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Abstract
Determining the seasonality of terrestrial carbon exchange with the atmosphere remains a challenge
in tropical forests because of the heterogeneity of ecosystem and climate. Themagnitude and spatial
variability of this flux are unknown, particularly in Amazonia where empirical upscaling approaches
from spatially sparse in situmeasurements and simulations fromprocess-basedmodels have been
challenged in recent scientific literature. Here, we use satellite proxy observations of canopy
structure, skin temperature, water content, and optical properties over a period of 10 years
(2000–2009) to constrain and quantify the spatial pattern and seasonality of carbon exchange of
Amazonian forests.We identify nine regions through an optimized cluster approachwith distinct
leaf phenology synchronizedwith either water or light availability and corresponding seasonal cycles
of gross primary production (GPP), coveringmore than 600million ha of remaining old growth
forests of Amazonia.We find South and Southwestern regions show strong seasonality of GPPwith a
peak in the wet season; while fromCentralWestern toNortheastern Amazonia cover three regions
with risingGPP in the dry season. The remaining four regions have significant but weak seasonality.
These patterns agree with satellite florescence observations, a better proxy for photosynthetic
activity. Our results suggest that only one-third of the patterns can be explained by the spatial
autocorrelation caused by intra-annual variability of climate over Amazonia. The remaining two-
thirds of variations are due to biogeography of the Amazon basin driven by forest composition,
structure, and nutrients. These patterns, for the first time, provide a complex picture of seasonal
changes of tropical forests related to photosynthesis and influenced bywater, light, and stomatal
responses of trees that can improvemodeling of regional carbon cycle and future prediction of
impacts of climate change.

Introduction

The terrestrial gross primary production (GPP) is
considered the largest CO2 flux (123 ± 8 petagrams)
and responsible for driving several ecosystem func-
tions globally (Beer et al 2010). Estimates ofmagnitude
and regional variations of this flux remain uncertain in
humid tropical forests, particularly in Amazonia
(Huntingford et al 2013, Schimel et al 2014) where

limited ground data have caused gross assumptions
about seasonality and heterogeneity of these forests
(Clark 2004). Forests of Amazonia, although consid-
ered evergreen, appear to have seasonal cycles, follow-
ing the rhythms of rainfall and radiation (Myneni
et al 2007, Fu et al 2013) that significantly impact their
carbon assimilation and GPP (Clark 2004, Lee
et al 2013, Fischer et al 2014). Experimental studies
and ecosystem modeling suggest that availability of

OPEN ACCESS

RECEIVED

23October 2014

REVISED

11 June 2015

ACCEPTED FOR PUBLICATION

4 July 2015

PUBLISHED

3August 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd

http://dx.doi.org/10.1088/1748-9326/10/8/084005
mailto:xuliang@ucla.edu
mailto:saatchi@jpl.nasa.gov
http://dx.doi.org/10.1088/1748-9326/10/8/084005
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/8/084005&domain=pdf&date_stamp=2015-08-03
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/8/084005&domain=pdf&date_stamp=2015-08-03
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


water and light regulate carbon assimilation of the
Amazon forests (Saleska et al 2003, Baker et al 2008,
Kim et al 2012). Eddy covariance measurements in
Central Amazonia indicate that there is an increased
net ecosystem productivity and evapotranspiration
during dry season that may suggest the greening of
canopy or emergence of new leaves (Hutyra et al 2007,
Restrepo-Coupe et al 2013). However, ground obser-
vations in Southern and Southwest Amazon support
more of a distinct dry season decline in canopy
photosynthesis due to water stress (Vourlitis
et al 2005, Saleska et al 2009, Restrepo-Coupe
et al 2013, Araujo-Murakami et al 2014, Malhi
et al 2014, Rowland et al 2014).

This diversity in results point to a significant het-
erogeneity in vegetation interaction with climate,
creating spatially variable seasonality of GPP that can-
not be resolved at landscape to regional scales with
limited ground and tower flux data (Restrepo-Coupe
et al 2013). In general, GPP is not directly observed at
the plot or tower flux sites but approximately esti-
mated from either observations of net primary pro-
duction (NPP) and autotrophic respiration (Ra) as
GPP=NPP+Ra from detailed plot level measure-
ments (Doughty et al 2014) or derived from tower
eddy covariance measurements of the net ecosystem
exchange. In either case, the uncertainty in GPP esti-
mation is high and is strongly impacted by the accu-
racy of ground measurements (Malhi et al 2009) and
various sources of errors in tower observations
(Restrepo-Coupe et al 2013). Given the lack of reliable
direct in situ measurements of GPP and the potential
heterogeneity of GPP at the landscape scale, making
the few plot or tower based estimates sparse and inade-
quate (Restrepo-Coupe et al 2013, Malhi et al 2014),
consequently, spatially refined estimates of GPP are
often derived from remote sensing products or a com-
bination of ecosystem models, climate, and remote
sensing observations. The use of various satellite mea-
surements directly related to vegetation biophysical
parameters, such as the leaf area index, fraction of
absorbed photosynthetically active radiation (fPAR),
or vegetation greenness indices like the normalized
difference vegetation index (NDVI) (Hashimoto
et al 2012) are key variables to examine the variations
and seasonality in GPP related to vegetation pro-
ductivity and photosynthetic activities.

Studies using optical satellite data and vegetation
indices have shown that the signals related to vegeta-
tion photosynthesis increase during the light-rich dry
season in Amazonia (Myneni et al 2007, Samanta
et al 2012), suggesting the seasonality of photosynth-
esis is driven by the light-controlled leaf phenology
through the root water dynamics or under no water
stress (Kim et al 2012). However, the observed seaso-
nal ‘green-up’ (Huete et al 2006, Myneni et al 2007)
has been challenged in recent studies using estimates
from satellite fluorescence sensors (Lee et al 2013), and
also modeling effort showing sun-sensor geometry

effects (Morton et al 2014). The multi-year analyses of
these data have also shown that optical satellite obser-
vations in the tropics suffer from atmospheric con-
tamination (Samanta et al 2010, Maeda et al 2014).
These conflicting results point to the need for a com-
prehensive interpretation of satellite and ground
observations for capturing regional variations of vege-
tation phenology and productivity. Current efforts on
examining and mapping the spatial patterns of forest
seasonality have been focused on either the non-tropi-
cal regions (White et al 2005), or the signal processing
of multi-temporal observations from a single satellite-
derived variable, such asNDVI (Silva et al 2013, Hilker
et al 2014). But the use of green index alone is often not
sufficient to capture the GPP changes in view of the
modeling approaches such as the light-use-efficiency
(LUE) model (Monteith 1972, Running et al 2004) or
thewater-use-efficiencymodel (Beer et al 2007, 2010).

Here, we quantify the spatial patterns of season-
ality of the Amazonian forests by combining 3 long-
term satellite observations over a decade (from 2000 to
2009). First, we use land surface temperature (LST)
(Wan 2008) aboard Moderate Resolution Imaging
Spectroradiometer (MODIS) as an approximate mea-
sure of the canopy skin temperature and a key control
on photosynthetic activity and GPP (Sims et al 2008).
LST is strongly correlated with PAR and vapor pres-
sure deficit (VPD) (Sims et al 2008), both of which are
essential for quantifying GPP spatial variations and
seasonality. Second, we use microwave radar back-
scatter aboard QuikSCAT (QSCAT) as a proxy for
canopy water content and VPD—a variable control-
ling the photosynthetic activity, which can be mon-
itored all time irrespective of the presence of clouds,
aerosols, or seasonality of incoming radiation (Frolk-
ing et al 2011, Saatchi et al 2013). And third, we inclu-
ded the Nadir BRDF (bidirectional reflectance
distribution function) adjusted reflectance (NBAR) of
near-infrared (NIR) band (Schaaf et al 2002, 2011)
from MODIS satellite, as the proxy for illuminated
canopy structure without the influence of sensor geo-
metry (Knyazikhin et al 2013; SI discussion), a variable
related to the FPAR seasonality and LUE used in GPP
estimation (Monteith 1972). After careful quality
checks, we expect that the average seasonality
observed from the three different satellite proxy mea-
surements over 10 years can reasonably delineate the
spatial patterns of forest seasonality, and separate the
forests of Amazonia into dominant phenological
regions. The detected patterns are important for
understanding the carbon exchange and the gross pri-
mary productivity (GPP) of Amazonia and may
inspire future regional studies and in situ observations.

Methods

We used multiple satellite-derived products in this
study, including greenness data—NDVI and
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enhanced vegetation index, QSCAT radar measure-
ments, LST and NBAR products from MODIS, sun-
induced chlorophyll fluorescence (SIF) data from
Greenhouse gases Observing SATellite (GOSAT),
rainfall estimation from the Tropical Rainfall Measur-
ingMission (TRMM) product, and downward surface
shortwave radiation from the Clouds and the Earth’s
Radiant Energy System (CERES) (SI materials and
methods). The latest MODIS land cover product was
used to define the research area and only pixels
identified as evergreen broadleaf forests were selected
to perform further analysis of seasonality inAmazonia.
To evaluate the impact of observed satellite signals on
the GPP estimation, we used the upscaled GPP from
Max-Planck-Institute for Biogeochemistry (MPI-
BGC) (Jung et al 2011) as a reference data set. The
upscaled GPP has been developed by using the global
network of tower flux measurements to reduce the
uncertainty predicting regional variations along cli-
mate gradients, even in regions with limited tower
measurements as in Amazonia. However, we consider
the MPI-BGC GPP data may still have an uncertainty
associated with individual grid cell, but using the data
to examine seasonal variations at large regional scales
could reduce the uncertainty by spatial filtering or
averaging.

We made use of TIMESAT algorithm (Jönsson
and Eklundh 2002, 2004, Eklundh and Jönsson 2011)
to fill data gaps, smooth the signals and find

seasonality parameters. The monthly climatology
averaged from the decade of 2000s (2000–2009) was
used as the input to obtain seasonality parameters. The
K-means clustering algorithmwas performed to create
cluster maps from LST, NIR, and QSCAT. Sensitivity
analyses using Random Forest (RF) machine learning
algorithm (Breiman 2001) and multiple linear regres-
sion were performed to identify the important remote
sensing variables for GPP prediction. For the regional
GPP prediction, we used the RF model to develop a
relationship between MPI-BGC GPP and LST, NIR
and QSCAT data (figure 2, figure S7, SI materials and
methods).

Results

We found nine phenological regions (figure 1(a))
from the average monthly climatology of LST, NIR
and QSCAT using K-means clustering (Seber 2004,
Jain 2010)—an unsupervised measure to find similar
features from multiple bands. The number of pheno-
regions was internally validated (figure S1) using both
stability-based and variance-based statistical measures
(Caliński and Harabasz 1974, Davies and Boul-
din 1979, Tibshirani and Walther 2005) to ensure the
clusters arewell-separated (SImaterials andmethods).
The clusters represent regionswith (a) similar seasonal
variations or phenology related to the amplitude and
phase of observations (i.e. intra-annual variability),

Figure 1. Seasonality clustermap of Amazonia. (a)Map of nine clusters using theK-Means clustering from the averagemonthly
climatology data of LST,QSCAT, andNIR; (b) visualization of the cluster result in principal component (PC) domain (PC1 andPC2);
(c) visualization of the cluster result in PC3 and PC4 domain (SImaterials andmethods). Colored region is classified as the Evergreen
Broadleaf Forests (EBF) according to the latestMODIS land covermap. The boxes on the left panel were selected for regional studies
(e.g. figure 2).Numbers in red color of panel (a) are selected regions for further discussion in themain text. Red cross signs denote the
field sites available to validate our results (table S2; SI discussion). The direction and length of the vector in panels (b) and (c) indicate
how each variable contributes to the two PC components. Each variable (LST,QSCAT andNIR) has 12 such vectors representing
monthly climatology from January toDecember.
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and (b) similar landscape structure and biogeography
related to annual mean values of observations (Steege
et al 2013). We used principal component (PC)
analysis (Hastie et al 2009) to visualize these two effects
and found that the 1st and 2nd PC domain, containing
65% information of all observations, explain mainly
variations in annualmean value (figure 1(b)). This was
also confirmed using the clustering map of annual-
mean-only data (figure S2) that explains 67% of the
regional variations (table S1) in our clustered map
(figure 1(a)). The seasonal effect (amplitude and
phase) starts dominating the 3rd and 4th PC domain
and explaining about 25% of all observations
(figure 1(c)). Although the latter contribution is
minor, it provides distinct spatial features (figure S2)
highlighting the contribution of intra-annual variabil-
ity in each pheno-region. The importance of this
contribution can be readily demonstrated by statisti-
cally optimizing the number of clusters (figure S2).

Spatially, LST, NIR, and QSCAT all have different
phases with rainfall or radiation seasonality (figure S3),
indicating that climate alone cannot fully explain the
geographical differences in vegetation seasonality. The
seasonal variations of remote sensing observations
appear to be significant even in the extremely wet
regions of Amazonia (figure S4). The inclusion of these
observations makes the detected seasonality patterns
more spatially correlated and distinct with more than
70% of the cluster results predictable from nearby pix-
els (table S1). As our method never assumes any spatial
autocorrelation, these results indicate the importance
of spatial variations in amplitude, phase, and annual
mean of remote sensing measurements in defining pat-
terns of seasonality (figure S5).

Out of the nine pheno-regions, we delineated 7
large contiguous regions for detailed study of season-
ality (boxes in figure 1(a)), and among them we selec-
ted three boxes with distinct seasonality for
comparison: (1) the Southwestern Amazon (region 2)
with ecologically dry seasons (EDS; monthly
rainfall⩽ 100 mm) extending 3–5 months, (2) the
Central Amazon (region 3) with only 1 to 2 EDS
months, and (3) the Eastern Guiana shield (region 6)
with similar EDS as in region 2 but with a strong seaso-
nal swing of radiation (figure S6). All three regions
show decreasing canopy water content from QSCAT
and increasing leaf temperature from LST during the
dry season (figures 2(a)–(c)), but have obvious differ-
ences in NIR, with peaking in themiddle of wet season
in region 2 (figure 2(a)), about the end of dry season in
region 3 (figure 2(b)), and to the middle of dry season
in region 6 (figure 2(c)). The range of LST and the
amplitude of QSCAT also vary from region to region.
In Southwestern Amazonia, QSCAT and LST are
strongly out of phase, with peak loss of canopy water
content (drop in QSCAT) matching the maximum
leaf temperature (increase in LST) during the middle
to the end of dry season. In contrast, NIR peaks in wet
season but start increasing from the middle of dry

season as a response to deeper penetration of NIR sig-
nal and strong sensitivity to exposed understory vege-
tation. From Southwest toNortheast Amazonia, NIR’s
peak gradually shifts to the middle of dry season as
radiation plays increasingly a dominant role in vegeta-
tion seasonality and promoting photosynthetic activ-
ity in dry season when light is abundant and water is
still sufficient (low QSCAT amplitude). The region in
Central Amazonia falls in between the two extremes
with complex seasonality controlled by a combined
water and light influence represented by the lagged
behavior ofQSCAT, LSTwithNIR.

These variations in observed vegetation phenology
have an aggregate effect on the seasonality of GPP.
Using upscaled GPP data as the reference (Beer
et al 2010, Jung et al 2011), we found regional GPP sea-
sonality being in phase with NIR during the dry sea-
son, remaining high in the wet season in agreement
with QSCAT and/or LST, and strongly following the
patterns of SIF data from the GOSAT (Frankenberg
et al 2011, Lee et al 2013)—an independentmeasure of
GPP directly linking to the photosynthetic activity
(figures 2(d)–(f)). GPP peaks during the wet season in
Southwest and dry season in Northeast regions of
Amazonia respectively responding directly to water
and radiation abundance.

These distinct patterns further confirm the hetero-
geneity of seasonality of forests of Amazonia related to
regional variations of water and light constraints,
directly addressing the question of whether Amazonian
forests arewater- or light-limited.We found two regions
in SouthernAmazonia (regions 1 and 2)withGPPpeaks
during the wet season (figure 2(d), figure S7); two
regions in Central and Western Amazon (regions 3
and 4) showing rising GPP during the dry season
(figure 2(e), figure S7); the region in Eastern Guiana
shield (region 6) has GPP rising and peaking during the
dry season (figure 2(f)); and the remaining two regions
(regions 5 and 7) are less seasonal but showing twoweak
seasons within an annual cycle caused by lagged inten-
sity of water and radiation (figures S7 and S8). The
seasonal patterns of GPP are present in North–South
and East–West gradient in all vegetation characteristics
measured by the remote sensing data (figure S9). The
overall agreement of upscaled GPP data with satellite
observations to capture the large scale regional patterns
of seasonality suggest that the satellite observations may
be used to predict regional patterns of the carbon
exchange seasonality in Amazonia. These regional pat-
terns are extensive in size and internally heterogeneous
in forest cover and landscape features, making the direct
ground verification of GPP or vegetation seasonality
difficult, unless through systematic and widespread
measurements. However, similar patterns have been
observed with spatially limited but comprehensive
ground measurements of forest productivity, leaf fall
and flushing, and seasonal carbon fluxes from the
Global Ecosystem Monitoring network plots (del
Aguila-Pasquel et al 2014, Araujo-Murakami et al 2014,
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Doughty et al 2014, Galbraith et al 2014, Malhi
et al 2014), supporting satellite observed photosynthesis
patterns related to the water and radiation variations
acrossAmazonia (SI discussion).

Discussion and conclusions

The spatial heterogeneity in GPP seasonality cannot be
explained by only a single vegetation variable. The
canopy temperature and structure from LST has a
nonlinear relationship with GPP (figure 3(a)), show-
ing a steady increase until reaching a threshold and
then followed by a gradual decline. This behavior
agrees with observations showing an optimum range
of temperature for forest photosynthesis (Berry and
Bjorkman 1980,Wood et al 2012). GPP shows a strong
sensitivity to water deficit as measured by QSCAT
backscatter, but quickly decouples from water when
forest canopy accumulates enough water and has no
limitations for photosynthesis (figure 3(c)). Over
some wet regions of Amazonia, GPP may even drop
with increasing water content (regions 3, 4 and 6),
pointing to low solar radiation or water-logged vegeta-
tion, both impairing photosynthetic activity (figure
S10; SI discussion). Though regionally it appears to

have tight negative correlation between canopy water
and GPP, it may not truly reflect a causal relationship
between them because of the small range of variations
in the saturation zone of QSCAT (figure 3(c)), and the
covariance with other variables such as NIR and LST.
We found MODIS NIR being in phase and mono-
tonically increasing with GPP over the Amazon basin
(figure 3(b)), but also have large variations due to the
heterogeneity of vegetation composition and season-
ality, and potential presence of atmospheric effects
during thewet season (figures 2(d)–(f)).

From the multi-sensor data analysis, we found a
strong positive relation between NIR and GPP and
SIF (figure S10) except in region 5 where there is very
low seasonality and all vegetation variables including
the relationship between GPP and SIF remain weak
(figure S10). Vegetation seasonality captured by three
remote sensing data (LST, QSCAT, NIR) together
explain 60%of the GPP over the entire Amazon Basin
with much larger explanatory significance in more
seasonal regions. The variations around the mean in
the relationship between the magnitude of GPP and
remote sensing data are largely due to the hetero-
geneity of forest composition, canopy structure, and
nutrient availability impacting forest carbon cycling

Figure 2.Time series of seasonality in selected regions. Left panels show the averaged seasonal cycles of LST,NIR andQSCATdata in
(a) region 2, (b) region 3, and (c) region 6 defined from figure 1(a); right panels show the seasonal cycles ofNIR,MPI-BGCGPP,
GOSAT sun-induced chlorophyllfluorescence (SIF), and the predictedGPP curve (SImaterials andmethods) in (d) region 2, (e)
region 3, and (f) region 6. The colored circles in the right panels denote the fraction of invalid data in eachNIR observation period.
Spatial averages in all regions take only pixels from the EBF class into calculation. Precipitation values are from the TRMMproduct (SI
materials andmethods). The annual cycle (January–December) is replicated 3 times for better demonstration.
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and exchange. We also expect the uncertainty in the
benchmark GPP due to limited tower data in tropical
regions may have contributed to the lack of correla-
tion between GPP and satellite observations of forest
canopy. Our results also show that the NDVI vegeta-
tion greenness index is not suitable for tropical sea-
sonality analysis in terms of GPP variation (SI
discussion).

In analyzing passive optical data (LST and NIR)
over each region, we made sure that all regional pat-
terns are extracted from amajority of the pixels in each
region that are valid after careful data quality check (SI
discussion). However, the atmospheric contamina-
tion from clouds and aerosols may still affect the sur-
face retrievals due to small cumulus clouds within a
pixel that cannot be readily detected by MODIS cloud
detection tools (Koren et al 2008). With the presence
of residual atmospheric effect in the pixels labeled as
cloud-free, the spectral changes in the optical domain
can be complicated. One could expect that NIR may
either be elevated due to undetected clouds or reduced
due to shadows. And LST, on the other hand, could be
suppressed under persistent clouds. Even if we used
the MODIS climatologically averaged data over 10
years with both geometric corrections and high quality
flag filtering, and working with large area averages for
clustering, the use and interpretation of these optical

data in the tropical regions should still be treated with
extreme caution. The large scale spectral variability of
tropical forest due to canopy phenology makes it diffi-
cult to investigate whether the extent of changes in
optical observations are due to physiological response
of leaf fall and flushing, or the residual effect of small
scale cloud contamination. A good example is the poor
quality of optical data in the wet season, where we see
the divergence between NIR and GPP explicitly pre-
sented in region 3 (figures 2(e)) and 4 (figure S7(b)).
For seasonal changes of GPP in this period, it is neces-
sary and essential to include the microwave data into
the data analysis to compensate for the loss of optical
data quality (SI discussion). The evaluation and uncer-
tainty assessment of the optical data use in the tropical
regions must be performed by using techniques that
include airborne and in situ data.

A handful of flux towermeasurements of GPP sea-
sonality are the only ground-based resource existing in
the Amazonian forests that are suitable for inter-
comparison with satellite observations. We selected 5
tropical forests sites in Amazonia and digitized the
GPP curves from the research article of Restrepo-
Coupe et al (2013) (figure 4). Results show that the
in situ GPP curves are in phase with the NIR curves,
particularly in the dry season and following the same
regional patterns (figure 2). Though the magnitude of

Figure 3.Relationships betweenGPP and remote sensing variables. (a) LST, (b)NIR, (c)QSCAT, and (d)GOSAT SIF. Blue line in
each panel denotes themeanGPP varyingwith each variable, and the shaded area shows the variation ofGPPwith±1 standard
deviation. All observations were resampled to be the same resolution asMPI-BGCGPP (0.5° × 0.5°) using spatial average. The linear
regressions were calculated from all pixels within the selected ranges (i.e. 2 selected ranges for LST: <298K and>300K; 1 selected range
forQSCAT: <0.18; and the full range forNIR and SIF), andmarked in red for the first selected range and green for the second selected
range (LST only).

6

Environ. Res. Lett. 10 (2015) 084005 LXu et al



GPP from in situ and gridded products are not com-
parable due to the normalized units used in in situ
GPP, the MPI-BGC GPP are well in phase with the
tower data, partially because they are essentially inte-
grated in the MPI-BGC GPP benchmark data. How-
ever, the most interesting finding of the comparisons
with the in situ data is the overall agreement with the
regional pattern in each pheno-region that we defined
purely from remote sensing data. Flux sites inManaus,
Tapajós, and Caxiuanã all show a rising GPP during
the dry season with a peak at the end of dry season,
consistent with their regional average represented by
region 3 (figure 2(e)), while the other two tower sites
in Ji Paraná and Rio Javaes-Bananal Island, belonging
to the pheno-region 1, both exhibit GPP peaking dur-
ing the middle of wet season and about 2 to 3 months
later than the peak shown in region 3. These results,
though limited in quantity, prove the validity of our
pheno-region clusters and the general agreements
between GPP and remote sensing observations of
canopy characteristics. With more validation

resources being available in the Amazonia (Galbraith
et al 2014), the prediction strength of GPP seasonality
is expected to be improved significantly.

The carbon exchange of tropical vegetation, whe-
ther light-controlled or water-limited, can vary not
only in space, but also in time. The illustration using
the average GPP response to different incoming
radiation and precipitation (figure 5) conceptually
shows that the flux tower sites located in different
regions can respond to large variations in climate-
driven seasonality. The São Gabriel da Cachoeira
tower (Saleska et al 2009) in Northwestern Brazilian
Amazon (monthly rainfall > 200 mm) has high GPP
and less seasonal amplitude due to small changes in
radiation and rainfall throughout the year (see region
5, figures S7 and S8). In contrast, the Ji Paraná tower
site (Saleska et al 2009, Restrepo-Coupe et al 2013) in
Southern Amazonia has enough radiation through-
out the year (>200Wm−2) causing GPP varying
strongly along the precipitation axis. In the case of the
Central Amazon tower site located near the city of

Figure 4.Time series of seasonality in flux tower sites. The displayed curves are themean seasonal cycles ofNIR,MPI-BGCGPP,field
derivedGPP, and the predictedGPP curve (SIMaterials andMethods) inManaus (2.61°S, 60.21°W), Tapajós (2.85°S, 54.97°W),
Caxiuanã (1.72°S, 51.53°W), Ji Paraná, Rondônia (10.08°S, 61.93°W), andRio Javaes-Bananal Island (9.82°S, 50.13°W). FieldGPP
was digitized from theGEP curves of figure 3 inRestrepo-Coupe et al (2013). The colored circles on the red lines denote the fraction of
invalid data in eachNIRobservation period. Spatial averages in all regions take only pixels from the EBF class into calculation.
Precipitation values are from the TRMMproduct (SImaterials andmethods). The annual cycle (January–December) is replicated
three times for better demonstration. Reprinted fromRestrepo-Coupe et al (2013), Copyright 2013, with permission fromElsevier.
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Manaus (Restrepo-Coupe et al 2013), GPP has a
moderate seasonal variation driven by a hybrid effect
of rainfall and radiation causing the GPP increase
from October to May rainy season, a short drop in
May and June with the decline of rainfall, and a sharp
increase from late June to late September from
increased radiation.

Using more accurate estimation of chlorophyll
fluorescence from GOSAT, we show that while Ama-
zon forests as a whole retain high productivity during
the year, there are distinct regional patterns of sea-
sonality. These patterns are potentially driven by var-
iations in forest species, structure, nutrient
availability, and climate variations over Amazonia,
creating complex mechanisms to regulate photo-
synthetic carbon assimilation through water and
light availability and dynamic stomatal responses
(Lee et al 2013). Contrary to recent findings, our ana-
lysis of multiple satellite observations along with
ground measurements of leaf dynamics (Galbraith
et al 2014) indicate that Amazonia does not maintain
a consistent canopy throughout the year, and varia-
tions of carbon exchange in Amazonia are reflected
by potential changes of top canopy structure region-
ally during dry and wet seasons. Regional differences
in vegetation seasonality in the Amazon basin also
demand further research and measurements to
understand and quantify the vulnerability of each
pheno-region to future changes of climate and sea-
sonality. A phase shift off the stable pattern of season-
ality these forests could mean increased risks of
ecosystem stress and disturbance, water loss, and car-
bon release, which can have significant impacts at the
global scale given the huge amount of carbon stored
in the Amazon forests.
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