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Abstract
Cookstove use is globally one of the largest unregulated anthropogenic sources of primary
carbonaceous aerosol.While reducing cookstove emissions through national-scalemitigation efforts
has clear benefits for improving indoor and ambient air quality, and significant climate benefits from
reduced green-house gas emissions, climate impacts associatedwith reductions to co-emitted black
(BC) and organic carbonaceous aerosol are not well characterized.Herewe attribute direct, indirect,
semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature
changes to national-scale carbonaceous aerosol cookstove emissions. These results aremade possible
through the use of adjoint sensitivitymodeling to relate direct RF andBCdeposition to emissions.
Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are
drawn from current literature ranges for aerosol RF alongwith a range of solid fuel emissions
characterizations. Absolute regional temperature potentials are used to estimate global surface
temperature changes. Bounds are placed on these estimates, drawing from current literature ranges
for aerosol RF alongwith a range of solid fuel emissions characterizations.We estimate a range of
0.16 Kwarming to 0.28 K coolingwith a central estimate of 0.06 K cooling from the removal of
cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate
range fromnet warming (e.g.,Mexico andBrazil) to net cooling, although the range of estimated
impacts for all countries span zero given uncertainties in RF estimates and fuel characterization.We
identify similarities and differences in the sets of countries with the highest emissions and largest
cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh andNepal), those with
the largest temperature impact per carbon emitted (Kazakhstan, Estonia, andMongolia), and those
that would provide themost efficient cooling from a switch to fuel with a lower BC emission factor
(Kazakhstan, Estonia, and Latvia). The results presented here thus provide valuable information for
climate impact assessments across a wide range of cookstove initiatives.

1. Introduction

Cookstoves and residential sources account for
approximately 20% of current black carbonaceous
(BC) aerosol emissions (Bond et al 2007, Lamarque
et al 2010). Policies targeting reductions to BC aerosol
from cookstoves have garnered attention owing to
their potential impacts on both climate and human
health (e.g., Venkataraman et al 2010, Grieshop
et al 2011, Department of State 2012, Anenberg

et al 2013). Exposure to indoor and ambient fine
particulate matter (PM 2.5) is responsible for approxi-
mately 4.3 and 3.2–3.7 million premature deaths per
year, respectively (Anenberg et al 2010, Lim et al 2012),
with solid fuel use contributing to approximately 0.5
million of the latter (Anenberg et al 2013). The total
pre-industrial to present day effective radiative forcing
(RF) of BC from all anthropogenic sources is
1.1Wm−2 with a range of 0.17–2.1Wm−2, which is
similar in magnitude to the RF of prominent
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greenhouse gases (Ramanathan and Carmichael 2008,
Bond et al 2013, Myhre et al 2013). This forcing is a
combination of direct, semi-direct, and indirect effects
that are in turn a function of chemical and physical
processes in the atmosphere. The fraction of this
forcing from cookstove BC emissions can not be
directly attributed according to the cookstove fraction
of global BC emissions owing the regional dependence
of BC radiative forcing (RF) (Henze et al 2012).

Several uncertainties surrounding the net climate
impacts of carbonaceous cookstove emissions compli-
cate howmitigation efforts should be accounted for in
environmental assessments (Grieshop et al 2009,
Simon et al 2012, Lee et al 2013). Evaluating the cli-
mate impacts of actual BC cookstove emission reduc-
tion strategies requires accounting for species co-
emitted with BC (particularly organic carbon (OC)),
the chemical and physical processes affecting these
species in the atmosphere, their climate impacts via
multiple mechanisms, and the range of uncertainties
associated with each of these components (Bond
et al 2013, Myhre et al 2013). Previous studies have
estimated a range of impacts from carbonaceous aero-
sol cookstove emissions (MacCarty et al 2008, Grie-
shop et al 2011, Freeman and Zerriffi 2014) based on
the effects of co-emitted aerosol and gaseous pre-
cursor species that either have additional warming
effects or counteract the effects of BC by reflecting
incoming solar radiation. These co-emitted species
depend on locally available fuels combined with tradi-
tional stoves and cooking methods (e.g., Bonjour
et al 2013). A key consideration is the ratio of BC to
total carbon emissions, referred to here as Φ. Varia-
tions in Φ can also be caused by differences in fuels,
stove types, cooking methods and habitation, all of
which vary regionally (Bond et al 2007, Jetter and Kar-
iher 2009, Jetter et al 2012). In addition to carbonac-
eous aerosol emissions, other species co-emitted from
residential cookstove use include trace amounts of
aerosol precursors SO2 and NOx along with green-
house gases CO, CH4, CO2, and, to a lesser extent,
N2O (Smith et al 2000, Bhattacharya et al 2002, Roden
et al 2006, Jetter et al 2012).

In addition to uncertainties related to both the
total emissions and characterization of emissions for
sectors which emit BC, difficulties in determining the
net climate impacts from BC sources arise from the
spatial relationships between these emissions and their
impact on climate, which is more important for aero-
sols than for long lived, well-mixed greenhouse gases
(Shindell and Faluvegi 2009, Henze et al 2012). BC
emitted into regions with a low surface albedo have a
smaller direct RF than BC emitted into regions with a
high surface albedo (e.g., Ramanathan and Carmi-
chael 2008, Henze et al 2012). Another factor that
affects the climate impacts of carbonaceous aerosols is
their atmospheric lifetime. This is a function of
deposition loss rates, which are in turn a function of
particle aging from hydrophobic to hydrophilic

properties and local meteorology (Cooke et al 1999,
Liu et al., 2001, Henze et al 2012, Shen et al 2014).
There are also uncertainties in the absorption of BC
particles owing to uncertainties in physical properties
and aerosol mixing states (e.g., Jacobson 2001, Bond
et al 2004, Lu et al 2015).

Recent work has explored the global impact of
these types of uncertainties (emissions, aerosol prop-
erties, etc) and found the net global temperature
impacts of aerosols from all biofuels to be rather
ambiguous (Kodros et al 2015). Past studies have
quantified the RF and climate impact of individual
anthropogenic sectors through modeling studies
which perturb the emissions from a specific species or
sector, either globally or from a specific region (Fugle-
stvedt et al 2008, Unger et al 2010, Bauer and
Menon 2012, Lund et al 2014). Other studies have pro-
vided more detailed analysis of RF specifically from
global sources of carbonaceous aerosols (Koch andDel
Genio 2010, Chung et al 2012). While all of these stu-
dies take into account aerosol indirect effects in some
form, estimates of aerosol indirect RF for cookstoves,
or carbonaceous aerosol in general, are highly variable
(Pierce et al 2007, Chen et al 2010, Spracklen et al 2011,
Kodros et al 2015). Further, strategies for mitigating
cookstove emissions typically depend on local govern-
ment and cultural factors, highlighting the need for
analysis of the climate impacts of cookstove emissions
at the national scale.

In this study, we expand on past work by evaluat-
ing temperature impacts of carbonaceous aerosol
emissions from cookstove use in each country, taking
into account co-emitted BC and OC, their emissions
ratio as a function of fuel type, the spatial hetero-
geneity of direct RF, and the range of temperature
responses likely owing to indirect forcing mechan-
isms. The previously mentioned studies used multiple
forward model perturbations for their analysis. In
contrast, here we use adjoint modeling to estimate the
climate impacts of cookstove emissions simulta-
neously for all countries. Following Henze et al (2012),
the GEOS-Chem adjoint model is used to estimate
changes in direct RF with respect to carbonaceous
aerosol emissions. Here we expand upon this
approach to consider multi-model mean estimates
and ranges for direct and indirect forcing from Bou-
cher et al (2013) and Myhre et al (2013). Aerosol RF
has strong spatial heterogeneity, and climate sensitiv-
ities to RF at different latitudes vary by up to an order
of magnitude. To account for this, we estimate climate
responses using absolute regional temperature poten-
tials (ARTP) for regional surface temperature over
land parameterized from a chemistry-climate model
(Shindell and Faluvegi 2009, Shindell 2012). This
allows us to estimate temperature responses to RF
within different latitude bands. We also bound the
total magnitude of the temperature response from
removal of cookstove emissions, changes in cookstove
efficiencies, and changes inΦ for each country.
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2.Methods

2.1. GEOS-Chem forward and adjointmodeling
Here we provide a brief overview of the models and
methodology used for this paper, which are explained
in detail in the Supporting Information. Results were
generated using the global 2 2.5 ´  GEOS-Chem
chemical transportmodel and its adjoint based on year
2000 historical emissions from Lamarque et al (2010).
Grid-scale adjoint sensitivities were thenmultiplied by
a grid-scale cookstove emissions inventory con-
structed from the biofuel emissions inventory from
Bond et al (2007) and the country-level percent solid
fuel use from Bonjour et al (2013), as described in
Supporting Information, yielding estimates of the
biofuel emissions from the fraction of the population
of each country that use solid fuels for cooking with an
additional regional correction factor to account for
non-cookstove carbonaceous aerosol emissions. This
adjoint approach allows us to calculate (at the cost of
12 forwardmodel calculations) grid-cell contributions
to changes in the regional direct RF due to solid fuel
cookstove use that would have otherwise required
∼105 forwardmodel simulations.

2.2.Direct, indirect and semi-direct RF estimates
Several intermodel comparisons have shown a wide
range of estimates for aerosol direct and indirect
effects owing to various parameterizations regarding
the chemical and physical properties of carbonaceous
aerosol and their interaction with the environment
(UNEP and WMO 2011, Boucher et al 2013, Myhre
et al 2013, Bond et al 2013). To account for this range,
following an approach used in the UNEP Integrated
Assessment Report, we rescale the calculated direct RF
to match the species-specific estimated RF from
Myhre et al (2013), shown in table 1. We also apply
additional scaling factors to account for indirect and
semi-direct effects, assuming that their magnitudes
scale proportionally with direct RF (Boucher
et al 2013). This simple relationship may not hold on
smaller regional scales, where variations in aerosol and
cloud microphysics may dominate. However, globally
many chemistry-climate models exhibit a relationship
between direct and indirect effects that falls within the
range encompassed by the scaling factors applied here
(e.g., Shindell et al 2013). In addition, we use the

adjoint model to calculate the contribution of emis-
sions in any grid cell to deposition of BC onto snow
and sea ice. These sensitivities are used to spatially
distribute the global estimated BC snow albedo effect
of 0.15Wm−2 (UNEP and WMO 2011, Bond
et al 2013) on an emission per grid-cell basis, as shown
infigure S.3.

These scaling factors and BC snow ice albedo sen-
sitivities are combined for each grid cell, i, and species,
k, for a given forcing region, τ (Arctic, NH mid-lati-
tudes, Tropics and SHExtratropics), in equation (1),

kSF SF BC ,

1

i k i k k i, , , , ,DRF SI BC, ,ALB
ˆ ¯ · ( )

( )

l l l d= + -t t

where i k, ,l̂t is the rescaled complete RF sensitivity,

i k, ,lt is the RF sensitivity calculated by the GEOS-
Chem adjoint model and iBC, ,ALBl̄ is the yearly
averaged RF sensitivity from the BC snow/ice albedo
change.

2.3. Temperature response estimates
Temperature responses are estimated from the appli-
cation of ARTP coefficients to regional RF sensitivities
in four different latitude bands calculated with the
adjoint model. These ARTP coefficients are developed
following the approach of Shine et al (2005) for global
temperature potentials, extended in Shindell and
Faluvegi (2010) and Shindell (2012) to regional
potentials. These are based on regional climate sensi-
tivities derived from the transient chemistry-climate-
ocean GISS model simulations of Shindell and Falu-
vegi (2009) and account for both ocean inertia and the
influence of local and remote aerosol direct and
indirect forcings. These ARTP coefficients represent
the magnification of regional sensitivities relative to
the global mean equilibrium climate sensitivity of
1.06 C per W m−2 (corresponding to 3.9 C response
for a doubling of CO2). Temperature responses
estimated using the ARTP coefficients have been
shown (Shindell 2012) to estimate regional climate
responses within 20% (at 66–95% confidence inter-
vals) of the response calculated using three indepen-
dent full chemistry-climate models; the uncertainty is
less when considering the global climate response as a
combination of area-weighted regional responses. To
evaluate the impact of using this method to capture
spatially heterogeneous forcings and responses, the
temperature response to emissions perturbations is
calculated in two different ways. The first method is to
calculate the change in global RF for a specific species k
(BC and OC in this case) and each grid cell i and
multiply it by the global mean sensitivity (GMS) as
shown in equation (2),

T GMS , 2k
i

i k i kglobal, global, , ,
ˆ ( )⎡⎣ ⎤⎦å l sD =

where i k,s is the emissions perturbation and i kglobal, ,l̂
is the rescaled global RF sensitivity calculated using the
adjoint model as shown in equation (1). The second

Table 1. Scaling factors for direct radiative forcing (SFk,DRF)
and various secondary radiative effects (SFk,SI) for BC,OC and
secondary inorganic aerosol (SIA).

Type Species Lower Central Upper

SFk,DRF BC 1.840 2.761 3.681

SFk,DRF OC 0.695 1.595 2.394

SFk,DRF SIA 0.256 0.567 1.001

SFk,SI BC −0.143 1.000 1.471

SFk,SI OC 1.019 1.560 1.740

SFk,SI SIA 1.446 2.214 2.470
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method is to calculate the temperature response in a
region, γ, using absolute regional temperature poten-
tial coefficients (ARTP) (Shindell and Faluvegi 2009,
Shindell 2012). This method estimates the steady state
temperature response from changes in regional RF
(forcing regions τ defined in section A.3) based on the
following equation:

T GMS ARTP . 3k
i

i k i k, , , , ,
ˆ ( )

⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥å å l sD =g

t
g t t

T k,D g is the steady state temperature response in each
region, which can then be converted to a global
averaged temperature change using the area ratio of
each response region

T
A

A
T . 4k kglobal,

global
, ( )

⎡
⎣⎢

⎤
⎦⎥åD = D

g

g
g

The contribution of an emission in an individual grid
cell to the overall temperature change is thus

T
A

A
GMS ARTP . 5i k i k i k,

global
, , , ,

ˆ ( )
⎡
⎣⎢

⎤
⎦⎥åå l sD =

g t

g
g t t

3. Results

3.1. Regional versus global climate response
We first evaluate the consequences of using regional
rather than global temperature response coefficients.
For species where the RF does not have a strong
dependence on latitude, such as OC, the estimated
global average temperature response is similar using
both methods. For example, the predicted tempera-
ture response due to removal of biofuel OC emissions
everywhere is 0.10 K using the global method
(equation (2)) and 0.11 K using the ARTP method
(equation (4)). In contrast, the removal of BC biofuel
emissions yields a global average temperature change
of−0.13 Kusing the globalmethod and−0.22 K using

the ARTP method. Figure 1 shows each grid cell’s
contribution to global surface temperature change
calculated using the global versus ARTP method,
colored by each ARTP response region (γ). The
magnitudes are similar for most points in the Tropics,
as the climate response in the Tropics follows the
global surface temperature response (Shindell and
Faluvegi 2009). The largest deviations from the 1:1 line
are due to larger ARTP predicted temperature
responses in the Arctic and Northern Hemisphere
mid-latitudes and smaller ARTP predicted tempera-
ture response in the Southern Hemisphere combined
with differences in the calculations of i k, ,l̂t for

different regions compared to .i kglobal, ,l̂ This means
that in most regions the ARTP method predicts a
larger contribution to the global temperature pertur-
bation than the globally averaged temperature pertur-
bation owing to the higher climate sensitivities as well
as higher RF efficiencies for BC in northern latitudes.
These differences in temperature response highlight
the value of using the ARTP method for short-lived
species that have latitudinally variable RF sensitivities.
Therefore, the rest of this paper will present tempera-
ture changes using the ARTPmethod (equation (4)).

3.2. Temperature response from cookstove
emissions
This section explores how uncertainties in emissions,
emission characterizations, and RF mechanisms con-
tribute to temperature change estimates from cook-
stove emissions reductions. By using the emissions
from cookstoves as calculated with equation (S.1), the
central estimate for the total temperature change due
to removal of all carbonaceous aerosol emissions from
residential cookstoves is a cooling of 0.06 K (0.06 K
warming from removal ofOC and 0.12 K cooling from
removal of BC).

Analysis of the BC andOC emission factors shown
in figure S.1 creates a range of Φ of 0.24 +/− 0.09

Figure 1.Comparison between contributions of 2◦ ´2.5° grid-cell removal of biofuel emissions to the globalmean surface
temperature using the ARTPmethod (x-axis) and theGlobalMethod (y-axis) for (a)BCand (b)OC.Colors represent the location of
the grid cells for the emissions inventory.
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corresponding to the mean and standard deviation of
all emissions factors. We combine this with the upper
and lower estimates for RF scaling factors (table 1) to
estimate bounds for the global surface temperature
change due to cookstove emissions. Figure 2 plots the
ranges in surface temperature response to removal of
cookstove emissions for a range of uncertainties in the
RF from carbonaceous aerosols (table 1) and the value
ofΦ for cookstove emissions.

Figure 2 shows a large range of uncertainty in the
overall temperature impacts due to remove of cook-
stove emissions based on the effective RF efficiency of
BC and OC along with the characterization of the BC
to total carbon emissions ratio for solid fuel use. This
plot shows that for low Φ, 0.15, the effects from OC
emissions dominate, leading to a central estimate of a
net warming of 0.03 K along with higher uncertainties
due to the current understanding of OC RF. The
opposite is true for high Φ, 0.33, for which BC dom-
inates the temperature impacts and the potential tem-
perature change due to removal of cookstove
emissions is a cooling of as much as 0.28 K. In order to
further understand the global climate impacts of cook-
stove use, the assumptions regarding solid fuel use are
further explored below by considering individual
national-scale contributions to the overall tempera-
ture change.

We next consider the climate impacts of cookstove
emissions from each country in which greater than
five percent of the population uses solid fuels. Using
equation (5), we calculate the contribution of cook-
stove aerosol emissions in each grid cell to global sur-
face temperature change. These results are then
aggregated by country. Figure 3 shows the top 15
countries in terms of the magnitude of the cooling
resulting from removal of cookstove removal aerosol
emissions, where the temperature change has been
separated into species-specific direct and indirect
effects. In addition to countries with the largest

cooling impact, Brazil andMexico have been included
to show the contrast between countries with cookstove
aerosol cooling effects and countries with the largest
cookstove aerosol warming effects. The error bars
show the range of estimates obtained using the differ-
ent assumptions regarding RF scaling factors (shown
in table 1) and assumptions for country specific values
for Φ. Note that for BC, the semi and indirect effects
only contribute to the range but do not perturb the
central estimate. In general, the range of estimates in
the temperature impact tends to be a function of emis-
sions, where countries with larger emissions mostly
have larger uncertainties. Second, the centering of the
range of estimates around the central value is a func-
tion of Φ. Countries with a Φ around 0.15 (e.g.,
Ukraine and Kazakhstan, see figure S.6) will have ran-
ges that are skewed toward a stronger cooling than
countries with a Φ greater than 0.2 (e.g., India and
China)where the ranges are relatively centered. This is
not purely a function of Φ though, as each country’s
mean RF sensitivity with respect to BC and OC also
plays a role in the range and centering of the ranges.
Finally, this plot shows the snow deposition albedo
effect and its relative importance for each country;
Nepal has an approximately equal impact via the
snow-albedo effect as the direct BC effect, while
Nigeria has a near-zero snow-albedo effect.

We next consider how individual countries rank in
terms of several metrics, using the central estimate for
each country in each case. Table 2 shows each of the
different rankings, which are defined and explained
below. We first consider each country’s contribution
to overall temperature change due to removal of cook-
stove aerosol emissions (see figure 4(a)) in column two
of table 2. With the exception of China, India and
Nigeria, the ranking of countries with the largest con-
tribution to total temperature change is not the same
as the ranking of countries with the largest emissions
(first column of table 2); instead, the temperature

Figure 2.Bounds for the global temperature response due to removal of cookstove emissions (y-axis) for a givenΦ (x-axis). Lines
correspond to the central, high, and lowBC radiative forcing scaling factors shown in table 1, and the ranges for each line correspond
to the central, high, and lowOC radiative forcing scaling factors.
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change is a function of the sensitivity of temperature
with respect to emissions of BC and OC and the char-
acterization ofΦwithin that country.

We next consider the results ranked according to
the countries that are most efficient in terms of tem-
perature change for a given reduction of emissions.
Figure 4(b) shows countries colored by their contribu-
tion to temperature change per total carbonaceous
aerosol emission, and column three of table 2 shows
the highest ranked countries according to this effi-
ciency metric. Since many high performance stoves
offer a significant reduction in the total carbonaceous
aerosol emission factors per fuel used (Jetter
et al 2012), the policy implication of this metric is to
show in which countries implementing new stove
technologies will result in the largest global cooling per
emission reduced. These results also highlight coun-
tries where estimates of the total temperature impact
(figure 4(a)) are most sensitive to uncertainties in
cookstove emission inventories. The countries that
rank high in terms of efficiency (blue) differ from
countries ranked high in figure 4(a). Since the former

have a larger absorptive effect from BC than reflective
effect from OC, each stove replaced will have a greater
climate impact. Conversely, it is inefficient to imple-
ment new stoves in countries that rank very low in this
metric (red) and in some cases may even result in a net
warming through removal of reflectiveOC.

Another metric which gives important information
beyond the total contribution to temperature change is
based on characterization of the fuels in a country, i.e.,
Φ (shown in figure 4(c) and the fourth column of
table 2). This metric first calculates the increased cool-
ing effect due to a −0.10 perturbation of Φ owing to a
change of fuel type to one with a lower BC to OC ratio,
which is optimal for reducing the warming effects of
emissions due to biofuel use. This temperature change
can then be turned into an efficiencymetric by dividing
by the total carbonaceous emissions in a country. This
metric then gives the temperature response per kilo-
gram of fuel changed for each country. An added bene-
fit of this metric is that it highlights countries that are

least robust in terms of estimating temperature impacts
owing touncertainties inΦ.

Figure 3.Each country’s contribution to global surface temperature change broken down into the individual components. The
uncertainty ranges are taken from assumptions about the radiative effects shown in table 1 and the reasonable range ofΦ shown in
figure 2. BC semi-direct and indirect effects perturb only the upper and lower bounds, not the central estimate. China and India are
shown on the scale on the left, and all other countries use the scale on the right.

Table 2.Rankings of contribution to total temperature change and emissionsmetrics from the largest annual emissions (column1), cooling
impact from removal of annual cookstove emissions (column2), or efficiency in terms of cooling effect per emission (columns 3 and 4).

Rank

Carbonaceous aerosol

emissions (GgC)
Global temperature change

contribution (mK)
Cookstove change efficiency

(mK(kgC)−1)
Fuel switching efficiency

(mK(kgC)−1)

1 China China Kazakhstan Kazakhstan

2 India India Estonia Estonia

3 Ethiopia Uzbekistan Mongolia Latvia

4 Bangladesh Ukraine Latvia Lithuania

5 Congo,DRC Nigeria Uzbekistan Ukraine

6 Nigeria Kazakhstan Lithuania Mongolia

7 Kenya Kyrgyzstan Kyrgyzstan Uzbekistan

8 Indonesia Tajikistan Georgia Kyrgyzstan

9 Tanzania Azerbaijan Ukraine Georgia

10 Vietnam Pakistan Armenia Armenia
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4.Discussion and conclusions

Using the GEOS-Chem adjoint model we have esti-
mated the temperature impacts per amount of carbo-
naceous aerosol cookstove emissions on a 2◦ ´ 2.5°
scale. These estimates include parameterizations for
indirect and semi-direct aerosol RF and the contribu-
tion of regional RF to steady-state climate response.
Accounting for spatially heterogeneous RF and climate
sensitivities across four zonal bands in our approach is
found to double the estimated cooling owing to
removal of BC emissions compared to estimates based
on global forcing and climate sensitivities. We find the

total aerosol climate effect from removal of cookstove
emissions (estimated here as the emissions from solid
biofuel use from populations that use solid fuel for
cooking) ranges from a potential warming of 0.16 K to
a cooling of −0.28 K when evaluated for published
ranges for both the RF effects and characterization of
the BC to total carbon emission factor. We also
develop and apply a new adjoint based method for
attributing the global RF of albedo feedback from
deposition of BC onto snow and sea ice due to
emissions from individual countries. We find this
effect is approximately the same order ofmagnitude as

Figure 4.Country-level contributions to global temperature change using variousmetrics: (a) globally averaged surface temperature
change from removal of cookstove emissions including direct, semi-direct and indirect effects (total temperature change for
India=−6.2 mKandChina=−33.1 mK) calculated using equation (4), (b) cookstovemitigation efficiency, i.e., the total
temperature effect from removal of cookstove emissions per total cookstove emissions, (c) temperature effect per total biofuel
emissions corresponding to a 10% reduction inΦ from cookstove use. Kazakhstan (−86.5), Estonia (−78.9), and Latvia (−62.0) are
outside of the scale shown in panel (c). Countries in grey have less than 5% total population using solid fuels for cooking.
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the direct effect for emissions from Nepal and other
high altitudemountainous countries.

By examining the climate impacts of country-spe-
cific cookstove emissions, several trends are evident
that have importance for policy decisions regarding
cookstove interventions and implementation. China
and India by far have both the largest carbonaceous
cookstove emissions as well as the largest temperature
change for national removal of these emissions, which
is very likely a net cooling given the current range of
estimated forcing magnitudes and emissions factors.
In contrast, Nigeria and other countries in Africa with
large cookstove emissions have cooling effects that are
less certain.

Kazakhstan, Estonia and Mongolia are the most
efficient countries for impacting global temperatures
by implementing cookstoves, and emissions reduc-
tions in former republics of the USSR (e.g., Uzbeki-
stan, Kyrgyzstan, etc) have the smallest likelihood of
warming, relative to the magnitude of their central
estimate for cooling. In general, cookstove emissions
at higher latitudes have larger climate impacts per kg
BC emitted due to RF and climate sensitivities that are
both relatively large in those regions, which results in a
difference between BC and OC contributions to cli-
mate impact that is greater than one order of magni-
tude. In contrast, for countries in Central and South
America such as Dominica, Brazil, Mexico, and El Sal-
vador, the climate response to cookstove emission
reductions is relatively inefficient andmay even lead to
a net warming due to the larger impacts of OC emis-
sions. This does not mean that cookstove interven-
tions in such countries are not warranted from a
climate perspective, as they may have a large climate
impact based on co-emitted greenhouse gases or may
be potential targets for improved thermal efficiency or
fuel switching.

Through the use of scaling factors, the results pre-
sented here consider a range of climate impacts due to
carbonaceous aerosol emissions from cookstoves
owing to uncertainties in RF and emissions properties.
The models used in Myhre et al (2013) and Boucher
et al (2013) represent a range of parameterizations for
various chemical and physical properties including,
but not limited to, aerosol mixing state, BC aging,
aerosol-cloud interactions, and optical properties;
although several additional sources of uncertainty
warrant consideration for future work. First, there is
uncertainty in the cookstove emissions inventory
itself, which may be biased for reasons discussed in
detail in section A.2. These biases would impact our
estimate of absolute temperature impacts from
removal of cookstove carbonaceous emissions,
although they would not affect our estimates of the
efficiency of carbonaceous aerosols emissions reduc-
tions or fuel switching on climate (which are linear
responses). We have also not considered countries
with less than 5% of the population using solid fuel for

cooking—thus some high latitude countries with large
populations (i.e., Russia and Canada) may have large
temperature impacts that have not been considered
here—nor have we distinguished between cooking
with modern woodstoves versus traditional open-air
cookstoves.

In using the ARTP coefficients we are using a cli-
mate model parameterization. This parameterization
is based off the GISS-ER model, although Shindell
(2012) the calculated regional climate response is
within 20% (at a 95% confidence interval) of the
response calculated using a suite of full chemistry-cli-
matemodels and the uncertainty is less than that when
considering the global climate response as a combina-
tion of regional responses.

Another source of uncertainty arises from not rig-
orously treating secondary organic aerosols (SOAs) in
this analysis owing to the nascent state of under-
standing of SOA sources and formation mechanisms.
We can estimate an upper range of the impact of SOA
relative to OC using speciation of biofuel non-
methane volatile organic compounds (NMVOC) from
Streets (2003) and NMVOC cookstove emissions fac-
tors from Grieshop et al (2011), which are approxi-
mately 2:1 relative to OC. Considering both aromatic
compounds and other non-speciated compounds to
be SOA precursors we estimate the total emissions of
SOA precursors to be at most 38% (17% aromatics
and 21% other) of total NMVOC emissions from
cookstove use. For a 100% upper bound on SOA yield
from these emissions, the climate impact from SOA is
globally at most 76% of the OC impact. For the high
northern latitude countries like Uzbekistan and
Kazakhstan, OC impacts are negligible when com-
pared to BC impacts, meaning that the inclusion of
SOA would have a very small effect. In contrast, a net
warming can not be ruled out for countries like
Nigeria and Bangladesh, while the net effect in India
andChinawould still likely be a cooling.

Lastly, with the exception of BC deposition albedo,
we have treated aerosol indirect effects as being spa-
tially uniformly proportional to direct effects. While
this assumption is used in many models dealing with
changes in the global mean impacts (UNEP and
WMO 2011, Bond et al 2013, Boucher et al 2013),
other studies have shown that the spatial distribution
of these effects can be regionally heterogeneous (Pierce
et al 2007, Bollasina et al 2011, Kodros et al 2015).
Future work should explore these sources of uncer-
tainty to further understand the net impacts of cook-
stove use and to provide improved information to
policymakers, potentially further using adjoint sensi-
tivity analysis to examine spatial heterogeneity in the
relationship between aerosol indirect forcing and
emissions locations (e.g., Karydis et al 2012, Moore
et al 2013).
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