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Abstract
Water temperature controlsmany biochemical and ecological processes in rivers, and theoretically
depends onmultiple factors.Here we formulate amodel to predict daily averaged river water
temperature as a function of air temperature and discharge, with the latter variable beingmore
relevant in some specific cases (e.g., snowmelt-fed rivers, rivers impacted by hydropower production).
Themodel uses a hybrid formulation characterized by a physically based structure associatedwith a
stochastic calibration of the parameters. The interpretation of the parameter values allows for better
understanding of river thermal dynamics and the identification of themost relevant factors affecting
it. The satisfactory agreement of different versions of themodel withmeasurements in three different
rivers (rootmean square error smaller than 1oC, at a daily timescale) suggests that the proposedmodel
can represent a useful tool to synthetically describemedium- and long-termbehavior, and capture the
changes induced by varying external conditions.

1. Introduction

Water temperature is a crucial factor in almost all
ecological and biogeochemical processes in rivers like,
for instance, chemical reaction rate, oxygen solubility,
primary production, macrobenthos composition, and
fish habitat (Caissie 2006, Webb et al 2008). The
complexity of river thermal response depends on the
temporal and spatial scales, short-term (subdaily)
estimates being more challenging since they are
affected by a multiplicity of local factors (e.g., cloudi-
ness, vegetation shadowing, topographic heterogene-
ity), sometimes intermittently. The daily averaged
dynamics analyzed in this paper represent a sort of
intermediate scale, where the short-term effects are
averaged out, albeit the day-by-day variability can still
be large. At this temporal scale it is often assumed that
air temperature is the main driver (e.g., Caissie
et al, 2001,Webb et al, 2003, Sahoo et al 2009), and that
it almost completely explains water temperature
dynamics if river discharge is also taken into account.
Recently, Arismendi et al (2014) wondered whether
regression-based statistical models with only air

temperature as a predictor could be used to predict
stream temperatures in climate projections, an advan-
tageous option because air temperature is a commonly
available information. However, they found that these
largely used models were not satisfactory even when
referring to the more favorable weekly averages, thus
opening the way to the implementation of different
types ofmodels.

The traditional approach for the prediction of
river water temperature is twofold. On the one hand,
mechanistic models consider the whole set of physical
and thermodynamic processes that affect the thermal
dynamics (e.g., Sinokrot and Stefan 1993, Kim and
Chapra 1997, Siviglia and Toro 2009), trying to quan-
tify the different terms that concur to define the net
heat flux: shortwave solar radiation, longwave radia-
tion emitted by the water body and the atmosphere,
latent and sensible fluxes, effect of inflows and out-
flows, etc. On the other hand, linear and nonlinear
regressions primarily dependent on air temperature
(e.g., Mohseni and Stefan 1999, Morrill et al, 2005), or
different types of stochastic models (Caissie 2006,
Benyahya et al 2007), have been introduced to mimic
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the behavior of river water temperature interpreted as
a purely statistical variable, thus renouncing the physi-
cal description of the thermal dynamics. The two
approaches have complementary strengths and draw-
backs. Physicalmodels require a large number of input
data (including stream geometry, vegetation cover,
land use, andmeteorological conditions), and evaluate
the heat flux components through empirical relation-
ships, which are affected by uncertainties and require
quantities difficult to measure or estimate, especially
for non-radiative fluxes. Purely statistical models are
not able to provide a physical justification to their
structure, so the extrapolation of the results to unob-
served conditions is always questionable (e.g., Benya-
hya et al 2007). This is particularly the case of
regressionmodels, which are intrinsically valid only in
the range ofmeasured values.

In this paper we propose an intermediate
approach. Starting from the governing physical rela-
tionships, we derive a new model (termed air2stream)
characterized by limited computational complexity,
comparable to that of statistical models. The final
structure is that of a single ordinary differential
equation linearly dependent on air andwater tempera-
ture, and discharge. Differently from the mechanistic
models, the extremely simple formulation allows for
calibration of the model parameters by means of a
Monte Carlo-like method. Thus, the model can be
seen as a hybrid tool that is physically based, but takes
advantage from the data to inform its structure, in a
way that resembles neural networks (e.g., Sahoo
et al 2009). We successfully tested a similar approach
to predict lake surface temperature based on air tem-
perature alone (Piccolroaz et al 2013) obtaining satis-
factory results in a wide range of different lake
morphologies (Toffolon et al 2014) and conditions
(Piccolroaz et al 2015). In this paper we extend this
approach to a different context where other factors
(like discharge) may become influential. We also
derive a set of simpler versions of the model by
neglecting some elements and introducing the
assumption of instantaneous adaptation to the exter-
nal conditions. The performance of the different ver-
sions are tested against the logistic function model
(i.e., one of the most popular nonlinear regression
models) considering three significant case studies in
Switzerland characterized by different hydraulic
regimes: natural, regulated and snow-fed rivers.

2.Materials andmethods

2.1. Case studies
In order to test performances of the model, we have
selected three rivers in Switzerland characterized by
different hydrological conditions. The three cases are
briefly described below and in table 1 (for further
details please refer to the supplementarymaterial). For

a more extensive description of the Swiss database see,
e.g., Schaefli et al (2015).

1. The river Mentue flows at low altitude on the Swiss
plateau through a sparsely inhabited area with
predominant agricultural land use, unaffected by
strong anthropic thermal alterations. This case is
representative of the typical conditions of a small
‘natural low-land’ river.

2. The station of the river Rhône at Sion lies at the
bottom of a populated alpine valley. Starting from
the beginning of the 20th century its hydrological
regime has been altered by the construction of a
large high-head hydropower storage system, and
the river is now affected by strong hydro- and
thermo-peaking (Meile et al, 2011). This case is
considered as representative of a strongly ‘regu-
lated’ river.

3. The riverDischmabach is located at high altitude in
a steep glacial valley that is uninhabited and used
for mountain pastures, with a significant influence
of snow melting. This case is taken as a representa-
tive example of a ‘snowmelt-fed’ river.

2.2. Formulation of themodel
The model is based on a lumped heat budget that
considers an unknown volume V of the river reach, its
tributaries (implicitly considering both surface and
subsurface water fluxes), and the heat exchange with
the atmosphere, as depicted in figure 1. The variation
of water temperature Tw in this volume is governed by
the equation

⎛
⎝⎜

⎞
⎠⎟år r= + -

( )

c V
T

t
A H c Q T Q T

d

d
,

1

p
w

p
i

i w i w,

where t is time (hereafter expressed in days), ρ is water
density, cp its specific heat capacity at constant
pressure, A is the surface area of the river reach, H is
the net heat flux at the river-atmosphere interface,Q is
the discharge at the downstream section, Qi and Twi
are discharge and temperature of the i-th contributing
water flux (tributaries and, possibly, groundwater),
and V is the total volume that reacts to the heat fluxes.
We notice that V is not necessarily limited to the
surface water body, possibly including also the hypor-
heic region, so that the explicit inclusion of heat fluxes
at the stream-river bed interface is not necessary.

The first term on the right hand side of
equation (1) contains the net heat fluxH, which is pri-
marily a function of short- and long-wave radiation,
and latent and sensible heat fluxes. Following Caissie
(2006), we assume that air temperature, Ta, can be
used as a proxy for all these processes. The overall
effect is included in themodel in a linear form by using
a Taylor series expansion (similarly to as in Piccolroaz
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et al (2013), see details in the supplementary material),
such that
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where Ta and Tw are the long-term averaged values
(hereafter indicated by an overbar) of air and water
temperatures, respectively. This relation can also be
rewritten as

r= + -( ) ( )H c h h T h T , 3p a a w w0

where h0, ha and hw are parameters that can be directly
derived from equation (2).

The second term on the right hand side of
equation (1) represents the difference between the heat
flux leaving the control volume, rc QT ,p w and the sum
of all the entering heat fluxes. These are almost impos-
sible to determine precisely, and are inherently case-
specific. Noting that å=Q Q ,

i i we introduce a ficti-

tious mean inflow temperature å= -T Q Q T .w i i wi
1

Such a reference temperature is likely to change in the
different seasons, so we express it as a first approxima-
tion in the formof sinusoidal annual variation

⎡
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where the reference value T ,w0 the amplitude of the
variation Tw1 and the phase j Î [ ]0, 1 are left
unspecified, with ty being the duration of a year
expressed in the same units as t.

Thus, we can rewrite equation (1) as

= + -

+ -
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which contains two characteristic quantities. The
inverse of the first ratio, V/A, is related to the flow
depth D (and hence depends on the discharge), but
does not coincide with it. In fact, a portion of the
saturated sediments should be included, especially for
shallow flows with high transparency where the
incoming shortwave radiation can directly warm the

Table 1.Characteristics of river andmeteorological stations.

Case 1 2 3

River name Mentue Rhône Dischmabach

Classification natural low-land regulated snow-fed

River station name Yvonand Sion Davos

(LaMauguettaz) (Kriegsmatte)
River station code (Tw,Q) 2369 2011 2327

River station elevation [ma.s.l.] 449 484 1668

Catchment average elevation [ma.s.l.] 679 2310 2372

Catchment area [km2] 105 3373 43.3

Calibration period 2002–2009 1984–2003 2003–2009

Validation period 2010–2012 2004–2013 2010–2012

Meteo station name Mathod Sion Davos

Meteo station code (Ta) MAH SIO DAV

Meteo station elevation [ma.s.l.] 437 482 1594

Distance from river station [km] 12.7 2.14 4.90

Figure 1. Schematic representation of a river reachwith relevant inflows and heatfluxes.
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river bed (Evans et al, 1998, Caissie 2006). The second
ratio in the equation, Q/V, represents the inverse of
the residence time in the river reach, and varies with
the discharge as well. In order to allow for an explicit
dependence of these two ratios on easily measurable
quantities, we introduce the dimensionless reference
volume, δ, and we assume a simple power law as a
function of the discharge:

d q= = ( )V

V
, 6m1

where q = Q Q is the dimensionless discharge andm
is related with the exponent of the rating curve (e.g.,

=m 5 3 according to the Manning’s normal flow
relationship in a wide rectangular channel). Introdu-
cing these relations into equation (5), we obtain the
final formof the air2streammodel
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where the eight parameters a1–a8 of the model (7)
directly follow from equations (3), (4) and (6). It is
important to stress that the values of these parameters
are estimated through calibration, so that all the
geometrical characteristics of the river reach (length,
volume, area, etc) are not required to be explicitly
specified, nor the role of specific heat inputs (e.g.,
internal friction). This feature of the model also
implies that local effects, such as that of shading, are
expected to be automatically captured by the calibra-
tion of the parameters. However, we note that there
are cases where air temperature and discharge alone
may not be sufficient for an accurate estimate of the
net heat flux. A possible example is given by rivers
affected by intermittent industrial point releases gen-
erally characterized bymodest waterfluxes at relatively
high temperature, whose effect on stream thermal
dynamics may be difficult to reproduce especially
when these releases are irregular.

Equation (7) resembles the model air2water devel-
oped by Piccolroaz et al (2013) for lakes and reservoirs.
However, twomain differences exist: (i) rivers are typi-
cally not stratified, so δ is not a function of Tw, but
rather ofQ; and (ii) the effect of the contributing water
fluxes, both natural and regulated (e.g., affected by
hydropower release), is included as it can be sub-
stantial for some types of rivers and under specific cir-
cumstances. With particular reference to the second
point, here we propose a few alternative versions of the
8-parameter formulation (7).

2.3.Other versions of themodel
Thefirst variation comes fromdisregarding the second
term on the right hand side of equation (1). The

resulting 4-parametermodel reads

d
d q

= + -

=
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t
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d

d

1
,

, 8

w
a w

a

1 2 3

4

and corresponds to assuming that the mean tempera-
ture of the contributing water fluxes is approximately
equal to that of the river (i.e., T Tw w). Another case
in which the model (8) is valid is when these fluxes are
absent or their effect is not relevant, so that Tw is close
to the temperature of the river at the upstream end of
the considered reach. In general, this model can be
successfully applied if the longitudinal gradient of
temperature is small.

We will see in the following analysis that the effect
of δ is minor in the three examined cases, which
implies that the thermal response of the river does not
strongly depend on the flow depth at a daily timescale.
Therefore, we identify two new versions of the model
by setting d = 1 (i.e., =a 04 ): a 7-parameter model
derived from (7), and a 3-parameter model derived
from (8). The latter model is the simplest that can be
used to simulate river temperature variations.

A further version of the model can be obtained by
simplifying the 7-parameter version imposing also
q = 1, i.e. assuming that the effect of the discharge can
be approximately retained using only a constant value.
In this way, by combining the constant terms and
those proportional toTw, we obtain a 5-parameter ver-
sion

⎡
⎣
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⎥⎥p

= + -
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a a T a T
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t

t
a

d

d

cos 2 , 9

w
a w

y

1 2 3

6 7

where the interpretation of the parameters a1, a3 and
a6 changes from that of the initial model. The
summary of the five versions of the air2stream model
is reported in table 2 (the source code is available
at https://github.com/marcotoffolon/air2stream).

2.4. Calibration of themodel
The successful application of the model relies on a
careful calibration. The best set of parameters is
identified by defining a physically reasonable range of
the parameter values and solving an optimization
problem. The aim is to minimize the error between
simulated and measured water temperatures, defined
through the introduction of a suitable metric (objec-
tive function). The input data are a continuous series
of daily averaged air temperature and river discharge
(the latter only for some versions, see table 2). The
output of themodel is the series of daily averagedwater
temperature, which is compared with measured
values. In the most favourable case, observed water
temperature is a series of continuous daily values, but
the model can be calibrated also with a reduced
number of data or aggregated values (e.g., weekly or
monthly averages, see Toffolon et al (2014) for lakes).
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Table 2.Versions of themodel and performances for the three case studies.

Version Parametersa RMSETw [°C] (NSE [−])

of the a1 a2 a3 a4 a5 a6 a7 a8 δ θ Case 1 Case 2 Case 3

model calb valc cal val cal val

8-par x x x x x x x x q( )f θ 0.62 (0.99) 0.76 (0.98) 0.58 (0.92) 0.75 (0.89) 0.61 (0.96) 0.62 (0.95)
7-par x x x — x x x x 1 θ 0.62 (0.99) 0.78 (0.98) 0.61 (0.92) 0.77 (0.89) 0.64 (0.95) 0.65 (0.95)
5-par x x x — — x x — 1 — 0.65 (0.99) 0.78 (0.98) 0.88 (0.83) 1.05 (0.79) 0.70 (0.94) 0.70 (0.94)
4-par x x x x — — — — q( )f — 0.77 (0.98) 0.92 (0.98) 0.90 (0.81) 1.04 (0.79) 0.88 (0.91) 0.87 (0.91)
3-par x x x — — — — — 1 — 0.78 (0.98) 0.91 (0.98) 0.91 (0.81) 1.05 (0.79) 0.89 (0.90) 0.88 (0.91)

Tw eq, from8-par (6 parameters) — θ 0.71 (0.99) 0.83 (0.98) 0.59 (0.92) 0.75 (0.89) 0.64 (0.95) 0.66 (0.95)

Tw eq, from5-par (4 parameters) — — 0.72 (0.98) 0.83 (0.98) 0.87 (0.83) 1.05 (0.79) 0.76 (0.93) 0.78 (0.93)

Tw eq, from4-par (2 parameters) — — 0.96 (0.97) 1.07 (0.97) 0.91 (0.82) 1.05 (0.79) 0.94 (0.89) 0.94 (0.89)

Logistic regression (4 parameters) — — 0.98 (0.97) 1.10 (0.97) 0.71 (0.89) 0.86 (0.86) 0.89 (0.90) 0.89 (0.90)

a ‘x’ denotes parameters that are calibrated, ‘-’ parameters that are not included in the version of themodel.
b Calibration.
c Validation.
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Air and water temperature series should be long
enough to capture interannual variability, thus in
general should extend for several years. As a general
rule, we used 2/3 of the available series for calibration
and 1/3 for validation of themodel.

The objective function used for model calibration
is the root mean square error (RMSE) between simu-
lated and observed Tw. Moreover, we calculated the
Nash-Sutcliffe Efficiency (NSE) index that normalizes
the variance of the errors with the variance of themea-
surements (Moriasi et al, 2007). We recall that NSE
equal to 1 corresponds to perfect agreement, while
negative values indicate that the mean would have
been a better predictor than the testedmodel.

The identification of the best set of parameters for
each river is performed through a Monte Carlo-based
optimization procedure in which a large number of
parameter sets is sampled and evaluated in terms of
RMSE. Here we use the particle swarm optimization
(PSO) algorithm, a population-based stochastic opti-
mization technique firstly proposed by Kennedy and
Eberhart (1995) (see supplementary materials for fur-
ther details)with a population of 1000 particles and for
1000 iterations. For each run, equation (7), or any
other version of the model, is numerically integrated
using the Runge–Kutta 4th order method with a time
step of one day. Computed water temperatures below
0oC have been limited to that value.

3. Results and discussion

3.1. Performances
The five versions of the model were applied to the
three case studies (table 1), showing a general good
agreement betweenmodel results andmeasured water

temperature. Table 2 reports the values of RMSE,
which are always smaller than 1oC in calibration (i.e.,
first 2/3 of the series), with only minor increases for
some cases in validation. The values of NSE are also
reported, which are always larger than 0.8 and in some
cases very close to 1, thus suggesting that the model
performswell also in relative terms.

In order to visually appreciate seasonal fluctua-
tions in temperature and discharge of the three case
studies, we calculated the reference year (daily means)
of all variables (measured air and water temperature,
discharge, and modeled water temperature) by aver-
aging across all years the values for each day of the year.
Figure 2 shows the performances of the 8-parameter
version (the results of the other versions and the values
of the parameters are reported in the supplementary
material) and demonstrates that the model effectively
follows the measured annual oscillation. We note that
the phase is not necessarily coincident with that of Ta
because of the contribution of Q and of the additional
sinusoidal term, possibly characterized by a different
phase.

Interannual variability of river water temperature
is examined in figure 3 during a period of three years.
For all rivers the model is able to reproduce the
sequence of cold and warm years, as for example the
particularly warm 2006 summer and 2006/2007 win-
ter in case 1, the warm 1987/1988winter in case 2, and
the cold 2008 spring in case 3 associated with the
occurrence of larger discharge values.

The three examined rivers behave in a markedly
different way. The response of water temperature to
changes in air temperature is almost linear for the low-
altitude river (case 1), thus producing large differences
between annual maximum and minimum water

Figure 2.Reference year of the variables for the three case studies (columns): (a)–(c)measured air temperature (Ta), and observed
(Tw obs, ) and simulated (T ,w sim, 8-parametermodel)water temperature; (d)–(f)measured discharge (Q).
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temperature. Indeed, case 1 is characterized by a rela-
tively low discharge, which typically corresponds to a
shallow depth and hence a low thermal inertia (but lar-
ger lowland rivers may behave differently). Con-
versely, although at the same altitude, case 2 presents a
much more limited increase of water temperature,
especially in summer. This is attributable to the release
of cold water during hydropower production, which
has been shown to affect the thermal behavior of the
rivers at different temporal scales (Zolezzi et al, 2011).
Since thermal alterations travel for long distances
(Toffolon et al, 2010), the impact can be felt along the
whole river in alpine contexts, especially if there are

not other significant tributaries. The resulting effect is
a marked flattening of the natural seasonal pattern
(Meier andWüest 2004). Finally, water temperature in
case 3 is generally low during the whole year because of
the high altitude and the contribution of snowmelting
waters (Lisi et al, 2015). The influence of an upstream
snowfield is clearly distinguishable in the abrupt varia-
tions of the discharge due to snow melting starting in
spring and slowly decreasing during summer and
autumn, with almost no flow in winter. The effect of
the coldmelting water is similar to that of hydropower
releases: a much lower response of Tw to Ta during the
warm season.We also note that a large contribution of

Figure 3. Interannual variability of air andwater temperature and discharge for the three case studies: case 1 (a)–(b), case 2 (c)–(d), and
case 3 (e)–(f). Themodel is applied in the 8-parameter version.
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cold groundwater inputs can produce similar effects
(Tague et al, 2007).

For the selected cases, and over the specific study
periods, the 8-parameter model always performs bet-
ter than the other versions (table 2), but the improve-
ment is different in the three types of rivers. In
particular, the effect of discharge cannot be neglected
in case 2 (strong influence of hydropower generation)
and case 3 (significant contribution of snow melt)
because thewater flowing at the river station originates
from a number of colder contributions. As a result, the
model depending on air temperature only is not sui-
table to reproduce the proper dynamics, although the
5-parameter version yields a substantial improvement
without considering Q explicitly. This is particularly
true for case 3, for which the phase shift induced by the
additional sinusoidal term (representing the mean
inflow temperature) is able to postpone the warming
of the river water with respect to that of the air in
spring, mimicking the effect of cold contributions due
to snow melting water. Conversely, the effect of dis-
charge is not so relevant in case 1, and the 3-parameter
version already produces satisfactory results (table 2).
In this case, the river does not receive large tributaries,
so its temperature is approximately spatially uniform
along large distances (i.e., T Tw w). Anyway, a sig-
nificant improvement is given by the 5-parameter
model, which compensates the small phase lag that is
however present between air and water temperature,
and by the 7- and 8-parametermodels, despiteQ is less
variable during the year than in the other two rivers.

3.2. Adaptation time scale and equilibrium
temperature
Interestingly, the performances of the 7-parameter
and 3-parameter versions are comparable to those of
the 8-parameter and 4-parameter versions, respec-
tively, for the three examined rivers. This suggests that
the role of δ, which represents the variation of the
thermal inertia of the river as a function ofQ, is minor.
This result seems to contradict the common intuition
that smaller flow depths (due to smaller Q) would
result in a warmer river water temperature in summer,
and, conversely, in a colder river water temperature in
winter. Actually, δ influences the reaction time to
external forcing, but not the value at equilibrium. This
can be easily shown by considering the structure of the
model, as it is discussed in the supplementary material
where analytical solutions are derived in idealized
cases. There, we show that d A3 (with q= +A a a3 3 8

for the 8-parameter model) controls the time scale for
the adaptation of Tw to the external forcing. Referring
for simplicity to the 5-parameter model (9), which
does not include θ (hence =A a3 3), and assuming
d  1, the time scale is 0.94, 0.55 and 0.36 days for
cases 1, 2 and 3, respectively. This means that water
temperature adapts to the external forcing in a period
that is comparable with the averaging window (1 day)

assumed in this analysis. Such a consideration can be
supported by rewriting equation (7) as

⎛
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from which it clearly appears that when A3 is large
compared to the temperature variations (multiplied
by δ, which however is ~ ( )O 1 on average) the left
hand side vanishes. Amore precise condition has been
derived in the supplementary material by also taking
the time derivative into account by means of a
perturbation method: the ratio A A2 3

2 (where A2

represent the amplitude of an approximately equiva-
lent sinusoidal forcing) has to be lower than a thresh-
old, confirming the strong inverse dependence on A3.
When such a condition holds, the thermal response
becomes substantially independent of δ and an instan-
taneous equilibrium water temperature Tw eq, can be
adopted as an approximation (Caissie et al, 2005).

Neglecting the time derivative in equation (10) and
rearranging the parameters by dividing everything by
a3, the 8-parameter and 7-parameter versions reduce
to
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where =e a a1 1 3, =e a a2 2 3, =e a3 7, =e a a4 8 3,
=e a a5 5 3, and =e a a .6 6 3 The approximation (11)

explicitly illustrates how the effect of the discharge is
felt only through θ, suggesting that, besides the
exchanges with the atmosphere, it is the contribution
of the inflows (with a temperature that may be
different from that of the receiving river) that rele-
vantly affects water temperature. Similarly to
equation (11), the 5-parameter version reduces to

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟p= + + - ( )T e e T e

t

t
ecos 2 , 12w eq a

y
, 1 2 6 3

and the 4-parameter and 3-parameter versions to

= + ( )T e e T . 13w eq a, 1 2

These equilibrium relationships are characterized
by a number of parameters that is smaller than the ori-
ginal model because a3 is used to rescale the other
parameters. Thus, equation (11) is characterized by
only 6 parameters to calibrate. The other relationships
(12) and (13) have only 4 and 2 free parameters,
respectively, the latter representing the equivalent of a
linear regression with a lower bound at 0 oC. The per-
formances of the equilibrium relationships are com-
pared with the complete models in table 2. In the same
table, we also report the RMSE and NSE of the most
widely used nonlinear regression model, based on the
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logistic function (e.g., Arismendi et al, 2014), whose
formulation is explicitly presented in the supplemen-
tary material and contains 4 parameters to calibrate.
The 8- and 7-parameter versions of air2stream outper-
form the logistic regression for all rivers, both in the
differential form and under the equilibrium assump-
tion. The other versions have higher performances, as
well, with the only exception of case 2. In the regulated
river, in fact, the S-shape of the logistic function is able
to capture the flattening of water temperature in sum-
mer, but does not account for the actual physics gov-
erning the thermal process. The information about Q
is indeed essential, that is the reason why the simplest
versions of the model are less adequate. In conclusion,
our model performs better than the common statis-
tical models and moreover includes the most relevant
physical factors. A direct comparison is not possible
with fully mechanistic models, which would require
much more information. Finally, we note that, differ-
ently from the linear and nonlinear regression models
that can reproduce only a biunivocal dependence of
Tw as a function ofTa, the solutions (11) and (12) allow
for a more realistic hysteretic pattern Tw-Ta, despite
the complexity of the formulation is equivalent.

4. Conclusions

The proposed model, which is termed air2stream in
analogy to the model air2water developed for lentic
waters like lakes (Piccolroaz et al, 2013), is a powerful
tool that can help in investigating the thermal
dynamics of various types of rivers in a simple and
effective way. The model is dependent on daily values
of air temperature and flow discharge only, two
variables that are measured in many rivers. This
extremely basic input data set makes the model a
flexible instrument that is prone to many practical
applications.

The model is formulated in different versions,
which represent reduced formulations of the funda-
mental model with 8 parameters. The analysis of the
results of the five versions of the model highlights the
relative importance of the different factors (particu-
larly the discharge) that drive the thermal response in
rivers. Furthermore, three equilibrium solutions are
derived from the complete differential model, which
are valid when the adaptation time scale is short with
respect to the averagingwindowof themeasurements.

Model calibration, together with the simple yet
physically-based structure of themodel, represents the
crucial aspect of the approach, whereby data inform
the model without the need to rely on empirical for-
mulations and on a large mass of geometrical and
hydraulic data. The possibility of grasping the very
basic physics behind the thermal process without spe-
cifying unnecessary details suggests that this approach
may be more effective than standard mechanistic
models, which would require additional inputs that

are usually unavailable. Indeed, the performances of
our model are extremely good (average RMSE in the
three cases is 0.60 oC in calibration and 0.72 oC in vali-
dation, at a daily scale) without the need to consider
local shading, cloud cover, atmospheric influences, or
the temporal variability of the various forcings. More-
over, the formulation does not require to understand
the location of the upstream boundary condition or
where (and how) significant inflows come into the
model area, whether as surface water or groundwater.
Reconstructing this information would need an extre-
mely detailed analysis of the watershed and the imple-
mentation of a reliable hydrological model, a task that
is generally not within the reach of standard
applications.

At the same time, being based on physical grounds,
air2stream overcomes the limitations of typical regres-
sion models, which do not allow for future extrapola-
tion as their validity is limited by the range of past
observations (e.g., Mohseni and Stefan 1999). An
obvious application in this sense is the use of the
model in long-term climate studies, especially in its
simpler formulations. In fact, up to the 5-parameter
version the model would not need to reconstruct the
expected river discharges, but only the scenarios of air
temperature, which are the common (and likely the
most reliable) output of global climate studies. We are
aware that the analysis of three cases, although char-
acterized by markedly different hydrological regimes,
is not sufficient to provide a definitive evidence of the
broad applicability of the model. However, we can
anticipate that the preliminary results from an ongo-
ing comparative study using a larger data set of rivers
are very promising. A deeper analysis of the robustness
of the model and its potential for long-term studies is
also currently being performed. This analysis is aimed
at understanding whether air temperature is a suffi-
ciently good proxy for water temperature, also in those
cases where thermal gradients between the main
stream, tributaries and groundwater fluxes are expec-
ted to be altered significantly as a consequence, for
instance, of changes in snowfall patterns.

In the end, we were able to address the main ques-
tion raised by Arismendi et al (2014) by showing that
air temperature can be satisfactorily used as the sole
input if the model is suitably designed (as in the
5-parameter version), and that the role of discharge
becomes influential when snowmelt input is domi-
nant, and essential only in the case of heavily regulated
rivers.
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