

hypothesis is examined by performing numerical

experiments with the Community AtmosphereModel

version 5 (CAM5). We show evidence that, without

accounting for the cloud radiative heating, EASM cir-

culation and monsoon precipitation would (sig-

nificantly) becomeweaker.
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2.Data,model andmethods

The datasets used in this study consist of the following
seasonallymeanfields:

(1)The National Center for Environmental Prediction
Department of Energy Atmospheric Model Inter-
comparison Project reanalysis II (NCEP2) (Kana-
mitsu et al 2002) from 1979 to 2011 is used to
describe the climatological atmospheric general
circulation.

(2)The CPC Merged Analysis of Precipitation
(CMAP) data from 1979 to 2011 is used to describe
the climatological monsoon rain band (Xie and
Arkin, 1996).

(3)CloudSat and CALIPSO (Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations) data
from 2006 to 2011 are used to depict the vertical
structure of cloud (Stephens et al 20026). CloudSat,
which carries the Cloud Profiling Radar with its
estimated minimum detectable signal of −30 dBZ,
provides reflectivity (from Level 2 CloudSat Geo-
metrical Profiling Product) and heating rates (from
Level 2 CloudSat Fluxes and Heating Rates Pro-
duct) that are used in this study.

Numerical experiments are performed by using
CAM5 (Neale et al 2011). Stratiform clouds and
cumulus in CAM5 are treated by separate cloud para-
meterizations. The shallow cumulus scheme is descri-
bed by Park and Bretherton (2009) and deep cumulus
is treated by the Zhang andMcFarlane scheme (Zhang
and McFarlane 1995, Neale et al 2008). Stratiform
cloud macrophysics is described by Park et al (2014)
and Gettelman et al (2010). The model applies the
Rapid Radiative Transfer Model for general circula-
tion models (RRTMG) to treat the radiative transfer
(Mlawer et al 1997, Iacono et al 2000).

In order to examine how the cloud radiative heat-
ing affects EASM over southeastern China, we per-
form three sensitive experiments (table 1), in which
the all-sky radiative fluxes over (105°–125°E, 20°–35°
N, see the box of figure 1(a)) are set equal to their
clear-sky counterparts in shortwave (NS), longwave
(NL) and net radiative (NR) calculations, respectively.

In addition, a control run without these changes is
performed (CNTL). Results from three sensitive
experiments are then compared to the control run. All
experiments are run with 30 vertical levels and a hor-
izontal resolution of 2° and forced by the same pre-
scribed climatological sea surface temperatures
(SSTs). All experiments are run 6 years; the outputs of
the last 5 years are used in the analysis (see table 1). In
order to better compare with satellite observations, the
Cloud Feedback Model Intercomparison Project
Observation Simulator Package (COSP) (Kay
et al 2012) is configured in this study.

3. Results

The spatial patterns of the summermean precipitation
andwinds (figure 1(a)) show the subtropical high with
its southwesterly winds prevailing on Southeastern
China, which carries abundant moisture from the
South China Sea to Southeastern China at 850 hPa
(figure 1(a)). The rain belt is consistent with the wind
field, which extends along the Mei-Yu frontal area
(∼30°N) from the Yangtze River valley to southern
Japan.

Consistent with the EASM horizontal circulation,
the vertical EASM circulation replaces the domination
of Hadley cell over southeastern China (Ye and
Yang 1979, Zhou and Li 2002). A prominent feature of
the vertical EASM circulation is that a strong updraft
accompanied with its southward upper outflow pre-
vails at southeastern China (figure 2(a)). Correspond-
ingly, the seasonal mean rain belt is well synchronized
with the updraft, which moves northward beyond 20°
N (figure 2(a)).

Following the updraft of the vertical EASM circu-
lation, high clouds dominate Southeastern China
(105°–125°E, 20°–35°N) during the summer. The
contoured frequency by altitude diagrams (CFAD) of
radar reflectivity for cloudy profiles over southeastern
China derived from CloudSat/CALIPSO is shown in
figure 3(a). As the minimum detectable signal of the
Cloud Profiling Radar is −30 dBZ, only results with a
reflectivity larger than −30 dBZ are shown. A strong,
while narrow, radar reflectivity range extends to high
altitudes (12 km). It indicates that the prevailing of
anvils is mainly constituted by small ice crystals. The
strong and unbroken frequency belt appears from
1 km to 14 km, representing the existence of

Table 1.Details of senstivty experments.

Experiment Description Method

CNTL Control run of CAM5 6 year run forced by climatology SST, last 5 years are used

NL No longwave cloud radiative effect over southeastern

China (105°–125°E, 20°–35°N)

Set all longwave all-sky radiativefluxes equal to their clear-sky

counter parts over (105°–125°E, 20°–35°N)

NS No shortwave cloud radiative effect over southeastern

China

Samemethod asNL run, but for the shortwaves

NR Nonet cloud radiative effect over southeasternChina Samemethod asNL run, but for both shortwaves and longwaves

6
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convective clouds (Luo et al 2009). The high fre-
quencies of radar reflectivity above freezing level
(4 km) indicate large ice-phase cloud particles. While
the frequency belt between −5 dBZ and 10 dBZ below
4 km are probably due to raindrops and liquid-phase
cloud droplets.

CAM5 generally reproduces the 3D structures of
EASM circulation and cloud system (figure 2(b)). It is
notable that the simulated location of western Pacific
subtropical high shifts northward relative to the obser-
vation (figure 1(b)). Moreover, the simulated vertical
circulation of EASM is broader and higher than the
observation, and the rain belt is located at the North
China Plain (∼40°N) instead of the Yangtze River val-
ley (∼30°N) (figure 2(b)). Consequently, the simu-
lated radar reflectivity frequency belt vertically
penetrates into a higher altitude and covers a wider
range (figure 3(b)), which mean more clouds (both

liquid- and ice-phase) and higher cloud tops are pro-
duced byCAM5.

Figures 1–4 show that clouds play a significant role
in influencing the structure and magnitude of EASM
by changing the vertical profiles of radiation, includ-
ing circulation and precipitation. When the cloud
longwave radiative effects are ignored (NL run), the
weak cloud greenhouse effect causes a negative tem-
perature anomaly of 0.8 K at the mid-level of the tro-
posphere, which further enhances the stability and
triggers an anomalous subsidence over southeastern
China (figure 2(c)). The strong anomalous subsidence
thus results in several responses in the local EASM cir-
culation and precipitation. First, the anomalous sub-
sidence reduces the lifting condensations and cloud
occurrence frequency, as the negative anomalous fre-
quencies of cloud radar reflectivity indicates reduction
in cumulus and anvils (figure 3(c)). Second, the

Figure 1.The horizontal distributions of Precipitation (shading, units:mmday−1) and 850 hPawinds (vectors, units:m s−1) in JJA
during 1979–2011. (a)Observations (NCEP2 andCMAP), (b) CNTL run, (c) differences betweenNL andCNTL runs, (d) and (e) are
the same as (c), but forNS andNR runs separately. The dotted areas indicate that the precipitation anomalies are statistically
significant at the 10% level. Themasked areasmean that the topography is higher than 1.5 km. The red boxes are southeasternChina
(105°–125°E, 20°–35°N).
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anomalous subsidence also produces an anomalous
anticyclone located in southeastern China and cyclone
appears in the western North Pacific. Their north-
easterly winds dominate southeastern China, which
cuts down the prevailing moisture transports from the
South China Sea at 850 hPa, as shown in figure 1(c).
This results in a negative anomalous precipitation in
southeastern China and a positive anomalous pre-
cipitation in tropical oceans (figure 1(c)).

The responses of circulation and precipitation to
the shortwave cloud heating over southeastern China

are weaker than those to the longwave cloud heating
(figure 1(d)). Ignoring shortwave cloud heating causes
warmer conditions at low- and mid-levels that tends
to enhance the local instability, however, the changes
in temperature are weak (figure 2(d)). Therefore, the
cloud longwave radiative heating dominates the over-
all cloud radiative impacts on EASM circulations
(figure 1(e)).

Why does the local cloud radiative heating lead to
such a huge impact on the EASM circulation over
southeastern China? We use thermodynamic energy

Figure 2.Upper part in each panel: height-latitude cross-section of JJAmean temperature (shading, units: K) andwinds (vectors,
units:m s−1) averaged over (105°–125°E). Lower part in each panel: latitudinal profile of rainfall based on the same region (unit:mm
day−1). (a)Observations, (b) CNTL run, (c) differences betweenNL andCNTL runs, (d) and (e) are the same as (c), but forNS and
NR runs separately. The dotted areas indicate that the temperature anomalies are statistically significant at the 10% level.
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equation and Sverdrup vorticity balance to explain the
response in general circulation to the absence of radia-
tive heating.

Ignoring horizontal advection, the thermo-
dynamic energy equation can be simplified as (Acker-
man et al 1988,Mather et al 2007):

w
N H

R
Q (1)

2

=

where Q represents the heating rates, w means the
vertical velocity and H is the scale height. The Brunt-
Vaisala frequency is defined by N ,

g

z
2 =

θ
θ∂

∂
where θ is

potential temperature. Equation (1) shows that the
radiative heating is balanced by the adiabatic cooling
associated with the updraft. In other words, the
absence of cloud radiative heating tends to produce an
anomalous subsidence.

Over southeastern China, the cloud radiative heat-
ing is generally reproduced by CAM5 (figures 4(a) and

(b)). However, CAM5 shows the averaged net radia-
tive heating rate caused by clouds is approximately
0.55 K day−1 at 6∼ 12 km, which is larger than
0.47 K day−1 in observation (figures 4(a) and (b)).
Moreover, the simulated location of the maximum
radiative heating is higher compared with observa-
tions, which is consistent with the vertical profiles of
cloud and EASM circulation (figures 2 and 3). When
the cloud radiative effects are ignored (NR run), there
is a radiative cooling anomaly of about −0.5 K day−1

compared with the control run (figure 4(c)) and most
of this anomaly comes from the longwave cloud radia-
tive effects (not shown), similar to what we found in
figures 1–2. Based on equation (1), such a radiative
deficit generates an anomalous subsidence rate of
about 8 hPa day−1 with its peak appearing at around
6∼ 8 km, where the maximum radiative cooling
occurs (figure 4(c)). This contributes substantially to
EASM circulation, since the updraft of EASM

Figure 3.CFADof JJAmean radar reflectivity averaged over (105°–125°E, 20°–35°N), horizontal coordinate is radar reflectivity (dBz)
and vertical coordinate is height. The bin size is 5 dBZ in the horizontal and 0.5 km in the vertical. (a)Observations (CloudSat/
CALIPSO), (b) CNTL run, (c) differences betweenNL andCNTL runs, (d) and (e) are samewith (c), but forNS andNR runs
separately.
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circulation is about −20 hPa day−1 over southeastern
China inCAM5.

The changes in southward upper outflow of EASM
can be explained by Sverdrup vorticity balances (Zhou
et al 2009), that a meridional wind (v) tends to
respond to the subsidence caused by cloud radiative
cooling anomaly. The Sverdrup vorticity balance is
(Rodwell andHoskins 2001):

v f
p

(2)β ω= ∂
∂

where f 2 sinΩ φ= is the Coriolis parameter,

a

2 cosβ = Ω φ
is its meridional gradient and

p

ω∂
∂

repre-

sents vertical velocity gradient of omega. Thus, north-
ward winds are generated above the maximum center
of cloud radiative cooling anomaly, because of the
positive vertical gradient of omega ( 0)

p
>ω∂

∂

(figure 4(c)). The vertical circulation forced by cloud
radiative cooling anomaly has the opposite structure
to EASMcirculation (figure 4(c)).

4. Conclusion

Based on the sensitivity experiments of CAM5 model,
we show evidence that the cloud radiative heating over
southeastern China (105°–125°E, 20°–35°N) has sig-
nificantly positive impacts on the local EASM circula-
tion and precipitation.When cloud radiative heating is
ignored over southeastern China, the model produces
an anomalous subsidence and a negative temperature
anomaly. Meanwhile, anomalous anticyclone and
cyclone occur in southeastern China and the western
North Pacific, respectively, which block the low level
moisture transport from tropical oceans. These result
in a weak EASM. This is because cloud heats the
atmosphere at cloud base and cools the atmosphere at
cloud top. Based on thermodynamic energy equation,
absence of cloud radiative heating induces an anom-
alous radiative cooling of−0.5 K day−1 at themid-level
troposphere, which increases the atmospheric stability
and would be balanced by a strong anomalous
subsidence of about 8 hPa day−1. The anomalous
subsidence subsequently reduces the occurrence fre-
quency of cloud and precipitation and results in a local
anomalous anticyclone and a weak subtropical high.
Moreover, it further reduces the meridional wind
through Sverdrup vorticity balance at high levels of the
troposphere. The anomalous vertical circulation
caused by absence of cloud radiative heating is
opposite to EASM vertical circulation. Therefore,
cloud radiative heating leads to a positive effect on
the EASM.

Our results imply that clouds and their radiative
heating over southeastern China are also significant
factors in the simulations of EASM. Bias in cloudsmay
lead to significant bias in simulating EASM circulation
and precipitation. Clarifying the importance of cloud
radiative heating will not only provide a useful under-
standing of EASM, but also a possible way to reduce
the bias in the simulation of EASM.
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