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Abstract
A statistical analysis of the largest weather-driven hazards in theUK contradicts the typical view that
each predominates in distinct events that do not interact with those of other hazard types (i.e., are
‘primary’); this potentially has implications for anymulti-hazard environments globally where some
types of severe event are still thought to occur independently. By afirst co-investigation of long
(1884–2008)meteorological time-series and nationwide insurance losses forUKdomestic houses
(averaging £1.1 billion/yr), new systematic interactions within a 1 year timeframe are identified
between temporally-distinct floods, winter wind storms, and shrink–swell subsidence events
(P<0.03); this increases costs by up to £0.3 billion/yr (i.e., 26%), although impacts will be spatially
variable depending upon the interplay of hazards. ‘Memory’ required in the environmental system to
cause these intra-annual links between event types appears to reside in soilmoisture and, tentatively,
sea surface temperatures. Similar, unidentified interactions between non-synchronous events are
likelyworldwide, and the analyticalmethods we have developed to identify and quantify them are
suitable for application tometeorological, geological (e.g., volcanic) and cryospheric (e.g., avalanches)
hazards.

1. Introduction

Hazards and the processes driving them (e.g., in the
atmosphere) are well studied in isolation, including
work to understand their spatial and temporal patterns
(e.g., clustering) [1, 2] and impact [3–6]. Multiple
hazards impacting the same location (e.g., simulta-
neous wind and flooding [7, 8]) and their complexities
also are investigated [9]. For instance, secondary
hazards are considered (e.g., coastal surges produced
by storms) and inter-dependencies in impacted sys-
tems are recognized (e.g., cascades or hazard chains)
[10, 11]. But, there are hazards that are still seen as
unrelated to and not triggered by other hazards, which
are referred to as ‘primary’ [11]. Currently primary
hazards, which include some of the largest threats
(e.g., US Hurricane), are considered independently of
each other even in state-of-the-art multi-hazard risk
analysis (e.g., for insurance or resilience planning)

[3, 9, 12, 13]. Probabilistic multi-hazard risk models
known as ‘catastrophe models’ [14] in (re-)insurance
lead methodologies for such analysis [9], but even
these quantify primary hazards independently as by
definition there is not yet a robust evidence base to do
otherwise. However, the physical processes governing
apparently primary hazards could be linked in as yet
undiscovered ways that cause them to interact at
certain temporal or spatial scales. Ignoring any such
interaction will lead to a significant mis-estimation of
present and future risk (i.e., the impact of the hazard).
Specifically, the largest weather-driven hazards are
typically still viewed by policy makers and financial
institutions as if they do not interact [3, 4, 12, 13].
Thus, the probabilistically modeled impact estimates
(i.e., costs) resulting from these ‘primary’ hazard
events are compounded into overall loss estimates as if
they occur independently within any given year
[9, 12, 15]. Assuming independence will under-
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estimate the severity of ‘worst case’ years (e.g., a 1 in
250 year combined loss) if hazards tend to co-occur,
whilst overstating the risk if hazards tend to occur in
different years.

Studying hazard interactions is non-trivial as
events for each hazard vary in spatial extent and have
drivers of damage (e.g., water depth) that are not
directly comparable, but risk (e.g., lives, damage)
might serve as a common metric [9, 11]. This paper is
the first to examine statistically interactions between
‘primary’ hazards by quantitatively exploiting insur-
ance loss data, in which houses are effectively ‘weather
sensors’, as a measure common to all the hazards (i.e.,
£). This measure is used in tandem with traditional
meteorological data, and both data sets identify inter-
actions. Most UK households take out insurance to
cover against all hazards, and the UK has a long record
of environmental observation. It is therefore used as a
case study for this global issue.

The UK is affected by several apparently ‘primary’
natural hazards, of whichwind damage caused bywin-
ter storms (WS), droughts (DR) including the ‘gradual
catastrophe’ [16] of the shrink–swell effect of clay soils
on houses (SS), and flooding (FL) are the most costly
to the economy [17, 18]. All can cause severe disrup-
tion and/or financial losses [4, 19]. All are mainly dri-
ven by meteorological factors, but FL and WS are still
considered separately because severe events (e.g.,
extra-tropical cyclones) are rarely individually respon-
sible for substantial amounts of both FL and WS
damage [20]. Inter-hazard linkages can be postulated
(e.g., FL↔SS), are considered a key unknown in the
UK National Climate Change Risk Assessment [21],
and we denote them with an arrow (↔). Such interac-
tions can be conceptualized as forming linked risk and
hazard systems (figure 1), with risks (i.e., impacts)
indicated with a prime (e.g., WS′). However, the
hazard linkages are relatively poorly understood
[9, 13]. Links might be directly causative, or have a
mutual underlying cause. Furthermore, intra-seasonal
to inter-annual ‘memory’ might exist within the sys-
tem, so linked events need not be synchronous [12].
Financial reckoning across a year (e.g., via annual bud-
gets or insurance contracts) governs the uppermost
timescale for linkages relevant tomany stakeholders, is
a time-window that has not been examined for
extreme weather interactions, and is therefore used in
our analysis. The spatial resolution of this first intra-
annual analysis is national (i.e., UKwide).

To identify and understand hazard interactions
within annual time-windows, this paper statistically
co-investigates meteorological and loss data. Each
dataset is described, including how it is well placed to
provide insights into the underlying linkages within
the natural environment. Systematic intra-annual
interactions are demonstrated to exist between tem-
porally distinct events of multiple types, and initial
explanations are offered in terms of causative
physical processes previously proposed for related

observations. Lastly, brief note is made of how the
modified risk estimates may, illustratively, interest
decisionmakers.

2.Data

Annual FL′, WS′ and SS′ financial loss data between
1998 and 2013 are used in the analysis (figure 2). These
are compiled from nationwide, spatially aggregated
insurance data on losses claimed for damage to UK
domestic property that are available quarterly to 2013
from the Association of British Insurers [18]. Since
1998 ‘weather’ losses have been separated from other
categories including ‘domestic subsidence’ (SS′), and
the weather losses are sub-divided into ‘flood’ (FL′),
‘storm’ (WS′) and ‘pipes’which represents freeze-thaw
damage due to cold weather (FT′). Before more
granular reporting of ‘escape of water’ in 2004,
however, ‘pipes’ losses were dominated by factors
unrelated to weather (e.g., washing machine leaks),
leaving this data time-series too short to use. Insurance
loss data have several key advantages. They are
effectively the output of many houses acting as
‘weather sensors’, which offer dense spatial coverage
whilst being widely distributed, whose output is
checked for its quality (e.g., by claims assessors).
Furthermore they, by definition, directly record the
aspects of each physical process that makes it a hazard,
and output in a metric common between hazards (i.e.,
£). Whilst houses are not evenly distributed in space,
leading to an inhomogeneous spatial sample of losses,

Figure 1.Potential inter-relationships between the climate
system, hazards (e.g., FL) and impacts (denotedwith a prime,
e.g., FL′) in theUK. Potential interactions between the
hazards or the risks (thin lines) are poorly understood [21];
see supplementarymaterial for a review. Systematic links
identified in this paper are dashed bold arrows, whilst the
double bar (on SS↔WS) indicates an investigated but
unsupported link. Bold arrows indicate previously well-
studied links, such as the conversions from each hazard to risk
(i.e., vertical bars such as SS↔SS′).
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they offer an overall view that is to a first order
sufficient to compare to other national-level data.

Meteorological metrics are used that summarize
the varied properties of each hazard at a scale that is to
a first-order representative of and comparable to
annual damage in the UK. Pragmatically, to achieve
long time-series, these use published data quantified in
a number of ways. Drought’s slow arrival is captured
in a 12 month average [22], and maximum river flows
are used for the largest floods that drive annual FL
hazard (e.g., 2007) [19, 23]. Similarly, as the strongest
winds drive damage [24, 25] the number of very
stormy days is a reasonable measure for WS. Details
are given below.

The 1884–2008 flood (FL) series used (figure 3) is
from the River Trent. It is one of the longest published
continuous series of maximum annual (January–
December) discharges for a major river covering Cen-
tral England (1877-) [23]. The size and location of this
river basin make it one of the most reflective of

synoptic-scale weather affecting the UK, and it has
much lower levels of anthropogenic interference than
the River Thames. The Trent series is fully homo-
genized, with changes in measurement practices
accounted for [23]. After 1958 this series is based on
gauged flow data at Colwick (Nottinghamshire) on the
Trent, which allows a November to October year to be
adopted here, better linking the extended meteor-
ological winter [26] and following summer. This is
coupled with the second longest reconstructed
drought (standardised precipitation index—SPI) ser-
ies published for the UK (1726-) [22], which is in rela-
tively close proximity at Spalding (Lincolnshire).
Pairing up these observations presents a unique set of
spatially close but temporally long flood and drought
time-series. In the UK, drought is a good proxy for SS
[5, 27], and an annualized SPI average is created for
1884 to 2008 from data underlying the published work
but adapted to use a November–October year for con-
sistency. Note that negative SPI values indicate

Figure 2.Annualized ABI insurance loss data for 16 years (1998–2013), aggregated nationwide across thewholeUK. The robustly
fitted trends reflect underlying, gradual changes (e.g., inflation, house design changes, longer-term climatic signals): flood (FL′) is
blue; windstorm (WS′) is green; shrink–swell subsidence (SS′) is red; freeze-thaw (FT′) or ‘pipes’ is gray. Trends are removed before
further analysis to focus on inter-annual randomness, and trend fitting is described inMethods.

Figure 3. (a) Long historical time series for a ‘discharge’measure of FL and the SPImeasure ofDR, illustrating an inverse relationship
(P<0.001) betweenwhen ‘severe’ episodes (colored squares) occur across thewhole series (i.e., 1884–2008); i.e., severe FL andDR
tend to occur in different years. Half of years are taken as severe (i.e., f=0.5). (b)Monte Carlo analysis within a 20 year window that
slides along the time-series in 1 year increments, which resolves the non-stationarity in the signal. No FL data are available for 1956–7.
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drought. A matching synoptic-scale (i.e., nationwide)
WS time series is created as the annual (November–
October) count of days affected by ‘very severe gales’
(VSG) as assessed using the UK Jenkinson Gale Index
[28]. The publically-available daily index values use
reanalysis data (NECP1 and 20CR) [28, 29], and is a
verified proxy for storm frequency [6, 20, 29]. Of the
three proxies (i.e., FL, WS, SS) a long-term trend is
only visually discernable forWS, but is removed for all
meteorological series using 50 year boxcarfilter.

3.Methods

In order to assess short-term (i.e., intra-annual) co-
variability or otherwise for hazards of mismatched
characteristics the losses they cause and their occur-
rence in years are used as common measures for risk
and hazard, respectively. Statistical de-trending is used
to remove confounding influences (e.g., inflation)
from the loss data (section 3.1), and the techniques
that have been devised to quantify potential interac-
tions are described in sections 3.2 and 3.3.

3.1.De-trending insurance loss data
Loss data are the ‘output’ of houses acting as extreme
weather sensors by recording damage, but conflate
physical (e.g., wind speed) with anthropogenic factors
(e.g., demographic shifts, inflation, housing type and
quality, type of insurance coverage, and the fraction of
households with cover). The non-weather related
influences, however, change relatively slowly; that is,
more slowly than the 1 year time window relevant to
intra-annual interactions between hazards. Pragmati-
cally, these slower changes can be quantified via the
approximately steady trickle of losses in more moder-
ate years. So, the data are robustly de-trended (i.e.,
ignoring outliers) using M-estimation (figure 2) [30];
bisquared weighting, with c=4.7, was used from an
initial ordinary least squares estimate. Then, subtract-
ing the trend removes the confounding factors (e.g.,
increasing exposure) to leave the inter-annual varia-
bility that typifies weather hazard and risk [28, 29, 31–
33], and these de-trended data are used in all analyses.
Clearly, longer climatic trends are also removed. The
statistical approach is favoured over the deterministic
removal of a trend (e.g., usingGrossDomestic Product
(GDP)) [31, 34], whichmaymiss some of the factors.

3.2.MonteCarlomethod formeteorological data
ThisMonte Carlo method was developed to quantita-
tively assess interactions in dissimilar, possibly incom-
plete, meteorological time series. The probability of an
association between occurrences of ‘extreme’ years in
any two physical time-series (e.g., figure 3) being non-
random (i.e., due to interaction) was determined by
Monte-Carlo simulation (n=10 000). What could
happen by chance (i.e., without a linkage) was
calculated by randomly shuffling the years in which

extremes occur, and then counting in how many runs
the number of random coincidences equaled or exceed
the number observed (the definition of a P value). This
is a function of the number of years (n) and fraction (f)
of years defined as extreme, with an expectation of
f n2 coincidences on average. A binary approach is
compatible with the typical view that severe insurance
losses are caused by ‘events’ over some threshold
[9, 12], and the simulation method allows for both an
incomplete time-series and selecting only the most
extreme portions of it.

3.3. Aggregate exceedance probability (AEP)method
The ‘AEP method’ was developed to quantify the size
and significance of interactions betweendiverse physical
processes creating hazards, and involves summing
relevant risks (e.g., FL′+WS′). AEP curves (e.g.,
figure 4(a)) plot the probability that the sum of losses in
any one year will exceed a given loss amount. These
underpin analysis of natural hazard losses in insurance
and re-insurance [3, 4, 15], and are therefore used as the
basis for the method proposed below. If the ABI data
(figure 2) [18] are plotted in terms of exceedance
probability (EP) instead of return period (RP), where
EP=1/RP, the deviations from losses expected of
independent risks plot roughly linearly (figures 4(b) and
(d)). This allows the magnitude of the interaction to be
summarized by a single metric, the gradient (m) of this
line fitted by ordinary least squares. Fitted gradients are
shown as dashed lines on figure 4. Each observed
gradient then permits an assessment of whether or not
an observed potential interaction (e.g., between FL′ and
WS′) could occur through chance coincidence by
Monte-Carlo (MC) simulation (n=10 000). In each
MC realization, for each risk, the year (i.e., 1998–2013)
associatedwith eachannualized loss valuewas randomly
shuffled; this eliminates any possibility of a link remain-
ing between the risks when re-combining the losses
(e.g., ¢ + ¢)FL WS to create AEP curves. These 10 000
‘random’ realizations give the expectedAEPcurves (gray
lines on figures 4(a), (b) and (d)) and probability
distributions ofm (figures 4(c) and (e)) for independent
risks. This approach both gives loss estimates in a
directly relevant form and avoids statistical assumptions
(e.g., normality)when calculating P values that quantify
the statistical significance of potential interactions. As
before, the P value is simply obtained by counting in
howmany runs simulated random gradients equal or in
excess of the observed gradient.

For illustrative purposes possible limiting cases of
the strength of each linkage are also created. An
entirely ‘correlated’ case, where one hazard will always
tend to co-occur with the other, is modeled by losses
for each risk being sorted in descending order before
being summed. This pairs the largest annual losses for
each hazard. The opposite ‘inversely correlated’ case,
where two hazards always tend to avoid each other, is
approximated by listing the losses for one risk in
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ascending order whilst keeping the other in descend-
ing order to pair the largest losses with the smallest.

4. Results

The analyses performed give insights into intra-annual
‘relationships’ between hazards, strictly in terms of a
tendency to co-occur or not within a year, and risks in
terms ofwhether larger annualized losses tend to occur
together or not. The ‘AEP method’ developed (see
Methods) demonstrates that relationships between
FL′↔WS′ (P=0.0003) andWS′↔SS′ (P=0.03) very
likely exist, and it quantifies their effect on losses (see
figure 4). The FL′↔WS′ relationship increases annual
losses with respect to the ‘random’ model (i.e.,
interactions eliminated) by £282 million for the 16
year RP event, and exists (P=0.03) even with this
largest event in 2007 excluded. To be explicit, if FL and
WS tend not to occur together, annualized aggregated
losses for one (e.g., FL′) are lower in years when the

other (e.g., WS′) is higher; thus, the sum of these two
(FL′+WS′) is higher in ‘worst case’ years than if there
was no relationship. Conversely, WS′ and SS′ tend not
to occur together, reducing 16 year RP combined
losses by £43million.When the two ‘wet’weather risks
are combined (i.e., FL′+WS′) their relationship to
‘dry’ SS is significant (P=0.025, figure 4(e)), reducing
16 year RP losses by £42 million. Note that, since the
links between these losses and their causative hazard
are extremely well established (figure 1 and supple-
mentary material), linkages in the losses indicate
matching linkages in the underlying hazards and their
driving physical processes.

Taking the SPI drought index as a proxy for SS,
and annualmaximumdischarge in the River Trent as a
proxy for FL, the 16 year loss time series can be situ-
ated in a long temporal context (i.e., 1884–2008).
Monte Carlo simulation (see Methods) of the whole
time-series together (1884–2008) demonstrates an
inverse relationship (f=0.5, P<0.001) between the
years in which ‘severe’ episodes of FL and DR tend to

Figure 4.Probability–loss curves for pairs of risks. (a)Aggregate exceedance probability (AEP) plot [15] for FL′+WS′ data, showing
observed datawith respect to threemodels where the two risks are entirely ‘correlated’ (i.e., interact and amplify), are entirely
‘inversely correlated’ and demonstrate opposing behaviors (i.e., severe in different years), and are ‘random’with no association or
interaction. (b) as in (a) but in terms of exceedance probability and as differences from the randommodel, withOLS trend lines fitted
(dashed lines). The gradients for the 10000 realizations of the randommodel are compared to the observed in (c). (d) and (e) are for
‘wet’ (i.e., FL′+WS′) and ‘dry’ (i.e., SS′) losses.
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occur (figure 3), in agreement with the ‘wet’↔‘dry’
relationship seen in the loss data. Considering 20 year
windows in isolation (f=0.5) demonstrates that the
relationship is stronger at some times, specifically
between 1890–1910 and 1960–1980 (figure 3b). No
significant relationship is observed for WS↔SS,
whatever fraction of years is defined as severe (f). The
most extreme FL and WS (i.e., f=0.3) have a ten-
dency to occur in the same years for the period of high-
est-quality data (1958–2008), observed with >90%
confidence (P=0.084); extreme FL and WS coincide
seven times, compared to an expectation of 4.5 times.
Similarly, the 30% lowest flows and WS counts coin-
cide more frequently than expected (n=7), so simu-
lated together a relationship between extremes of FL
andWS very likely exists (P=0.027).

5.Discussion

The biggest (i.e., £282 million in 2007) and most
robust risk intra-annual interaction is therefore appar-
ently between FL′ and WS′. Its existence even without
the eye-catching association in 2007 (figure 2(a))
indicates that it is pervasive throughout the loss time
series (1998–2013). However, it is at least partially a
reporting artefact; some insurers report pluvial flood
losses asWS′. So, the results demonstrate the effective-
ness of the AEPmethod at extracting relationships, but
cannot prove a systematic FL↔WS linkage between
hazards because the FL′ and WS′ series cannot
generally be decoupled reliably. In 2007 the quarterly
loss data show a winter-summer separation between
FL′ andWS′ (figure 2(a)), so this association cannot be
explained by ‘leakage’ between the loss categories.
However, this is a single year unambiguously linking
the losses, and thus hazards. In contrast, the
1958–2008 meteorological data provide evidence of a
systematic FL↔WShazard linkage formore extreme
years (P=0.027), with coincidences such as 2007
occurring about ×1.5 more than expected by chance.
This hypothesis is supported by 2013/4 (December–
February), which was both prone to flooding and
exceptionally stormy [20, 29]. Furthermore, the high
WS index in 2007 associated with flooding that did not
severely impact the Trent [19] suggests that a national
analysis will reveal the relationship more strongly still.
A systematic, long-term, intra-annual FL↔WS
hazard link has not been reported before for the UK,
but is not surprising as extra-tropical cyclones can
cause both high wind speeds and extreme precipita-
tion. Although individual cyclones impacting the UK
rarely cause both significant FL and WS damage,
sequences of multiple strong cyclones as in 2013/4
could lead to conditions (e.g., saturated soil) favouring
flooding [20], perhaps via associated atmospheric
rivers [26] and possibly driven by teleconnections to
anomalies such as in the western Pacific warm pool
[35] or the simultaneous influence of extreme

temperature gradients between the North American
continent and sea-surface temperatures in the North-
west Atlantic [36]. That worst-case combinations of FL
and WS (e.g., 2007, 2013/2014) are ∼1.5 times more
likely than previously thought may interest those
planning resource provision for emergency response.

Loss data, showing a pattern mirrored in the
longer-term meteorological proxies of hazard
(1884–2008), demonstrates for the first time that a link
between ‘dry’ drought-related SS′ [5] and the ‘wet’
risks (i.e., FL′+WS′) likely exists. Thus, an intra-
annual linkage between these hazards likely exists in
the UK; this result complements longer-period (e.g.,
decadal) FL↔DR relationships that have been iden-
tified using proxy data, for instance in Mediterranean
regions [37]. Physically, it is easy to imagine saturated
ground both facilitating flooding [20] and deterring SS
damage that is caused by extended periods (e.g., 12–18
months) drying of the top∼1 m of soils susceptible to
volumetric change [27, 34]. This previously unac-
knowledged ‘dry’↔‘wet’ hazard interaction modi-
fies annual losses by £42million, which is±7%of total
(i.e., FL′+WS′+SS′) annual average UK insured
losses, a figure that may equate to a commercially sig-
nificant amount of money for stakeholders with large
high-value portfolios of assets (e.g., insurers, national
infrastructure providers). Since the hazards have dif-
fering spatial distributions [5, 6, 19], our results show
that future impacts on portfolios of assets (e.g.,
houses)will depend critically on both their geographic
distribution and the interplay of hazards.

6. Conclusions

It can be concluded that major hazards in the UK
previously viewed as independent in fact interact, and
that these interactions significantly alter their annual
combined impacts and how bad worst-case years are.
Most widely, however, this paper demonstrates the
utility of loss data (e.g., insurance losses, repair costs,
travel-time increase) in assisting investigations into
intra-annual interaction between diverse processes
driving hazardous weather-related events. The Monte
Carlo approach proposed and the AEPmethod, which
is a novel adaptation of an analytical tool from
insurance, are suitable for application to meteorologi-
cal, geological (e.g., volcanic, earthquake) and cryo-
spheric (e.g., avalanches) hazards. Future
opportunities could be analyses including European
storms [31] or tropical cyclones [32], or perhaps an
assessment of landslides, debris flows and flooding in
an Alpine environment [33]. Quantifying the strength
of observed linkages in the environmental processes
driving hazard is an indicator of where to direct future
investigations, a constraint on climate and riskmodels,
and provides a basis for better models to assist policy
makers concerned with future resilience to climate
change [12].
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