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Abstract
With growing concerns regarding future impacts of sea-level inmajor coastal cities, themost accurate
information is required regarding local sea-level changes with respect to the coast. Besides global and
regional sea-level changes, local coastal vertical groundmotions can substantially contribute to local
changes in sea-level. In some cases, such groundmotions can also limit the usefulness of tide-gauge
records, which are a unique source of information to evaluate global sea-level changes before the
altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing
vertical coastal groundmotion inDakar (Senegal), where a unique century-long record inAfrica has
been rediscovered. Given the limited number of available images, we use a stacking procedure to
compute groundmotion velocities in the line of sight over 1992–2010.Despite a complex geology and
a rapid population growth and development, we show that the city as a whole is unaffected by
differential groundmotions larger than 1mm year−1. Only the northern part of the harbor displays
subsidence patterns after 2000, probably as a consequence of land reclamationworks. However, these
groundmotions do not affect the historical tide gauge. Our results highlight the value of the historical
sea-level records ofDakar, which cover a 100 year time-span in a tropical oceanic region of Africa,
where little data are available for past sea-level reconstructions.

1. Introduction

Since the end of the 19th century, global sea-level has
risen as much as 15–20 cm, mostly because of climate
warming(e.g., Church et al 2013, Hay et al 2015). As
this process is very likely to continue and accelerate in
the future, drastic aggravation of coastal erosion and
flooding hazards are expected. However, the aggrava-
tion of coastal flooding should be the most immediate
consequence (Nicholls and Cazenave 2010). This issue
is particularly critical in large and densely populated
coastal cities (Hanson et al 2011), and it is recognized
as a global concern. For example, Hallegatte et al
(2013) estimated that without adaptation, damage
costs due to flooding could exceed 50 bn$ per year by
2050 in the 140 largest cities in theworld.

In this context, a possible aggravating factor can be
vertical ground motion. Indeed, the relevant sea-level
change for assessing coastal flooding (as it is actually
measured by tide gauges) is the difference between
sea-level changes from ocean (including climate con-
tributions) and local vertical ground motion pro-
cesses. Far from being negligible, such land motion
can represent a large contribution to relative sea-levels
and must be taken into account in coastal impact
assessments: different ground motions estimates can
lead to substantially different assessments, by as much
as several hundred thousand exposed persons and sev-
eral tens of billions of dollars for a single major coastal
city such as Alexandria (Wöppelmann et al 2013).
Hence, local and regional vertical ground motions are
one of the important sources of uncertainty to
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consider in assessing sea-level rise and its impacts.
Moreover, it is very difficult, if not impossible, to eval-
uate them without observations, due to their complex
causes and evolution in space and time (e.g., Chaus-
sard et al 2013, Raucoules et al 2013, Samsonov
et al 2014). Therefore, a first motivation to accurately
characterize vertical ground motions in large coastal
cities is to reduce the uncertainties associated with
relative sea-level changes, and, subsequently, their
future impacts.

A second challengemotivating a precise character-
ization of vertical groundmotions in coastal cities is to
reconcile sea-level estimates for the 20th century: over
this period, there is a slight disagreement between (1)
observations of sea-level rise obtained from the avail-
able tide gauge data sets, and (2) the sum of contribu-
tions from each process causing sea-level rise
(Munk 2002, Church et al 2013, Gregory et al 2013).
Indeed, themain contributors to contemporary global
sea-level rise are land ice melting from mountain gla-
cier and polar ice sheets and thermosteric effects, while
water exchanges between the continents and the ocean
and the global isostatic adjustment had a negligible
contribution over the time-scale of the past century
(Church et al 2013). Several non-exclusive hypothesis
may explain this slight difference in the various 20th
century sea-level rise estimates, including (1) errors
in the estimation of one or several contributors to
sea-level rise (Gregory et al 2013); (2) the uneven spa-
tial and temporal distribution of tide gauge records
(Jevrejeva et al 2014, Hay et al 2015), and (3) local
coastal vertical ground motions (Wöppelmann
et al 2014). Accurate knowledge about the ground
motions affecting tide gauges is thus highly desirable,
especially in regions poorly covered by observations

such as inter-tropical regions or the Southern
hemisphere.

Hence, two challenges of global significancemoti-
vate characterizing vertical ground motions in major
coastal cities. They can be exemplified in the case of
Dakar (Senegal), a coastal city located on the Cape-
Verde peninsula:

- First, Dakar is a rapidly growing city potentially
affected by adverse effects of sea-level rise. Its
southern coast is constituted by low elevation built
areas prone to flooding and bounded by often
eroded sandy beaches (Lo and Diop, 2000). More-
over, urban development and population increase
has taken place during the past decades, as the
population rose from 400 000 inhabitants during
the seventies to around 1.2 million in 2011
(UN 2011 SD Demographic Statistics). The entire
urban area reaches a population of around 3
million, with a density of 1920 inhabitants per km2,
while the present urban surface covers around
550 km2. Hence, Dakar was included in the pre-
vious assessments of future coastal flooding
impacts in 140 major coastal cities (Hanson
et al 2011,Hallegatte et al 2013).

- Second, historical records from tide gauges back
to the 19th century were recently rediscovered
(Wöppelmann et al 2008), offering the potential to
provide sea-level trend estimates in a continent
(Africa) and area (Tropics) where long tidal records
are extremely rare, and henceforth invaluable for
sea level science (Woodworth et al 2007;). A review
of the Permanent Service for Mean Sea Level
(PSMSL) data holdings as of January 2015 (figure 1)

Time span of records in
the PSMSL database:

more than 200 yr

175 to 200 yr

150 to 175 yr

125 to 150 yr

100 to 125 yr

150˚W 120˚W 90˚W 60˚W 30˚W 0˚ 30˚E 60˚E 90˚E 120˚E 150˚E

60˚S

30˚S

30˚N

60˚N

0˚

180˚

Figure 1. Location of the tide gauges with records longer than 100 years and at least 70%valid controlled data in the PSMSLdata
repository. Dakar is located in a coastal region of Africa, where no other sea-level records presentlymeet these criteria.
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confirms the scarcity of tide gauge records
longer than a 100 years with at least 70% of
valid quality controlled data (Holgate et al 2013,
Haigh et al 2014). This underscores the relevance
of undertaking a data archeology investigation
to rescue the historical sea level records from
Dakar.

Several evaluations of vertical ground motion in
Dakar have been attempted without much success so
far. Table 1 shows that the uncertainties from the pre-
vious studies were too large to detect a non-zero geo-
centric vertical land motion. Furthermore, all the past
estimates are point-wise measurements (Doris sta-
tions, permanent GPS, comparisons between sea level
trends from satellite radar altimetry and tide gauges).
Hence, the possibility that the city is affected by

differential ground motions cannot be ruled out. This
possibility of differential ground motions seems plau-
sible considering the complex geology of Dakar (pre-
sence of volcanic rocks, Quaternary sand deposits and
anthropogenic embankments; figure 2), the suscept-
ibility to shrink-swell hazards as well as the history of
groundwater pumping (DaSylva and Cosandey 2005,
Roger et al 2009).

Using satellite Synthetic Aperture Radar Inter-
ferometry (InSAR; see part 2), this study aims at char-
acterizing potential differential ground motions in
Dakar. Its main objective is to examine if Dakar is
affected by vertical ground motions that could sig-
nificantly deviate the trend of local relative sea level
rise from global estimates. In part 3, we estimate the
spatial extent of these ground motions using InSAR.
This result offers the opportunity to revisit previous

Table 1. Summary of groundmotion estimates identified forDakar. All these estimates are providedwith respect to a geocentric reference
frame, whereas InSARmeasures differential groundmotionswith respect to afixed reference point within the observed area.Hence, InSAR
cannot assess the absolute trends provided here by the other techniques, but it can evaluate their spatial consistency. Note that the effect of
the global isostatic adjustment is on the order of 0–1 mmyear−1 inDakar depending on themodel (Jevrejeva et al 2014).

Vertical groundmotion linear trends Source of data Study

0.1 ± 1.3 mmyear−1 Doris station Soudarin et al (1999)

1.4 ± 0.6 mmyear−1 Doris station Ray et al (2010)

0.7 ± 1.3 mmyear−1 Satellite altimetryminus tide gauge Ray et al (2010)

2.0 ± 1.7 mmyear−1 PermanentGPS Bouin andWöppelmann (2010)

Trends estimate not robust (too short valid

record)

Three permanentGPS (www.

sonel.org)

Santamaría-Gómez et al (2012)

0.25 ± 2.9 mmyear−1 DAKA-GPS sideshow.jpl.nasa.gov/post/series.html accessed

24/06/2015

Figure 2. Lithologicalmap ofDakar (data fromRoger et al 2009). The red box indicates the spatial extent of InSAR results presented in
figure 5.
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geological and geodetic studies onDakar, and to inves-
tigate the two following questions:

- Could the ground surface deformation be antici-
pated considering the geology of the area and the
available point-wise measurements? (Question
addressed in part 4).

- To which extent are our results a useful contribu-
tion for scientists concerned with the 20th century
sea-level rise budget? (Question addressed in
part 5).

2. Synthetic aperture radar (SAR) data and
interferometricmethods

SARs are active instruments, which produce a signal
that can be partly backscattered by the ground surface.
The principle of InSAR is to use the phase of the radar
signal, which is known modulo 2π rad, and which can
be related to the path length of the electromagnetic
signal. Using two different SAR images, the phase
difference at each pixel of the SAR image can be
processed to produce ground deformationmaps in the
line of sight of the sensor. Since the first demonstra-
tions of the technique applicability (e.g. Massonnet
and Feigl 1998), several advanced InSAR processing
methods have been developed: a first set of methods
(Persistent Scatterers Interferometry) is based on the
analysis of particular pixels, in which the signal is
particularly well backscattered by specific targets with
adequate radiometric and geometric properties with
little radiometric relative temporal variation (e.g.,
Ferretti et al 2001,Wegmuller et al 2003). Thismethod
can be applied only when a sufficient number of SAR
images (typically 40–50) have been acquired over the
area of interest. Othermethods consist in stacking a set

of interferograms to compute maps of ground defor-
mation velocities trends (Usai 2003, Le Mouélic
et al 2005, Pepe et al 2005). Both stacking and
Persistent Scatterers approaches minimize the atmo-
spheric effects, which are the main source of uncer-
tainty in ground motion velocity estimation in urban
areas. Indeed, since these atmospheric effects are not
correlated in time, they can be averaged and reduced
through techniques using more than 2 images, and in
particular by applying a stacking procedure. Numer-
ous previous studies have demonstrated that InSAR
techniques are particularly adapted to monitor urban
ground motions in the order of less than 1 mm year−1

to a few centimeters per year depending on the
technique and the number of images (Raucoules
et al 2009).

In the case of Dakar, 25 valid SAR images have
been acquired by ERS 1/2, and 10 by Envisat/ASAR
during their operational lifetime (figure 3). This lim-
ited amount of data for both ERS and Envisat data sets
prevents from obtaining good performance from Per-
manent Scatterers Interferometry. Hence, our
approach follows the following steps: first, we com-
pute the interferograms for the ERS1/2 and Envisat/
ASAR pairs of SAR images whose baselines do not
exceed 500 m. Second, following Le Mouélic et al
(2005), we examine each interferogram visually and
remove those displaying obvious atmospheric effects
or high temporal decorrelation in the area of interest,
that is, the city center where the tide gauge and the
other geodetic instruments are located (figure 4).
Finally, we stack all the ERS1/2 and Envisat/ASAR
interferograms. After such a procedure, the upper
bound for the precision of the resulting ground
motion velocitymaps is proportional to the remaining
atmospheric fluctuations (typically equivalent to 1 cm
on a single interferogram at the scale of the city),

Figure 3.Baseline/time diagram for the ERS1, ERS2 and ENVISATdata. This diagramdisplays the selected SAR scenes (squares) and
interferograms (segments) used to compute the following groundmotion velocitymaps. These scenes and interferogramsmeet the
requirements in terms of baseline, time span, coherence and limited atmospheric effects. The ordinate axis origin is set to zero for the
master scene of both Envisat and ERS stacks of interferograms (SAR scene acquired on 23rdOctober 2003).
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divided by the temporal sampling rate and the square
root of the number of independent interferograms
(Williams et al 1998). In the case of Dakar this results
in precision values on the order of 1–2 mm year−1 over
the ERS or Envisat periods.

To maximize the precision of the ground motion
velocities, we compute a stack combining all ERS 1/2
and Envisat/ASAR interferograms. This implies
resampling each SAR scene on the same reference
image during the interferometric processing. Hence,
we select the Envisat SAR scene acquired on 23/10/
2003 as the master scene for both Envisat and ERS
stacks of interferograms. This last procedure enables
us to compute ground motion velocity map averaged
over 1993–2010, with formal uncertainties lying
slightly below 1 mm year−1.

As InSAR evaluates differential ground motions,
all groundmotion velocities are evaluated with respect
to a reference point selected during the processing of
SAR images. Here, the ground deformation velocities
were computed with respect to the location of a per-
manent GPS located in the city center of Dakar
(‘DAKA-GPS’). This instrument provides the longest
GPS record available in the city, from 2002 to 2007
(www.sonel.org; figure 4). The time series of other
records from the GPS stations still remain too short
(DAKR) or discontinuous (FG02) to compute reliable
trends. The vertical groundmotion velocity of ‘DAKA-
GPS’ is estimated at 0.25± 2.9 mm year−1 in the global
solution of the Jet Propulsion Laboratory (table 1). No
trend is provided by Santamaría-Gómez et al (2012) at
this station in the 5th reprocessed solution of global
GPS vertical velocity fields of the University of La

Rochelle (table 1). Considering the records more clo-
sely, we note that its position time series display dis-
continuities from July 2004 onwards. All its weekly
position estimates remain within a range of [−5;
+5mm], except from February to May 2006 where it
reaches +1 cm. As reported by Bruyninx (2004), such
discontinuities are typically observed whenever the
equipment is changed (antenna or receiver). This sug-
gests that the uncertainties on the vertical ground velo-
city of ‘DAKA-GPS’ are due to metrological issues. In
addition, this does not prevent us fromusing it as refer-
ence point because the primary aim of this study is to
investigate whether all instruments are affected by dif-
ferent vertical ground motion velocities. In the follow-
ing sections, all vertical ground motion velocities are
computedwith respect to this location.

3.Observational evidence of vertical
groundmotions inDakar

The InSAR results show that no important variation in
subsidence or uplift is affecting the city from 1993 to
2010 (figure 5). In most of the area of interest, vertical
ground motions do not exceed ±1 mm year−1. As a
first approach, average ground motion velocities and
their precision can be estimated by calculating the
mean and standard deviation over coherent areas (i.e.
interferometric coherence values larger than 0.6).
From 1993 to 2010, the mean deformation rates with
respect to the permanent GPS location ‘DAKA-GPS’ is
−0.032 ± 0.1 rad year−1 (−0.14 ± 0.5 mm year−1) in
the Line of Sight (LoS) of the satellite. Therefore, from
1993 to 2010, most of the city can be considered stable

FGO2
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Figure 4.Records of the threeGPS located inDakar from the latest reprocessing of global GPS velocity fields of theUniversity of La
Rochelle (ULR-6). Red lines indicate discontinuities. In the case of theDAKA station, these discontinuities are probably related to
changes of the instruments (see text).
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Figure 5. Line of Sight groundmotion velocity inmmyear−1 for thewhole 1993–2010 period (ERS1, ERS2 andEnvisat). Negative
values indicate subsidence. Gray contour lines are plotted for the following LoS groundmotion velocity values:−3 mmyear−1;−1 mm
year−1; +1 mmyear−1; +3 mmyear−1.

Figure 6. Line of Sight groundmotion velocity inmmyear−1 for 1993–2001 (ERS 1–2 data, left) and 2003–2010 (Envisat data, right).
For figure readability, the color palette is saturated at its extreme values.
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with respect to the location of ‘DAKA-GPS’ andwithin
the estimated upper bound for the uncertainties of
±1 mm year−1. The ERS and Envisat stacks of inter-
ferograms show that the same conclusion can be
drawn for the sub-periods 1993–2001 and 2003–2010
(figure 6). The confidence in ground motions velo-
cities can be further assessed by considering the mean
coherence values of ERS and Envisat interferograms
(figure 7). In areas where the coherence is low (e.g.,
western side of the city), the ground motion velocity
maps appear noisy. This can be explained by the land
cover, as these areas are less urbanized, and, therefore,
results in a temporal decorrelation phenomenon
(Zebker and Villasenor 1992). Note that low-coher-
ence areas appear noisier from 2003 to 2010 than from
1993 to 2001. Indeed, we could process more ERS 1/2
than Envisat/ASAR interferogramms (figure 3).
Hence, the stacking procedure performed better in
averaging and removing errors for the timespan
covered by ERS 1/2 (see part 2).

A small subsidence pattern can be identified in a
coherent area located on the northern part of the har-
bor (figure 8). This subsidence is non-linear in time
(figure 6): the rates of subsidence in the Line of Sight
reach −0.97 ± 0.3 rad year−1 (−4.3 ± 1.3 mm year−1)
over the Envisat acquisition period (2003–2010),
whereas the same area is stable with respect to the loca-
tion of ‘DAKA-GPS’ on the ERS stack of inter-
ferograms (1993–2001). This subsidence occurs in a
coherent area, where radiometric and geometric prop-
erties of the scaterring elements on the ground surface
are stable over the monitoring period. In the harbor of
Dakar, coherent areas correspond to permanent port
facilities such as hangars and hydrocarbon infra-
structures. However, a significant part of harbors is
used to store shipping containers. The radiometric
properties of such objects are suitable to backscatter
the radar signal to the satellite, but no ground motion
deformation can be reliablymeasured because they are
frequently displaced. The least coherent areas are
therefore either container area, or sectors where con-
struction works have been undertaken over the mon-
itoring period. The extent of the deformation (larger
than 1 km) suggests a subsidence of the whole north-
ern platform of the harbor rather than individual
buildingmotions.

Other areas may deserve specific attention: in the
western side of the city, north of the GPS (‘Zone A’ in
figure 5), the results suggest a small uplift of
0.21 ± 0.08 rad year−1 (0.9 ± 0.4 mm year−1 in LoS)
from 1993 to 2010 (coherence exceeds 0.6). The same
‘Zone A’ area is uplifting as much as 0.23 ± 0.10 rad
year−1 in the LoS during the ERS period, but the uplift
becomes negligible during the Envisat period
(0.07 ± 0.15 rad year−1 in the LoS). While this pattern
is detected at the limit of the capabilities of the techni-
ques, the reasons for considering it will appear obvious
in section 4.

No other differential groundmotion can be identi-
fied with confidence at the scale of the city: except in
the harbor, differential ground motions larger than
±1mm year−1 can therefore be discarded in the coher-
ent areas mapped in figure 6. First, if we assume that
the uncertainties affecting the ‘GPS-DAKA’ vertical
ground motion velocities are due to GPS antenna or
receivers changes, these results indicate that ground
subsidence can be neglected in assessments of future
coastal hazards in Dakar (except in the northern part
of the harbor). For coastal stakeholders concerned
with adaptation to future sea-level rise, this makes a
significant difference with some other large coastal
cities, affected by subsidence larger than 1 cm year−1

(e.g., Hanson et al 2011, Ng et al 2012, Chaussard
et al 2013). Secondly, these observations of ground
motion over the last 20 years highlight the value of the
historical Tide Gauge at Dakar, because the historical
tide gauge and all permanent GPS are located in coher-
ent areas unaffected by differential ground motions
larger than 1 mm year−1 (table 2). This further sup-
ports the idea that the recently rediscovered tide gauge
records are particularly valuable for studies of long-
term trends in sea-levels (Wöppelmann et al 2008).

4.Groundmotions in the context of
geological and hydro-geological settings in
Dakar

The general stability of Dakar was difficult to antici-
pate given its complex geology, land-use history and
rapid and recent urban development. Indeed, the
peninsula is constituted by a rocky tip at the western

Figure 7.Mean coherence of the ERS and Envisat interfero-
grams selected to compute groundmotion velocity trends
over 1993–2010.White contour lines are plotted for the
following coherence values: 0.25; 0.5; 0.75.
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part of the city, linked to the continent by a sandy spit
(figure 2). The Western tip is mainly constituted by
Early Quaternary basalts and volcanic rocks, partially
overlaid by later Quaternary clayey sands (Roger
et al 2009). Interestingly, this area corresponds to the
‘zone A’ in figure 5, which might be uplifting.
However, the limited number of SAR scenes limits the
precision of groundmotions velocities and prevents us
fromfirmly concluding on this uplift.

Most of the remaining part of the Cape-Verde
peninsula is covered by Quaternary deposits with
dominant Aeolian sands (‘Erg Pikine’, orientation of
the dunes NNE-SSW), alternating with marine sands
and brackish deposits (organic clay and sand, gravels).
Considering such a complex geology and given the
drastic growth of the city, one could expect complex
subsidence patterns. None is observed so far however.

The shrink-swell hazard is directly linked to the
clay content of both the soils and the underlying geolo-
gical formation. The shrink-swell hazard (Roger
et al 2009) is negligible in areas where sands are domi-
nant, medium on the western tip where the basalts
constitute the substratum and are variously affected by
weathering, and high where the laterite or the Middle
Eocene marls outcrop (SW tip of the peninsula). This
latter area (southern extremity of the peninsula) is
constituted by Palaeocene marls and Eocene clays,
which are prone to landslides (Fall et al 1996), and
it appears subsiding in the stack of Envisat

interferograms, but the lack of coherence in this area
prevents us from drawing robust conclusions. In gen-
eral, no indication of a relationship between ground
motions and the geological patterns underpinning
shrink-swell hazard could be identified, whether from
single interferograms or in the map of errors resulting
from the stacking procedure.

In the early 20th century, groundwater extractions
took place north of the city center close to the decom-
missioned Doris station, and, later, in the Quaternary
sands located on theNorth of the peninsula. Such pro-
cesses use to be a standard cause of rapid subsidence
and can be observed even when aquifers are artificially
recharged (Wang et al 2012). In the area considered in
figures 5 and 6, groundwater extractions are no longer
reported (DaSylva and Cosandey 2005), and we did
not identify any potential sign of subsidence or uplift
in relation to these processes.

Finally, the unique significant subsidence that can
be observed with confidence is located in the harbor of
Dakar. This subsidence is probably due to recent
embankment work in the northern part of the harbor,
which may have caused a moderate subsidence of
backfillmaterials used to reclaim land from the sea.

5. Consequences for sea level
measurements inDakar

Table 2 shows differential ground motion velocities
affecting the geodetic instruments located in Dakar.
All differential groundmotions found are close to zero
and below the precision threshold of themethod.

The ranges of errors on previously published ver-
tical ground motion velocities are either slightly larger
than 1 mm year−1 or not reliable because of the short
time series (case of permanent GPS). The uncertainty
of InSAR ground motion velocities is lower than or of
the same order of magnitude as the uncertainty
derived from other geodetic measurements available
presently (table 1). In particular, vertical ground
motion velocities obtained by subtracting trends from
satellite altimetry and tide gauge (SA-TG) records are
subject to high uncertainties. Indeed, the uncertainty
on satellite altimetry records reaches 1–2 mm year−1 at
regional scales (Ablain et al 2015). Actually, there are
two situations where SA-TG trends can be validated
against GPS ground velocities in combination with
InSAR: (1) in semi-enclosed basins such as the Medi-
terranean sea, where uncertainties of SA-TG trends
can be reduced (Kuo et al 2004); (2) in regions where
climate-induced sea-level rise is much faster than the
global average: in such case, a lower precision in trends
becomes sufficient to compare SA-TG trends with
other geodetic measurements (Cazenave et al 1999).
We met these two cases in Alexandria (Egypt) and
Manilla (Philippines) respectively (Wöppelmann
et al 2013, Raucoules et al 2013). However, none of
these two conditions is met in Dakar, which is located

Figure 8.Zoomover the harbor area showing the Line of Sight
(LoS) groundmotion velocity inmmyear−1 for the
2003–2010 period (Envisat). These results highlight the
subsidence of the northern part of the harbor. Note that the
coherent subsiding areas correspond to the hydrocarbure
transport facilities, which are located on backfillmaterials and
were recently extended. Gray contour lines are plotted for the
following LoS groundmotion velocity values:−2 mmyear−1

and+2 mmyear−1.
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on a peninsula on the Atlantic Ocean (figures 1 and 2),
and where sea-level has risen at millimetric rates in
recent decades (figure 9).

In summary, the different estimates of ground
motion velocities published for Dakar are consistent
with each other and with our InSAR results, within the
current uncertainties obtained from the data analysis
of each technique. All techniques agree that all geode-
tic instruments in Dakar are following the same very
low ground motion within uncertainties of
±1 mm year−1, except possibly the recent tide gauge.
The analysis of the geological and urban development
context suggests possible processes resulting in
ground motions (Part 4). However, except in the
northern part of the harbor where construction works
have probably caused subsidence of embankments, no
significant contributions of natural processes (tec-
tonics, volcanism) or human activities (e.g., ground-
water extractions) have been detected from 1992 to
2010. This suggests that the impacts of the same pro-
cesses were insignificant earlier as well, and that the
signature of the long term vertical ground motion can
be assumed stationary over the 20th century inmost of
the city. Therefore, the long term historical tide gauge
records appear suitable for long term sea-level recon-
structions and analysis.

The case of the recent tide gauge deserves more
attention: the area is not coherent enough to conclude
firmly on the rate of vertical ground motions, which is
found at 0.10 ± 0.5 mm year−1. More information
regarding this location would be useful to evaluate to
what extent this tide gauge is suitable for bias drift cor-
rections and validation of satellite altimeters such as
Topex, Jason 1/2, ERS 1/2 , Envisat , Saral orHY2 (e.g.,
Ablain et al 2015, Watson et al 2015). The installation
of specific devices such as permanent GPS or corner
reflectors adapted to present SARmissions (e.g., Senti-
nel 1) could be considered to conclude on this point.

6. Conclusions

Using InSAR, our findings suggest that differential
ground motion in Dakar are generally low and do not
exceed the 1 mm year−1 precision threshold of the
method (upper bound). This general stability could not
be anticipated from prior geologic knowledge or from
the important urbanization of the city over the recent
decades. A notable exception is the northern part of the
harbor, which experiences subsidence likely due to land
reclamation. Other geodetic instruments located in
Dakar (Doris station, permanent GPS, tide gauge)
display moderate vertical ground motions, which are
statistically insignificant from zero within the precision
of each method. As a result, the concerns related to
coastal erosion, flooding and saltwater intrusion in
aquifers should not be significantly aggravated by
groundmotion inDakar. In termsof coastal adaptation,
the consequence is appreciable compared to other large
coastal cities presently affected by high rates of ground
subsidence (in the order of 1 cm year−1 or more), in
particular in South-East Asia.

Another important outcome of this study is related
to the sea level changes. Sea level is considered an
essential parameter in climate change research. How-
ever, tide gauge datasets are limited in size and quality,
with a few century-scale stations at inter-tropical lati-
tudes. Moreover, the tide gauge ground stability is of
crucial importance to the study of the rate of change of
coastal sea level. The historical tide gauge from Dakar
appears located on a stable area with respect to three
permanent GPS and a Doris station. Hence, extra-
polating the lack of evidence that this area has been
unstable frommodern geodetic methods or from geo-
logic data, the ongoing Dakar tide gauge data rescue
will soon provide an accurate estimate of the rate of
geocentric sea level rise over the past century, and help
in the understanding of the spatial patterns of sea
level rise.

Table 2. InSAR-based estimations of the surface deformations affectingwith respect to a point located near ‘DAKA-GPS’. Trends and error
bars are computed by considering themean and standard deviation of groundmotion velocity trends for pixels locatedwithin a circle with a
radius of 100 maround each geodetic instrument. (*): denotes data available on the PSMSL data repository; (+): denotes data available on
Sonel.

Trends obtained from the stack

of interferograms from

1993–2010 DAKA-GPS FG02-GPS DAKR-GPS

Historical Tide

gauge DAKARTG Doris

Timespan covered by the in situ

instrument

2002–2007 (+) 2009–2015 2011–2015 1942–1966 (*) 1992–2012

(*)

1993–1998

Status of the instrument/data Decommissioned Operational Operational Ongoing digitali-

zation of old

records

Operational Decommissioned

Geology Clayed sands Laterite Aeolian

sands

Backfill material Backfill

material

Aeolian sands

Line of Sight groundmotion

velocity inmmyear−1
0.19 ± 0.4 0.19 ± 0.4 −0.31 ± 0.4 0.06 ± 0.3 0.09 ± 0.4 0.10 ± 0.5

Vertical groundmotion velocity

inmmyear−1
0.21 ± 0.5 0.22 ± 0.5 −0.34 ± 0.5 0.06 ± 0.3 0.10 ± 0.5 0.11 ± 0.5
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