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Abstract

Atmospheric responses to sea ice retreat in the Bering Sea have been linked to recent extreme winters
in North America. We investigate the leading factor for the interannual variability of Bering sea ice
area (SIA) in early winter (November—December), using canonical correlation analysis based on
seasonally resolved atmosphere and ocean data for 1980-2014. We found that the 3-month leading
(August—September) geopotential height at 500 hPa (Z500) in the Northern Hemisphere explains
29% of SIA variability. The spatial pattern of Z500 for positive (negative) sea ice anomalies is associated
with negative (positive) anomalies over the Gulf of Alaska related to the Pacific transition (PT) pattern.
The heat budget analysis indicates that summertime atmospheric conditions influence SIA through
the ocean temperature anomalies of the Alaskan Coastal Current forced by atmospheric turbulent
heat fluxes. The PT pattern highly correlates with convective precipitation in the western subtropical
Pacific, implying that weakened subtropical forcing is the likely cause for the recent extreme winters in
North America. Our results present a major factor for interannual variability in the Bering SIA, and
turther would contribute to the improvement of forecasting winter climate in North America.

1. Introduction

The importance of surface boundary conditions over
the Arctic sea ice area (SIA) has been pointed out in
terms of the driving forces for planetary waves and
blocking events in the Northern Hemisphere (Screen
and Simmonds 2013a, 2013b, 2014, Cohen et al 2014,
Vihma 2014, Overland et al 2015). Recent severe
winters in Eurasia continent, which is known to be the
warm-Arctic cold-Siberian, is thought to be an atmo-
spheric response to turbulent heat fluxes caused by a
decrease trend in sea ice cover in the Barents and Kara
Seas (Honda et al 2009, Petoukhov and Semenov 2010,
Inoue et al 2012, Mori et al 2014) and a remote
atmospheric response to surface heating in the Gulf
Stream front (Sato etal 2014).

Similar to Eurasia, North America has recently
winters in  2009-2010,

experienced  extreme

2010-2011, and 2013-2014 (Wallace et al 2014). Sev-
eral studies have reported that extreme atmospheric
conditions are related to increased waviness of wes-
terly jet streams secondary to polar amplification of
global warming (Francis and Vavrus 2012, Liu
et al 2012, Francis and Vavrus 2015). This hypothesis
has been supported by theoretical and observational
evidence (Tang et al 2013a, 2013b). Conversely, several
studies have suggested that the influence of Arctic
amplification on wavier jet streams and blocking over
the mid-latitudes is minor compared with natural cli-
mate variability (Barnes 2013, Barnes et al 2014, Has-
sanzadeh etal 2014).

A recent numerical investigation demonstrated
that the anomalous atmospheric circulation respon-
sible for the severe winter in 2013-2014 is in part
induced by low SIA in the Bering Sea (Lee et al 2015).
In fact, the Bering SIA in early winter (November—

©2015IOP Publishing Ltd
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Figure 1. Regression maps (colors) of December—January (a) SAT and (b) SLP onto the time series of 1-month leading (November—
December) sea ice area averaged over the Bering Sea (53°-65°N, 165°E~155°W; shown in figure S2). The contours indicate the regions
where the correlation is significant at the 95% confidence level. (c) Time series of SAT in northeastern North America (30°N, 90°E;
filled circles) in December—January and 1-month leading Bering Sea ice area (ICE; open circles). Heavy and light sea ice years used in
the composite analysis for SAT (figure S1) are indicated by red and blue filled circles, respectively. Sea ice and atmospheric data are
derived from NCEP-CFSR data (Saha et al 2014).

Table 1. Correlations between 2-month averaged SIA in the Bering Sea from 1980 to 2014.

November—December

December—January

January-February February—March March—April

November—December — 0.91

0.62 0.33 0.23

Bold numbers indicate correlations exceeding the 95% confidence level based on the Monte Carlo simulation (Kaplan and Glass, 1995).

December), when the release of turbulent heat flux to
the atmosphere is prominent, is significantly corre-
lated with surface air temperature (SAT) and sea level
pressure (SLP) in the northeastern part of North
America after one month (December—January), indi-
cating that the wintertime SAT in North America
tends to be relatively low, when the 1-month leading
SIA in the Bering Sea is small (figure 1). The composite
analysis of the wintertime SAT for light and heavy SIA
years supports that the sea ice retreat precedes severe
winters in North America (figure S1). The similar
results were also obtained from the analysis based on
the regional SAT time series over the East-Siberian-
Chukchi Sea region (Kug et al 2015). Thus, it is sug-
gested that the recent extreme winters are part of the

natural climate variations regulated by the SIA change
in the Bering Sea.

So far, causes of the SIA variability in the Bering Sea
have been investigated in terms of large-scale atmo-
spheric circulation anomalies (Walsh and Sater 1981,
Cavalieri and Parkinson 1987, Niebauer 1988, Fang and
Wallace 1998, Honda et al 1999, Deser et al 2000, Sasaki
and Minobe 2005, Yamamoto et al 2006, Ukita
et al 2007), cyclone activity (Overland and Pease 1982,
Screen et al 2011), and local winds and ice influx from
the Arctic Ocean (Zhang et al 2010). Taken together,
these studies suggest that wind anomalies over the Ber-
ing Sea play a dominant role in SIA variability. How-
ever, these previous studies have focused on the role of
atmospheric conditions on mid-winter SIA variability
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Figure 2. Forecast skill of the SIA in the Bering Sea in early winter for 0-month (November—December) to 11-month (December—
January) lead times from local SST, Uss., Vi, SAT, Northern Hemisphere SLP, and Z500. The forecast skill from Z500 is highlighted
by red. The horizontal dashed lines indicate the confidence level at 95%.

in the Bering Sea, but effects on SIA variability in early
winter are not well understood. In fact, SIA variability
in early winter (November—December) is not well
explained by SIA variability in mid-winter (February—
March) (table 1).

Here we present new dominant factor underlying
interannual variability of SIA in the Bering Sea in early
winter based on seasonally resolved atmosphere and
ocean data, with emphasis on the sea ice retreat. To
explore the leading factors for the SIA variability in the
Bering Sea, we used canonical correlation analy-
sis (CCA).

2.Data and methods

The SIA and atmosphere—ocean data used for the CCA
were derived from a new coupled global National
Centers for Environmental Prediction-Climate Fore-
cast System Reanalysis (NCEP-CFSR) dataset for
1980-2014 (Saha et al 2014). All available in situ and
satellite observations and Argo float data since 2000
are assimilated in this dataset. The SIA was determined
from the area weighted by sea ice concentration (SIC).
Since the SIC data in reanalysis have various biases and
errors (Lindsay et al 2014), we evaluated the reliability
of SIC and ocean temperature in the Bering Sea, before
we use the NCEP-CFSR data for the CCA. The
climatological sea ice edge is very similar to that of the
Hadley Centre Sea Ice and Sea Surface Temperature
dataset version 1 (HadISST; Rayner et al 2003) (figures
S2(a) and S2(b)). Also, the time series of SIA in the
Bering Sea shows good correspondence between the
NCEP-CFSR and observed data (r = 0.84, figure S2
(0)), although the difference between them is relatively
large from the late 1990s. Since the assimilated SIC
data were changed in 1996/1997 from the Goddard
Space Flight Center (Cavalieri et al 1996) to the NCEP
operational ice analysis (Grumbine 1996), this differ-
ence might be related to the source data for the
assimilation. A relatively warm water tongue along the

coast of Alaska also comparable to the climatological
ocean temperature of World Ocean Atlas 2013
(WOA13) (Locarnini et al 2013), indicating that the
advective heat fluxes associated with the Alaskan
coastal current (ACC) (Woodgate and Aagaard 2005)
are well represented (figure S3). The near-surface
temperature (25m) in the Bering Strait calculated
from NCEP-CFSR data for 1991-2009 is highly
correlated with the mooring data (Woodgate
et al 2012) (r = 0.80, figure S3). These comparisons
confirm that the interannual variations of SIA and
near-surface ocean temperature in the Bering Sea are
accurately represented in the NCEP-CFSR data.

The leading factors (hereafter predictor) for SIA
variability in early winter were investigated by CCA,
which is multivariate statistical technique to objec-
tively identify correlation relationship between multi-
dimensional (Barnett and
Preisendorfer 1987). The preprocessing and proce-
dure for CCA is mostly identical to Nakanowatari et al
(2014), but the choices of predictors and predictand
are different. The predictand was the average Novem-
ber-December SIA in the Bering Sea (53°-65°N,
165°-155°W) from 1980 to 2014. The CCA were con-
ducted for 2-month averages of each predictor at lead
times from 0 to 11 months. The forecast skill for each
predictor was evaluated by field-averaged cross-vali-
dated correlation (FCC) between observed and mod-
eled data (Barnston 1994). According to -earlier
studies, six climate variables were tested as potential
predictors: 2-month-averaged local SST, SAT, zonal
(Ust) and meridional (Vi) 10 m wind in addition to
Northern Hemisphere SLP and geopotential height at
500 hPa (Z500). The areas analyzed for local pre-
dictors (SST, SAT, U, and Vi) were somewhat
extended meridionally and zonally (50°-65°N, 160°E~
150°W) to evaluate the effect of ocean advection from
the North Pacific such as the Gulf of Alaska. However,
the result of CCA is not essentially affected by this
slight modification of the study area.

variables

3
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3. Results

The forecast skills of November—December SIA are
shown for each lead times of 0- to 11-month (figure 2).
The highest forecast skill (FCC = 0.25) was obtained
for Z500 at a 3-month lead time (August—September).
7500 had a forecast skill with a cross-validated
correlation >0.5 in the eastern Bering Sea, covering
21% of the study area (figure S4). The forecast skill for
7500 decreased from autumn (2-month lead time) to
early winter (1-month lead time), while the forecast
skill for SST increased (figure 2). This result implies
that summertime atmospheric conditions indirectly
affect SIA through the persistency of ocean tempera-
ture anomaly, which was excited in summer. On
review of the CCA modes (1-5) in the Z500 experi-
ment, along with the percentage of the original
variance in the predictand explained by the CCA
mode, the first CCA mode (CCA1) from the 3-month
lead time Z500 predictor experiment explained 30%
of the original variance in the predictand. Therefore,
the forecast skill of Z500 was essentially explained
by CCAL.

The canonical correlation maps and time series for
CCAL are shown in figure 3. A negative correlation for
7500 (significant at the 95% confidence level) was
found over the Gulf of Alaska (figure 3(a)), accom-
panied by wave-like anomalies of positive correlations
over the western North Pacific and North America.
Conversely, a positive correlation for SIA (significant
at the 95% confidence level) was found in the eastern
Bering Sea (figure 3(b)). The canonical correlation
time series exhibited year-to-year variability with a
positive linear trend, indicating that CCA1 explained
the increasing trend in Bering Sea SIA in early winter
(figure 3(c)). The positive correlation in Z500 over the
western North Pacific (figure 3(a)) is consistent with
the significant increase in SLP in Autumn (Sim-
monds 2015). This result implies that these wave-like
anomalies are barotropic structures and thus Rossby
wave propagations from the tropics (Hoskins and
Karoly 1981). To understand the atmospheric circula-
tion pattern for Z500 in CCA1, correlation analyses
between CCA1 for Z500 and teleconnection pattern
indexes from the National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center
were conducted. The correlation between the CCA1
(Z500) and the Pacific transition (PT) pattern index in
September (obtained from the NOAA Climate Predic-
tion Center; http://www.cpc.ncep.noaa.gov/data/
teledoc/pt.shtml) was 0.74, which was significant at
the 95% confidence level based on a Monte Carlo
simulation using a phase randomization technique
(Kaplan and Glass 1995). The PT pattern is the major
teleconnection pattern in transition seasons from
spring to summer (Barnston and Livezey 1987) and its
signal is observed in total ozone variability at high lati-
tude (Hansen and Svenge 2005).

T Nakanowatari et al

The negative anomaly in Z500 over the Gulf of
Alaska was accompanied by a northwesterly wind
anomaly from the high latitudes to the Bering Sea.
Therefore, the atmospheric preconditioning possibly
affects SIA in the Bering Sea through the advection of
ocean temperature anomaly. To check this possibility,
lead-lag regressions between the Z500 canonical cor-
relation time series for CCAl and the monthly SST
were examined (figure 4, left column). Since the Z500
canonical correlation time series is positively corre-
lated with the SIA in the Bering Sea, the negative (posi-
tive) regression means the decreasing (increasing) SST
for positive (negative) SIA. At alag of 1 month, a nega-
tive regression appeared over the Gulf of Alaska. The
negative regression moved westward along the coast of
Alaska at alag of 2 months, then entered the Bering Sea
through the Unimak Pass (red cross in figure 4, left
lower panel). This permits flow of a portion of the
ACC into the shallow eastern Bering Sea (Stabeno
etal 2002). Conversely, the negative regression in Z500
disappeared at a lag of 2-3 months, although the posi-
tive regression persists over the western North Pacific
(figure 4, middle column). To confirm whether this
advection process is valid or not, we checked the sur-
face current speed in and around the Gulf of Alaska,
based on the climatological surface current data in the
NCEP-CFSR data. In September—November, the sur-
face current data shows the inflow of ACC with
5-10 cm s~ ' through the Unimak Pass (164°E) (figure
S5). The satellite tracked drifter data support that the
inflow of ACC has the surface current speed larger
than 20 cm s™* (Stabeno and Hristova 2014). There-
fore, the water mass takes 2—4 months or less to travel
from south of the Aleutian Islands to the eastern Ber-
ing Sea (~500 km). This advection time is roughly
comparable to the time lag between the SST anomaly
in the Gulf of Alaska and Bering Sea.

To isolate the physical processes responsible for
changes in SST in the Gulf of Alaska, the individual
terms in the ocean heat content (OHC) tendency
equation were examined. The heat budget equation is
derived by multiplying by density and the specific heat
of water and vertically integrating over a layer span-
ning from the surface to 55 m, which approximately
corresponds to the mixed layer depth (MLD) in
August-September, calculated from the NCEP-CFSR
data:

o MLD
C,— Tdz| =
P ot ( j;fc Z)

Storage Tendency

MLD
—pCpf uT, + vT, + wT; |dz
SfC —_—

Advection
— (Qen+ Qua+ Qsu+ Qo) + R, (1)
Residial

Surface heat flux

where subscripts x, y, and z indicate a zonal, meridio-
nal, and vertical partial derivative, respectively.
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Figure 3. Canonical correlation maps of (a) Z500 in August—September and (b) SIA in November—December (canonical correlation is
0.84). (c) Canonical correlation time series of the SIA (red) and the Z500 (blue). Colored regions in (a) and (b) indicate areas where the
correlations are significant at the 95% confidence level. In (a), the region for SIA used in CCA is indicated (red dashed line).
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Equation (1) equates the heat storage tendency in a
MLD to the integrated effect of ocean heat advection,
surface heat fluxes (sensible heat, latent heat, long-
wave, and shortwave radiation fluxes), and a residual
term. The residual term includes diffusion and the
numerical error associated with calculating discrete
derivatives in time and space. Since the reanalysis data
largely depend on the data assimilation system, surface
heat flux data tend to have large uncertainties and
model biases (Trenberth et al 2009, Wang et al 2011).
To assess the heat budget analysis based on the NCEP-
CFSR data, we also examined the observational
estimates of surface heat flux from OA Flux data from
1980 to 2014 (Yu and Weller 2007). For shortwave and
longwave radiation fluxes, we used the International
Satellite Cloud Climatology Project radiation products
from 1984 to 2009 (Zhang et al 2004).

In the regression analysis onto CCA1 for Z500, the
negative anomaly in the OHC tendency was well
explained by both the ocean advection term and surface
heat flux (table 2). The dominant term for ocean heat
flux is vertical advection, indicating that the dynamical

mixing entrains relatively low temperature water from
the bottom of the MLD. The net surface heat flux is lar-
gely determined by latent heat fluxes. This heat budget
analysis indicates that the anomalous northwesterly
wind induces surface cooling by evaporation and breaks
the vertical stratification of the upper water column,
which results in the negative SST anomaly. The heat
budget analysis based on the OA Flux data supports that
latent heat flux has large contribution on the summer-
time heat budget (table 2). On the other hand, the con-
tribution of shortwave radiation flux is comparable to
that of the latent heat flux. These results are consistent
with previous study in which the summertime heat
budget related to the atmospheric teleconnection exci-
ted by El Nifio-Southern Oscillation (ENSO) events is
examined (Alexander et al 2004). Thus, northwesterly
(southeasterly) wind anomaly and the resultant low-
level cloud also may reinforce (relax) the cooling in the
Gulf of Alaska.

The PT pattern is likely caused by atmospheric
convection change leading to the geopotential height

5
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anomaly, because the Z500 signal originates from the
western subtropical North Pacific (WSNP) region,
which corresponds to a warm pool region. The rela-
tionship between the leading mode of Z500 and con-
vective precipitation (CP), which is an index for the
convective activity, in the NCEP-CFSR data was
briefly examined. The lead-lag regression map of CP in
August-September onto the Z500 canonical correla-
tion time series of CCA1 is shown in figure 4 (right). At
a lag of 0 to 1 months, a positive anomaly was found
over the WSNP, indicating that the wave-like pattern
of Z500 is particularly evident (figure 4, middle) when
the WSNP convection is strengthened. The time series
of the CP averaged over the WSNP (20°-30°N, 145°-
170°E) revealed year-to-year variability with a weak
positive trend during the past 35 years (figure 5). The
correlation between WSNP—-CP and the Z500 canoni-
cal correlation time series of CCA1 was 0.67, which
was significant at the 95% confidence level based on

the Monte Carlo simulation. The satellite estimated
precipitation data (NCEP-CFSR merged analysis of
precipitation; (CMAP)), in which the reanalysis pre-
cipitations were not incorporated (Xie and
Arkin 1997), was also significantly correlated with the
7500 canonical correlation time series of CCAl
(r = 0.58, significant at the 95% confidence level).
When the correlation map between the SAT in the fol-
lowing winter (December—January) and the CP time
series was calculated, significant positive and negative
correlations around the North Pacific and Bering Sea,
similar to those in figure 1(a), were retained (figure
S6). Therefore, the weakened summertime atmo-
spheric convection in the WSNP is the likely cause for
the recent extreme winters in North America. In fact,
the time series of the CMAP precipitation anomaly
shows relatively low values in 2010 and 2013, although
the CP anomaly in 2010 was not so low (figure 5).
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Table 2. Regressions of monthly mean terms in August-September averaged over the Gulf of Alaska (45°-55°N, 140°~160°W) onto the
geopotential height at 500 hPa (Z500) time series of canonical correlation analysis mode 1 (CCA1) from 1980 to 2014. The values in the

parenthesis indicate the regressions calculated from the OA Flux data.

Ocean advection Surface heat flux
Storage tendency uT, +vT, wT, Qsn Qra Qsy Qo Residual
—12.1 —2.40 ~7.19 —0.98(—0.82) —4.21(=2.25) —0.31(~1.62) —0.98(1.84)  3.98
—9.58 —6.48

uTy, v, and wT,, zonal, meridional, and vertical component of ocean heat advections; Qg sensible heat flux; Qy 4, latent heat flux; Qsy,

shortwave radiation flux; Qy o, longwave radiation flux.

The time series of WSNP-CMAP indicates that the
atmospheric convection in the WSNP is also wea-
kened in 1980, 1985, 1990, 1995, and 2000. In these
years, the SIA in the Bering Sea is suppressed and the
SAT in North America after one month is relatively
low over North America (figure 1(c)). It is noted that
the air temperature in 1991, which is relatively high, is
not explained by the above scenario. Since the year of
1990 in winter corresponds to negative PNA pattern,
the influence of Bering Sea ice may be overwhelmed by
this large-scale atmospheric pattern (Assel 1992). The
correspondence between the interannual variability in
the CMAP precipitation and SAT during the several
decades suggests that recent severe winters in North
America are amplified by the natural climate varia-
bility originated from the subtropics.

4, Discussion

An increasing number of extreme weather events have
occurred over North America in recent winters,
including 2013-2014. It has been suggested that the
atmospheric circulation anomaly related to the
extreme winter in 2013-2014 was caused by anom-
alous SST in the North Pacific and low SIA in the
Bering Sea (Lee et al 2015). In the present study, the
leading factors for the interannual variability of SIA in
the Bering Sea in early winter (November—December),
which is significantly correlated with the SAT in North
America after one month, were investigated based on
seasonally resolved atmosphere and ocean data.

The CCA revealed that the highest forecast skill for
SIA in early winter was obtained from the 3-month
leading Z500 over the Northern Hemisphere. By using
the 3-month leading Z500 data, SIA variability in 21%
of the Bering Sea was skillfully predicted, particularly
in the eastern Bering Sea. The Z500 for a positive
(negative) SIA anomaly exhibited a negative (positive)
anomaly over the Gulf of Alaska. The negative (posi-
tive) Z500 anomaly over the Gulf of Alaska was
accompanied by positive (negative) Z500 anomalies
over the WSNP and North America and was related to
the PT pattern. The CCA diagnostics revealed that the
leading mode of Z500 was negatively correlated with
SST in the Gulf of Alaska, and the correlation signal in
SST travels to the eastern part of the Bering Sea in 2

months. Considering the distance between the eastern
Bering Sea and the Gulf of Alaska, the negative (posi-
tive) Z500 anomalies over the Gulf of Alaska likely
affect the advance (retreat) of the SIA in early winter
through the ACC advection of the negative (positive)
SST anomaly.

The physical mechanisms underlying the change
in SST were explored by ocean heat budget analysis of
NCEP-CFSR data. Examination of the mechanisms
responsible for SST variability revealed that anom-
alous northwesterly (southeasterly) winds mainly
induce (reduce) surface cooling by evaporation and
mixing the upper water column, which results in the
negative (positive) SST anomaly. Li et al (2005) have
previously demonstrated the influence of the PT pat-
tern on the MLD in the Gulf of Alaska. The findings of
the present study are consistent with that earlier study
and suggest that the PT pattern affects the OHC in the
Gulf of Alaska and further SIA variability in the Bering
Sea. Therefore, the use of summertime atmospheric
preconditions as well as SST data for the Gulf of Alaska
might lead to further improvement of the forecast
accuracy for the North America climate in winter.

The SIA in the Bering Sea is reported to be increas-
ing slightly, although the SIA has decreased sig-
nificantly in the Beaufort Sea north of Alaska and in
the Arctic Ocean as a whole (Parkinson and Cava-
lieri 2008). The strength of the Aleutian low in winter,
which suppresses sea ice advance in the Bering Sea,
corresponds to the weak phase in the strong inter-
decadal fluctuation that occurs on a 50- to 70-year
time scale, which is associated with the Pacific decadal
oscillation (PDO) (Minobe 2000). Therefore, the PDO
is the likely cause for the recent increase in SIA in the
Bering Sea (e.g. Wendler et al 2014). In the present
study, the leading mode of Z500, which is similar to
the PT pattern, was highly correlated with the SIA in
the Bering Sea. The time series of the leading mode of
7500 showed a positive trend, therefore the weak posi-
tive trend in the SIA in the Bering Sea might have been
caused by the intensified PT pattern and the accom-
panying cooling trend in SST in the Gulf of Alaska in
summer.

The results of the CCA also suggest that the wave-
like pattern of Z500 is generated by CP variability over
the WSNP. The importance of the remote planetary
wave atmospheric response from the outside the
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Figure 5. Time series of NCEP-CFSR convective precipitation (red) and CMAP precipitation (blue) averaged over the western
subtropical North Pacific (WSNP) (20°-30°N, 145°~170°E, as shown in the right upper panel of figure 4) in August-September and
7500 canonical correlation time series for canonical correlation analysis mode 1 (CCA1; black). The scale for the Z500 canonical

Arctic on the Arctic sea ice retreat has been indicated
by several studies (Simmonds and Govekar 2014).
Recently, Sato et al (2014) clearly showed that the
Barents Sea ice retreat and cold Eurasian winters are
forced by a teleconnection pattern originated from the
Gulf Stream heating with model experiments. These
earlier studies support our hypothesis that the plane-
tary waves excited by the atmospheric convection in
the WSNP influences the SIA in the Bering Sea. Con-
sidering that the convective signal is confined to the
western subtropical region and occurs late in the sum-
mer, this convection signal might be related to the
ENSO cycle and/or tropical cyclone intensity. How-
ever, the correlation between the PT index and the
Nifio 3 index (obtained from the NOAA Climate Pre-
diction Center) is negligible (r = 0.05) in September.
Conversely, the positive trend in summertime CP is
consistent with the increasing destructiveness of tropi-
cal cyclones in the western North Pacific since the
1980s (Emanuel 2005), although future projections of
tropical cyclones based on theory and high-resolution
dynamical models indicate that there is a large uncer-
tainty in the global frequency of tropical cyclones
(Knutson et al 2010, Ying et al 2012). Furthermore,
several studies have shown that the width of the tropi-
cal belt has increased since 1979, accompanied by
poleward expansion of the Hadley circulation (Seidel
etal 2008, Hu et al 2011). This widening of the tropical
belt is also evident in precipitation patterns (Zhou
et al 2011). Thus, further investigations are needed to
clarify the mechanism of CP variability and the asso-
ciated atmospheric responses.
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