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Abstract
Air quality is heavily influenced byweather conditions. In this study, we assessed the impact of long-
termweather changes on air quality and health in theUS during 1994–2012.We quantified past
weather-related increases, or ‘weather penalty’, in ozone (O3) andfine particulatematter (PM2.5), and
thereafter estimated the associated excess deaths. Using statistical regressionmethods, we derived the
weather penalty as the additional increases in air pollution relative to trends assuming constant
weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased
andwind speed decreased inmostUS regions. Nationally, weather-related 8 hmaxO3 increases were
0.18 ppb per year (95%CI: 0.06, 0.31) in thewarm season (May–October) and 0.07 ppb per year (95%
CI: 0.02, 0.13) in the cold season (November–April). Theweather penalties onO3were relatively
larger than PM2.5 weather penalties, whichwere 0.056 μgm

−3 per year (95%CI: 0.016, 0.096) inwarm
months and 0.027 μgm−3 per year (95%CI: 0.010, 0.043) in coldmonths.Weather penalties onO3

and PM2.5 were associatedwith 290 (95%CI: 80, 510) and 770 (95%CI: 190, 1350) excess annual
deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 fromO3,
14 700 fromPM2.5) attributable to theweather penalty on air quality.

1. Introduction

Air quality is significantly influenced by both emis-
sions and weather conditions. Among pollutants,
ozone (O3) and fine particulate matter (PM2.5) have
been extensively studied, as O3 and PM2.5 exposures
are associated with a wide range of adverse health
outcomes, including respiratory illnesses, hospital
admissions, and premature mortality (Jerrett
et al 2009, Krewski et al 2009, US EPA 2010). Studies
evaluating the efficacy of O3 and PM2.5 mitigation
efforts have utilized statistical methods to account for
the effects of weather-related variations and simulta-
neously derived the relationships between air pollu-
tion and weather parameters (Cox and Chu 1993,
Bloomfield et al 1996, Cox and Chu 1996, Thompson
et al 2001, Camalier et al 2007, Zheng et al 2007). In
this study, we built upon prior methods to directly

quantify the impact of long-term weather conditions
on air pollution changes in theUS.

The influence of weather conditions on O3 and
PM2.5 differ substantially, which affects both the mag-
nitude and uncertainty of the impact of long-term
weather changes on these two pollutants. The effect of
ground-level weather conditions on O3 is generally
more robust and better characterized than that on
PM2.5. O3 primarily results from reactions between
nitrogen oxides and volatile organic compounds in the
presence of sunlight, and high temperature, low
humidity, and low wind speed conditions favor O3

formation (The National Academies Press 1991).
Weather impacts on PM2.5 can bemore variable, given
the diversity of particle components (e.g., sulfate,
nitrate, organic carbon, and elemental carbon). In
general, particles are efficiently scavenged through wet
deposition (Balkanski et al 1993), but other weather
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impacts can be more complex. For instance, rising
temperatures can increase oxidation and production
of sulfate particles (Dawson et al 2007b), but reduce
nitrate particles through volatilization from particle to
gas phase (Seinfeld and Pandis 2006).

In this study, we employed statistical regression
methods to quantify the effect of ground-level weather
changes, or ‘weather penalty’, on recent O3 and PM2.5

trends in the US (1994–2012). We then applied mor-
tality risk estimates from epidemiological studies to
estimate the excess mortalities associated with the
weather penalty onO3 and PM2.5 (see figure 1 for sche-
matic illustration). Specifically, we analyzed the
impact of changes in temperature, wind speed, water
vapor pressure, and precipitation frequency, as prior
studies have identified these parameters to be among
the most important meteorological determinants of
O3 and PM2.5 concentrations (Thompson et al 2001,
Dawson et al 2007a, 2007b, Tai et al 2010).

2.Materials andmethods

2.1. Air quality data collection
Hourly O3 and daily 24 h PM2.5 concentrations were
obtained from the US Environmental Protection
Agency (EPA)’s Air Quality System and Speciation
Trend Networks, and Interagency Monitoring of
Protected Visual Environments network. We selected
sites with at least 10 years of year-round (January–
December) data in 1994–2012 and at least 14 daily
measurements each month; this yielded 468 O3 sites
and 62 PM2.5 sites (figure 2). We chose 1994 as the
starting year due to wider availability of O3 measure-
ments. Of note, most PM2.5 measurements are avail-
able starting 1998. As we ultimately assess health

impacts, sites were categorized into seven regions
(Industrial Midwest (IM), Northeast (NE), Northwest
(NW), Southeast (SE), Southern California (SC),
Southwest (SW), Upper Midwest (UM)) as defined by
the National Morbidity Mortality Air Pollution Study
(NMMAPS) (Samet et al 2000). As the national O3

standards are based on the annual 4th highest max-
imum daily 8 h average averaged over 3 years, we
computed the daily 8 h max O3 metric utilizing a 75%
data capture criterion. Specifically, the 8 h max metric
was estimated on days with at least 18 of 24 valid 8 h
moving averages, which were calculated from at least 6
valid hourly values.

2.2.Weather data collection
Daily precipitation frequency (0/1) and hourly tem-
perature (°C), wind speed (m s−1), and water vapor
pressure (hPa) were obtained from the National
Oceanic Atmospheric Administration’s National Cli-
matic Data Center. Daily averages were calculated
from at least 18 of 24 hourly measurements. Selected
stations had all 19 years of year-round data and at least
21 daily measurements (∼75%) per month; this
yielded 194 stations measuring surface temperature,
wind speed, andwater vapor pressure, and 168 stations
measuring precipitation frequency (figure S1). Air
pollution data were matched to the nearest weather
station’s data. Data from 87 weather stations were
matched to 468 O3 stations with an average distance of
77.3 km, and data from 41 weather stations were
matched to 62 PM2.5 stations with an average distance
of 30.4 km (table S1). Matching distance between
PM2.5 and weather stations were slightly higher
(37.2 km) for precipitation frequency data.

Figure 1. Schematic illustration of stages of analyses.
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2.3.Weather penalty calculation
For each region and season (cold and warm), weather-
associated changes in O3 and PM2.5 were quantified by
estimating: (1) the magnitude of the unadjusted and
weather-adjusted pollution trends using generalized
additive models (GAMs), (2) the magnitude of the
trend differences (i.e., the weather-related penalty),
and (3) the standard error of the trend differences
through bootstrap methods (see figure S2 for sche-
matic overview). To estimate national averages,
region-specific trends and penalties were meta-ana-
lyzed accounting for within- and between-region
variability (Berkey et al 1998).

2.3.1. Regional air pollution trends
First, regional-level GAMs were applied to estimate
the long-term trends of daily PM2.5 and O3 concentra-
tions, with and without adjusting for weather para-
meters. Many trend analysis studies have employed
GAMs to adjust for inter-annual meteorological varia-
tion using smoothing spline functions (Camalier
et al 2007, Zheng et al 2007, Pearce et al 2011). We
stratified the trend analysis into warm (May–October)
and cold (November–April) months, as O3 exhibited
dichotomous trends (figure S3). For each of the seven
regions and season (cold/warm), the unadjusted and
weather-adjusted trends were calculated from the
following GAMs, using the R statistical package (R
Development Core Team2011):

( )O year month
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ij ij ij

ij ij
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= + +

+ +
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where, (O3)ij and (PM2.5)ij represent daily 8 h max O3

or daily PM2.5 concentrations, respectively, at site i and
on date j and; β0 is the intercept and β1,unadjusted and β1,
adjusted estimate the linear unadjusted and weather-
adjusted pollutant trends (ppb per year or μg m−3 per
year) in 1994–2012 for a specific region and season.
The smoothing spline function, denoted by s(),
characterizes and adjusts for the nonlinear relation-
ships between weather parameters and daily O3 or
PM2.5 concentrations. The weather-adjusted O3

trends adjusted for temperature (tmp), wind speed
(ws), and water vapor pressure (wvp), and the
weather-adjusted PM2.5 trends additionally adjusted
for precipitation frequency (prcp). γ and δ are vectors
of coefficients that represent monthly and weekday
variability, respectively.

2.3.2. Regional weather penalty on air pollution
The adjustment of weather parameters in models (2)
and (4) removes the impact of inter-annual weather
variation on air pollution trends; in other words, the
weather-adjusted trends represent trends that assume
weather parameters remained constant during the
study period. In comparison, the weather impact is
incorporated into the unadjusted trends. Therefore,
any differences between the unadjusted and weather-
adjusted trends are entirely attributable to the impact
of long-term weather changes. We obtained the trend
differences for each region and season, and refer to

Figure 2.Pollutantmonitoring site locations. Number ofO3 and PM2.5monitoring sites are noted bynO3 and nPM2.5, respectively
(NW:Northwest, UM:UpperMidwest, IM: IndustrialMidwest, NE:Northeast, SC: SouthernCalifornia, SW: Southwest, SE:
Southeast).
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them as theweather ‘penalty’:

( )Penalty ppb year or g m year

. (5)

1 3 1

1,unadjusted 1,adjusted

μ

β β= −

− − −

A positive penalty (β1,unadjusted > β1,adjusted) indi-
cates that an increase in air pollution was associated
with long-term weather changes during the study
period.

2.3.3. Standard error of regional weather penalty
The standard errors for the trend differences (penal-
ties) were derived by utilizing a block bootstrap
procedure (Politis 2003) as the penalties are estimated
from two related regression models applied to the
same data. Briefly, we created randomized subsets of
the actual data (i.e., pseudo-datasets) that accounted
for serial correlation structures among O3 or PM2.5

observations. We utilized a block size of 20 days to
create 100 pseudo-datasets for each region and season
(1400 pseudo-datasets total for each pollutant). Then,
the unadjusted trends, weather-adjusted trends, and
penalty were iteratively estimated from each pseudo-
dataset. The standard deviations of the distribution of
100 estimates of the unadjusted trend, weather-
adjusted trend, and penalty obtained from 100
pseudo-datasets were estimated as the corresponding
standard errors.

2.4.Weather trends
For each region and season, a general linear regression
model was applied to estimate trends of temperature
and wind speed, adjusting for monthly variability
within a season. Region-specific trends were meta-
analyzed to estimate national average trends (Berkey
et al 1998). Unlike temperature and wind speed, water
vapor pressure and precipitation frequency trends
were not linear during our study period and exhibited
a shift in trends during the latter half of the study
period. We estimated trends of water vapor pressure
and precipitation frequency during 1994–2003 (10
years) and 2004–2012 (9 years). A binomial regression
model was utilized to estimate precipitation frequency
trends.

2.5.Mortality impact estimation
Mortality calculations were conducted using EPA’s
Environmental Benefits Mapping and Analysis Pro-
gram (BenMAP) ver.4.0.66 (Abt Associates Inc. 2011).
For each NMMAPS region, we estimated three differ-
ent annual mortality counts: mortality averted by
observed improvements in air quality (applying unad-
justed pollution trends), mortality that would have
been averted if weather conditions remained constant
(applying weather-adjusted pollution trends), and the
excess mortality resulting from the weather penalty.
To estimate mortality associated with unadjusted and
weather-adjusted pollution trends and the weather
penalty, we applied the following health impact

function for each region and season:

( )yMortality 1 e Pop, (6)0Δ = × − ×β δ− ×

where, β is the mortality risk coefficient, δ is the
regional air quality change of interest (unadjusted
trend, weather-adjusted trend, or weather penalties),
Pop is the exposed population size, and y0 is the
baseline mortality incidence rate. We utilized Ben-
MAP’s library of county-level population and mortal-
ity incidence data for 2010. The county-level mortality
estimates were aggregated to the regional level. We
applied national risk coefficients from epidemiological
cohort studies on chronic O3-related respiratory
mortality (Jerrett et al 2009) andPM2.5-related chronic
mortality from cardiopulmonary disease and lung
cancer (Krewski et al 2009) in adults (⩾30 years).
These studies reported a 3.9% increase (95%CI: 1.0%,
6.7%) inmortality risk per 10 ppb increase in O3 and a
5.8% increase (95% CI: 3.8%, 7.8%) in risk per
10 μg m−3 increase in PM2.5. The risk coefficients
selected for this analysis are consistent with those used
by the US EPA in recent regulatory analyses (US EPA
2006, 2008) as well as other papers (Tagaris et al 2009,
Anenberg et al 2010). Nationalmortality risk estimates
were used to estimate regional mortality changes
associated with regional air quality changes, due to
high uncertainty of regional mortality risk estimates
reported by epidemiological studies compared to the
pooled national risk estimate.

To be consistent with air pollutionmetrics utilized
in these studies, we re-estimated trends and weather
penalties using year-round (January–December)
PM2.5 and warm season (April–September) 1 h max
O3 metrics. To obtain the uncertainty around mortal-
ity estimates, we accounted for standard errors of both
the health risk coefficients and air quality change of
interest (unadjusted trend, weather-adjusted trend, or
weather penalty) using the multivariate delta method
(Agresti 2012):

f

f

Variance ( / ) Variance( )

( / ) Variance( ), (7)

2

2

β β
β δ

= ∂ ∂ ×
+ ∂ ∂ ×

where, ∂f/∂ represents the partial derivative of
equation (6)with respect to either β or δ. The variances
of β and δ are derived from epidemiological studies
and the bootstrap procedure, respectively.

3. Results and discussion

3.1. Rawmonthly average time series ofO3

andPM2.5

To assess the air quality measurement data from
selected monitoring sites (468 O3 and 62 PM2.5 sites),
we estimated the raw national monthly averages of
PM2.5 and 8 h max O3, as well as cold (November–
April) and warm (May–October) season averages in
1994–2012. During our study period, significant
PM2.5 decreases were observed, while there was only a
modest change in 8 h max O3 (figure 3). Trends
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derived from regression analyses are discussed in
subsequent sections. Most PM2.5 measurements were
available starting 1998, and showed considerable
decreases in both warm and cold months from 16.2 to
9.7 μg m−3 and 14.1 to 9.6 μg m−3 in 1998–2012,
respectively. These drastic PM2.5 decreases were con-
sistent with the national PM2.5 trends and concentra-
tions reported by the US EPA (US EPA 2014b). In
contrast, the cold season average of daily 8 h max O3

increased from 34.3 to 38.0 ppb in 1994–2012, while
warm season 8 h max O3 decreased from 48.0 to
44.4 ppb in 1994–2009 then increased slightly there-
after. Recent warm season O3 increases are also
reported by the US EPA (US EPA 2014a). These time
series reflect the raw air pollution concentrations
resulting from a combination of emissions and
weather conditions. In the following sections, we
estimated the proportion of changes in air pollution
attributable to changes inweather conditions.

3.2. Trends ofweather parameters
To investigate the weather-associated changes in air
quality, we analyzed data on temperature, water vapor
pressure, wind speed, and precipitation frequency
from over 200 weather stations (figure S1); prior
observational and model perturbation studies identi-
fied these four parameters to be among the most
important meteorological determinants of O3 and

PM2.5 concentrations (Dawson et al 2007a, 2007b,
Jacob andWinner 2009, Fiore et al 2012). We assessed
the raw time series and trends of eachweather variable,
and summarized the trends in table 1.

3.2.1. Temperature trends
During the study period (1994–2012), temperature
increases were observed year-round in most regions
(figure 4). A national meta-analysis of regional tem-
perature trends yielded a statistically significant
increase by 0.035 °C (0.64%) per year in the cold
months and 0.036 °C (0.18%) per year in the warm
months. Percent changes are relative to national
average temperatures. The temperature increases dur-
ing our study period were in agreement with those
reported in the literature (Isaac and van Wijngaar-
den 2012). The greatest temperature increases were
observed during the cold season in the Northern
regions (e.g., UM, IM, NE). The West Coast regions
(NW and SC) exhibited the least or no temperature
change.

3.2.2.Wind speed trends
Decreases in ground level wind speed were observed in
all regions except in the SW (figure 4). Meta-analysis
of regional wind speed trends yielded a national
decrease in wind speed by 0.021 m s−1 (0.49%) per
year in the cold season and 0.021 m s−1 (0.57%) per
year in the warm season. Themagnitude of wind speed
declines during our study period were in agreement
with those reported in the literature (Pryor et al 2009).
In addition, wind speed is expected to continue to
decline, as frequency and duration of stagnation
episodes increase in the future climate (Mickley 2004).

3.2.3.Water vapor pressure trends
Trends of water vapor pressure and precipitation
frequency were not linear in many regions during our
study period. We estimated regional and national

Figure 3.Nationalmonthlymean concentration time series of 8 hmaxO3 and PM2.5. The cold season (November–April) andwarm
season (May–October)monthlymeanswere averaged to estimate seasonal time series.

Table 1. Summary ofweather trends.

Weather variable Season Trends

Temperature Cold andwarm ↑ (IM,NE,UM, SE, SW)

Wind speed Cold andwarm ↓ (all except SW)

Water vapor

press.

Cold

Warm

↑ (IM,NE,UM, SE)

↓ (NW,UM, IM, SE, SW)

Precipitation freq. Cold ↑ ( ′94-′03),↓ (′04-′12)
Warm ↑ (all except SC)
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water vapor pressure trends during 1994–2003 (10
years) and 2004–2012 (9 years) (table S2). Nationally,
cold season water vapor pressure increased by
0.023 hPa (0.32%) per year in 1994 to 2003 and by
0.008 hPa (0.11%) per year in 2004 to 2012. In
contrast, warm season water vapor pressure did not
exhibit statistically significant changes in 1994–2003
and decreased by 0.047 hPa (0.30%) per year in
2004–2012. These water vapor pressure trends were in
general agreement with those reported in the literature
(Isaac and van Wijngaarden 2012). During the cold
season, water vapor pressure increased in areas where
temperature increased (IM, NE, UM, SE) and
decreased in areas where temperature decreased (NW,
SC). In contrast, warm season water vapor pressure
decreased in 2004–2012 in most regions (NW, UM,
IM, SE, SW)while temperature increased.

3.2.4. Precipitation frequency trends
As precipitation provides a main sink for PM2.5, we
accounted for changes in precipitation frequency in
subsequent analyses to estimate the weather penalty
on PM2.5, but not forO3 given the weak evidence on its
correlation with precipitation (Dawson et al 2007a).
Specifically, precipitation frequency is a more relevant
metric than the intensity or amount of rainfall (Jacob
and Winner 2009, Tai et al 2012), as particles are
efficiently scavenged through wet deposition (Balk-
anski et al 1993).

During the cold season, precipitation frequency
increased in 1994–2003 in all regions (by 1.3% per
year on average) and decreased in 2004–2012 in most
regions except NW and NE (by 0.35% per year on
average). During the warm season, precipitation fre-
quency increased in 1994–2003 in all regions except
SC (by 2.6% per year on average) and increased in
2004–2012 in most regions except NW, SC, and UM
(by 0.44%per year on average).

3.3.Weather penalty on air quality
Weather changes during our study period
(1994–2012) were associated with significant increases
in daily 8 h max O3 and daily PM2.5 during both cold
and warm seasons, particularly in the Eastern US (NE,
SE, and IM) (figure 5). The unadjusted O3 and PM2.5

trends in each region and season reflect the trends
resulting from a combination of weather changes and
emission changes. The weather-adjusted trends
remove the influence of inter-annual changes in
temperature, wind speed, and water vapor pressure
(and precipitation frequency as well for PM2.5) on air
quality. Finally, the differences between unadjusted
trends and weather-adjusted trends reflect the impact
of long-term weather changes on air pollutant trends
(i.e., weather penalty). The weather penalty we esti-
mate includes direct effects of weather conditions
(e.g., photochemical reactions), indirect effects (e.g.,
more heating use on cold days), and effects of other
meteorological phenomena with ground-level
weather manifestations (e.g., transport of cold, dry
airmass).

3.3.1. Ozone trends andweather penalty
Nationally, the cold season daily 8 h max O3 increased
by 0.22 ppb (or 0.64%) per year, and all regions
exhibited cold season O3 increases. If temperature,
wind speed, andwater vapor pressure had not changed
during our study period, the cold season O3 would
have increased by 0.15 ppb per year instead. In other
words, weather changes led to additional O3 increases
by 0.07 ppb per year (95% CI: 0.02, 0.13). During the
warm season, O3 decreased by 0.15 ppb (0.31%) per
year nationally, and decreased in most regions except
theNW. If weather conditions had remained constant,
warm season-O3 would have decreased even more
(0.33 ppb per year), reflecting a weather-associated
penalty of 0.18 ppb per year (95%CI: 0.06, 0.31). Over
19 years, these amount to a total weather-related

Figure 4.Changes in temperature (°C per year), wind speed (m s−1 per year) in 1994–2012 by region and season. The 95% confidence
intervals are shown.
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increase in daily 8 h max O3 of 1.5 ppb in the cold
season and 3.4 ppb in thewarm season.

Water vapor pressure and temperature were the
most important determinants of the absolute O3 con-
centrations and trends in all regions and in both warm
and cold seasons. O3 is strongly correlated with tem-
perature, as the presence of sunlight increases O3 for-
mation. During the warm season, weather penalties
were greatest in the Eastern US (SE, NE, and IM),
where temperature increases were also greatest. We
conducted additionalmodeling analyses including dif-
ferent permutations of the weather parameters in
model (2), which showed that the combination of
changes in temperature and water vapor pressure
made up the majority of weather penalty on O3.
Therefore, the nonlinear changes in water vapor pres-
sure during our study period, together with the increa-
ses in temperature, resulted in a significant net
increase in O3 concentrations. Of note, our results
were robust to the use of relative humidity instead of
water vapor pressure (table S3, figure S4). This com-
bined effect of water vapor pressure and temperature
changes was particularly important in the SE, where
the highestO3 penalties were observed.

Water vaporhas competing effects onO3 concentra-
tions by facilitating hydroxyl radical production from
O3 photolysis, which can collectively yield a net O3 loss
(via photolysis) or netO3 production (via hydroxyl radi-
cal chemistry). Very dry conditions, however, can cause
drought stress and suppress stomatal O3 uptake and
contribute to the high warm season O3 (Vautard
et al 2005, Solberg et al 2008). Therefore, drier and
hotter conditions in recent years (2004–2012)may have
increasedwarmseasonO3 concentrations.

Decreases in wind speed were consistently asso-
ciated withO3 increases in the warm season. Lowwind
speed and high ambient temperature are conditions
characteristic of stagnation leading to favorable condi-
tions for O3 formation during the summertime (Banta
et al 1998). In fact, additional analyses showed that the
combined effect of wind and temperature were impor-
tant during the warm season and yielded a statistically
significant weather-associated penalty, whereas little
or no significant impacts were observed during the
cold season.

In summary, much of the weather penalty on O3

can be attributed to changes in temperature and water
vapor pressure, but the significant decline in wind

Figure 5.Unadjusted trends, weather-adjusted trends, andweather penalties of 8 hmaxO3 and PM2.5 in 1994–2012 by region and
season. The 95% confidence intervals are shown.
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speeds also contributed to the warm season O3

penalty.

3.3.2. PM2.5 trends andweather penalty
The weather penalty on PM2.5 was relatively smaller
than that of O3, but statistically significant none-
theless. Nationally, daily PM2.5 decreased by
0.37 μg m−3 (2.6%) per year during the cold season.
Without weather changes, PM2.5 would have
decreased by 0.39 μg m−3 per year, reflecting a weather
penalty of 0.03 μg m−3 per year (95% CI: 0.01, 0.04).
During the warm season, PM2.5 decreased by
0.35 μg m−3 (2.3%) per year nationally, and would
have decreased by 0.40 μg m−3 per year without
weather changes. This reflects a warm season weather
penalty of 0.06 μg m−3 (95% CI: 0.02, 0.10) per year.
Over a 19-year period, the weather penalty on PM2.5

would have been approximately 0.5 μg m−3 during the
cold season and 1.1 μg m−3 during thewarm season.

Temperature and wind speed were the most
important determinants of PM2.5 concentrations and
trends in most regions. Most regions (except UM and
SC) exhibited statistically significant weather-related
PM2.5 increases during both seasons. Weather penal-
ties on PM2.5 were highest during the warm season in
the Eastern US regions (NE, SE, and IM), where warm
season temperature increases were also greatest. Tem-
perature increases can have opposing effects on PM2.5

by increasing sulfate concentrations through increased
oxidation and decreasing nitrate levels due to ammo-
nium nitrate volatilization (Seinfeld and Pandis 2006,
Dawson et al 2007b). Therefore, the net effect depends
by the relative abundance of nitrate and sulfate. Sulfate
typically makes up a significant proportion (30–60%)
of the PM2.5 mass composition in the Eastern US

regions due to high sulfate emissions from coal-fired
power plants (Hand et al 2012). Therefore, this is con-
sistent with temperature-related PM2.5 increases in the
Eastern US, especially as peaks in sulfate concentra-
tions are more common in the warm season. During
the cold season, the weather penalty on PM2.5 was
lower than the warm season penalty despite greater
cold season temperature increases.

In contrast, the association between wind speed
and PM2.5 was more consistently negative in all
regions in both warm and cold seasons. Studies have
shown that high wind speed is generally correlated
with low pollutant levels due to enhanced advection
and deposition (Dawson et al 2007b). Therefore, a
decline in wind speed can contribute to a more favor-
able condition for particle formation. Nonetheless, the
overall weather penalty on PM2.5 was relatively smaller
than O3, which is likely attributable to nonlinear
effects as well as competing effects of weather para-
meters on different PM2.5 components.

3.4.Mortality impact of weather penalty
In order to characterize the health consequences of
weather-associated increases in O3 and PM2.5, we
applied national risk estimates reported by two
epidemiological studies on O3 and PM2.5 associated
mortality (Krewski et al 2009, Jerrett et al 2009). As we
analyzed long-term air quality changes, we chose
mortality risk estimates from chronic (rather than
acute) air pollution health effects studies. We re-
estimated regional air pollution trends and penalties
using air pollution exposure metrics consistent with
those of the epidemiological studies (figure S5).

The magnitude of the regional mortality estimates
depends on both regional air quality changes and size

Figure 6.Annualmortalities averted in 1994–2012 as a result of unadjusted andweather-adjusted trends inO3 andPM2.5, and their
difference (penalty) by region. The 95%confidence intervals are shown.
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of population exposed. As such, weather-related pen-
alty on air quality had the greatest mortality impacts in
the Eastern US (NE, SE, and IM), where both popula-
tion size and weather penalties were highest (figure 6).
Nationally, 6100 (95% CI: 4100–8100) deaths were
averted annually because of air quality improvements
during our study period. However, if weather condi-
tions (i.e., temperature, wind speed, water vapor pres-
sure) had not changed, even more deaths, totaling
7200 (95% CI: 4900–9400) annually, would have been
avoided. Therefore, weather-related increases in O3

and PM2.5 were associated with 1100 (95% CI: 300
−1900) excess deaths annually. Over a 19-year period,
this would amount to approximately 20 300 excess
deaths attributable to the weather penalty on air
quality.

The weather penalty was associated with 290
annual deaths related to O3 and 770 annual deaths
related to PM2.5. Even though the weather penalty on
O3 was relatively greater, weather-related PM2.5

increases yielded 160% more excess deaths, as PM2.5

exposure has a greatermortality effect per unit thanO3

exposure. While this suggests that weather-associated
increases in PM2.5-related mortality may continue to
be greater, projections for PM2.5 and consequently its
future health impacts are much more uncertain than
those ofO3.

3.5. Limitations
There are several important limitations to our study
that affect the magnitude of the weather penalty and
mortality estimates. First, in effort to maximize the
completeness of weather data to minimize air quality
data loss, the weather stations and air pollution
monitors were often not co-located. As we aimed to
estimate the impact of long-term changes of weather
conditions, we assumed that long-termweather trends
are similar within the range of distances of our
matched sites. A larger distance between air pollution
and weather stations is more likely to yield a weaker
association, and subsequently an underestimation of
theweather penalty.

To further minimize air quality data loss, we also
applied a 75% data capture criterion for creating daily
O3 metrics. While this is the EPA’s minimum data
completeness requirement, a non-random pattern of
missing hourly values may be a source of bias. In our
prior work, we estimated O3 trends by hour of the day
and season within each region, and found very con-
sistent diurnal and seasonal pattern of trends across all
regions (Jhun et al 2015). This robust pattern of hourly
trends across all seven regions reflect that missing
hourly values did not substantially affect the estima-
tion of trends. Furthermore, the effect of missing
values on estimating the weather impact on trends (i.e.
penalty) is likely even less. Other limitations discussed
below aremuchmore likely to be important.

Second, we estimated linear air pollution trends
and trend differences. Ideally, we would estimate non-
linear trends and trend differences; however, we were
limited by computational capacity necessary for esti-
mating non-linear trend differences and their uncer-
tainty via the bootstrap method. As linear trends are
more sensitive to outliers, we re-estimated trends and
penalties excluding data from the year 2012, as tem-
perature was unusually high that year. We did not
observe any statistically significant difference for O3

and PM2.5 trend differences (i.e., penalty). PM2.5 was
more sensitive to the exclusion, but any difference was
within the 95% confidence interval as we reported
above.

Third, due to computational limitations, we esti-
mated trends and trend differences at a regional,
rather than site-level scale. Site-to-site heterogeneity is
reflected in the confidence interval of the regional
trends and trend differences (i.e., weather penalty) we
report. On a regional scale, confidence intervals of
weather penalties were much smaller than those of
trends. This suggests that while site-to-site variation of
air pollution trends may be larger, the impacts of
weather changes on trends are less variable between
sites, and subsequently, between regions. Since our
primary aim was to estimate the weather penalty, the
regional-level analyses were appropriate and adequate.
Another limitation to regional-level analyses, how-
ever, is the differences in the number of sites in each
region. While there were large site-to-site differences
in actual pollution trends, our results show much less
heterogeneity in the weather penalty. Nonetheless, the
regional weather penalty we estimate (particularly for
regions with only a few PM2.5 sites) may not be repre-
sentative of the entire region due to a limited number
of selected sites.

Fourth, we only assessed the impact of three or
four weather parameters on air pollution trends. We
applied a limited set of weather parameters to max-
imize completeness of the weather data and feasibility
of a national analysis. After reviewing the literature,
temperature, wind speed, and water vapor pressure
(and precipitation frequency for PM2.5) were identi-
fied as the most important determinants of O3 and
PM2.5 concentrations. As such, the majority of
weather-associated penalty on O3 and PM2.5 are likely
accounted for by these variables. However, there are
certainly other weather parameters that could have
been included such as cloud cover, transport direc-
tion/distance, and atmospheric mixing height. Many
of these additional weather parameters may be
strongly correlated with the weather variables already
included in our models. The incremental value of
accounting for other weather parameters may be
minimal, given that our models already explain
30–60% of the daily variability in O3 and PM2.5

concentrations.
Lastly, regional excess mortality associated with

weather penalties has important sources of
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uncertainty. First, we apply a national mortality risk
estimate in the health impact function to estimate the
mortality impact of regional air quality changes. The
regional risk estimates reported by epidemiological
studies were highly variable with wide confidence
intervals. Second, the O3 mortality estimates only
account for mortality in April to September of each
year, and may be an underestimate to the extent that
there are O3-related deaths in October through
March. Finally, the baseline population data from
2010 were utilized to estimate annual weather-asso-
ciated excess mortality. Population size changes dur-
ing our study period, however, represent a very small
fraction of the uncertainty of mortality risk estimates
and air quality changes.

4. Conclusions

In this study, we quantified past weather impacts on
air quality and health using long-term observational
data. The weather penalty we estimate includes direct
effects of weather conditions (e.g., photochemical
reactions), indirect effects (e.g., more heating use on
cold days), and effects of other meteorological phe-
nomena with ground-level weather manifestations
(e.g., transport of cold, dry air mass). Within the
recent two decades, historical changes in weather
conditions have had significant impacts on air quality
andhealth. Temperature has increased andwind speed
has decreased in most US regions. Weather-associated
increases in O3 were driven primarily by changes in
temperature and water vapor pressure, and weather-
associated increases in PM2.5 were driven by tempera-
ture and wind speed. These weather penalties had
significant mortality impacts, with approximately
1100 excess deaths per year attributable to the weather
penalty on air quality. Excess mortality related to
weather-related pollution increases were particularly
pronounced in the Eastern US, and were greater for
PM2.5 even though the weather penalty on O3 concen-
trations was relatively higher. As climate models
predict temperature increases, higher frequency of
heat waves, and more stagnation episodes, weather-
related increases in both O3 and PM2.5-related mor-
talities will likely persist in the future. Changes in
weather conditions will continue to modify the
benefits of emission controls, and this may require
additional emissions reductions as more areas exceed
air quality standards in the future climate.
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