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Abstract
Plantwater availability is a key factor that determinesmaize yield response to excess heat. Lack of
available data has limited researchers’ ability to estimate this relationship at regional and global scales.
Using a new soilmoisture data set developed by running a crop growth simulator over historical data
we demonstrate how current estimates ofmaize yield sensitivity to high temperature aremisleading.
We develop an empiricalmodel relating observed yields to climate variables and soilmoisture in a
highmaize production region in theUnited States to develop bounds on yield sensitivity to high
temperatures. For the portion of the regionwith a relatively long growing season, yield reduction per
°C is 10% for highwater availability and 32.5% for lowwater availability.Where the growing season is
shorter, yield reduction per °C is 6% for highwater availability and 27% for lowwater availability.
These results indicate the importance of using bothwater availability and temperature tomodel crop
yield response to explain future climate change on crop yields.

1. Introduction

Knowledge of maize sensitivity to extreme tempera-
ture is needed to understand sensitivity of food
production to human-caused climate change and the
potential for food production adaptation. Despite
intense research undertaken to understand this issue
current estimates of yield response to high tempera-
ture are misleading because they do not consider the
effects of plant water availability. Evaluation of
extreme temperature yield effect with crop models
and crop system models recognize the role of
water availability (Challinor et al 2007a, Antle 2015,
Gustafson et al 2014), but differences in underlying
model assumptions make it difficult to place bounds
on yield response to high temperature, limiting inter-
pretation of variability across model results. Empirical
models avoid process uncertainty but rainfall is used as
a proxy for plant water availability because of a lack of
data (Lobell and Field 2007, Kucharik and Sher-
bin 2008, Schlenker and Roberts 2009, Hawkins
et al 2013, Lobell et al 2013). In either case, the effects

of plant water availability on the response of maize
yield to extreme temperature is poorly bounded. We
hypothesize that current estimates of negative effects
of high temperature on maize yield need to be
conditioned onwater availability. By creating new data
measuring plant water availability we test this hypoth-
esis using a new empirical model estimated using data
from four states in the primary United States maize
growing region,

Iowa, Illinois, Minnesota and Wisconsin account
for approximately 45% of US maize production,
which in turn, accounts for approximately 35% of
world production. In this region, in situ soil moisture
measurement have demonstrated that soil water
holding capacity can ameliorate effects of high tem-
perature stress on maize (Dale and Shaw 1965a,
1965b). Extrapolation to regional scale is complicated,
however, by soil heterogeneity and sparse in situ
measurements. Without a regional scale analysis,
there remains unresolved disparity in predictions
of yield sensitivity to weather (Maltais-Landry
and Lobell 2012, Woli et al 2014), technology
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(Kucharik 2008, Asseng et al 2013, Xu et al 2013), and
climate change (Kucharik and Serbin 2008, Schlenker
and Roberts 2009, Hatfield et al 2011). We develop
regional soil water climatology, overcoming the pro-
blems of using rainfall alone as a proxy and scaling up
from in situ, field-levelmeasurements.

We limit our analysis to drylandmaize production
to clearly determine the water-dependent bounds of
high temperature effect. In this region, rainfall season-
ality is variable from one production year to the next,
so that the data sample contains both hot-dry and hot-
wet growing seasons. Furthermore, rainfall seasonality
is changing rapidly in response to human-caused cli-
mate change, so that bounds placed on extreme tem-
perature maize yield effect are immediately relevant to
adaptation in this region and stability of global maize
production. In this region, spring rainfall increase is a
remarkably consistent prediction from the first cli-
mate model experiments on CO2 increase (Takle and
Zhong 1991, Wetherald and Manabe 1995) through
the Coupled Model Intercomparison Project 3 and 5
(Cook et al 2008, Maloney et al 2014). This appears to
be caused by ocean temperature increase when green-
house gas concentration is increased above pre-
industrial levels (Rhein et al 2013), which, in turn,
increases total atmospheric column water vapor.
Because the Gulf ofMexico andNorth Tropical Atlan-
tic are the evaporative source for asmuch as 50%–60%
of rainfall in March, April, and May (Dirmeyer
et al 2014), the recent increase of Atlantic sea surface
temperature influences rainfall seasonality through
increased oceanic total precipitable water and
increased influx of water vapor into the US growing
region (Bosilovich et al 2005, Bosilovich and
Chern 2006).

This model framework and soil moisture data
allow us to evaluate the extent to which temperature
and moisture effects could be confounded when using
empirical models that do not include soil moisture as a
predictor. We are not aware of another empirical yield
analysis that uses soil moisture at a regional scale. We
develop an empirical model to evaluate yield effects by
phenological phase, because it is unreasonable to
expect the yield effect of extreme temperature to be the
same at all stages of crop development even though
this is an assumption commonly made in empirical
yield equations. We then use the empirical model to
estimate upper and low yield bounds under high tem-
perature that correspond to water availability being
high and low. We use soil water data generated from a
crop growth simulator because available datasets spe-
cify a static green up period that may not reveal the
true underlying relationship between observed yields
and soil moisture. Our results provide insight into the
reliability and relevance of predictions of severe future
yield shortfalls from climate change and how the
effects of plant water availability can be used to
improve evaluation of adaptation options.

2.Methods

We use EPIC model version 1102-64 (Izaurralde
et al 2006) to simulate soil moisture from 1980 to
2012. We apply EPIC to 48 084 points from the 1997
Natural Resources Inventory across western Minne-
sota through central Illinois (figure 1). This approach
includes effects from crop rotation, management
practices, and variability of soil characteristics with
demonstrated capability to simulate effects of soil
management (Chung et al 1999, Feng et al 2006). To
run EPIC, we use daily maximum and minimum
temperature and precipitation gridded to 1/8 degree
(Maurer et al 2002), and we assign to each EPIC point
the weather from the nearest grid point. The data on
1/8 degree grid will have fewer extremely high values
of temperature and precipitation by the nature of
interpolation. EPIC crop growth will be insensitive to
error in daily rainfall, because it responds to soil
moisture which itself responds to cumulative rainfall.
If EPIC crop growth is more aggressive because
excessive temperature occurs less frequently in the
gridded data compared to station data, it could result
in slightly drier soil moisture during extended periods
(multiple days) of excessive heat. This is difficult to
confirm because soil moisture measurements are
sparse and because extended periods of excessive heat
often happen simultaneously with lack of rainfall and
sometimes soilmoisture that is already low.

Maize production and planted acres data are col-
lected from the US Department of Agriculture’s
National Agricultural Statistics Service (http://
quickstats.nass.usda.gov). County-level maize yield is
constructed as production divided by planted acres.
Weather data are aggregated for May–June (planting
and early vegetative growth) and July–August (pollina-
tion and grain fill). Daily temperature, precipitation,
and root zone water content for each field are averaged
for both time intervals. The root zone is variable and
defined for each NRI point as the soil layer depth into
which the crop growth model may extend roots. The
area-weighted average of weather variables over all
grids is used to obtain county-level data.

We develop an empirical yield model based upon
maize phenological stage. Input variables (table 1) are
separated for the vegetative growth stage (May–June)
and pollination through grain-fill stages (July–
August). While planting dates have changed in this
region (Sacks and Kucharik 2011), the timing of flow-
ering, silking, and black layer are not substantially dif-
ferent over the period of analysis (1980–2012), so that
the broad phenological stages we use are stable during
this analysis. We use multivariate splines with two
knots to predict log yield. We use two knots to be con-
sistent with past studies based upon quadratic models
while (1) retaining flexibility for more complicated
curves, such as asymmetry associated with high tem-
perature, and (2) having a relatively small number of
parameters for estimation.
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The formal model structure when yield depends
on a single climate variable is:
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where V is the environmental variable (temperature,
precipitation, soil moisture), Vlow and Vhigh are the
two knot values for the climate variable, i is the county
index, t is the time index, and j is the period index
(either May–June or July–August). Additional climate
variables are accounted for by duplicating the terms in
parentheses on the right hand side of equation (1). All
climate variables are expressed as deviations from
means. Bayesian estimation is used for model para-
meters following the methods developed by Yu and
Babcock (2011).

The incremental effect of change in a predictor on
ln(yield) is the percent yield change (PYC; units are %
yield change per unit change in the predictor).
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Figure 2 illustrates the fit and interpretation of the
two-knot spline yield response function for hypothe-
tical precipitation and yield data. (Recall equation (1)

predicts log yield rather than yield.) The parameters of
the yield response function are the two knots and the
three line slopes and are determined as the best fit sub-
ject to the restriction that the lines intersect at two
knots. PYC is slope divided by yield level within each
segment (percent change in yield per mm of precipita-
tion). In figure 2, when precipitation is low, slope is
positive with low yield values, so that PYC is high. In
the second segment, yield response is small and yield is
high, so that PYC is close to zero. Finally, when pre-
cipitation is high, slope is negative with relatively high
yield values, so that PYC is relatively small and nega-
tive. The interpretation is that yield response is large
and positive as precipitation increases from below
average to average, small as precipitation increases
from average to an extreme, and slightly downward
above an extreme. In figure 2, mean and median pre-
cipitation fall in the first segment of yield response to
demonstrate that the three segments of the yield
response curve need not correspond to low, average,
and high values for climate variables or biophysical

Figure 1.Region (light gray) overwhich soilmoisture is simulated for 48 084 points from the 1997Natural Resources Inventory.

Table 1.Names and descriptions for each variable in the dry-hot,
two-knot splinemodel (subscripts low and high distinguish the two
know values in the text).

Variable name Variable description

Year Calendar year of yield report

May–JuneT May through June average temperature (°C)
July–AugustT July throughAugust average temperature (°C)
May–JuneR May through June average daily rainfall (mm)
July–AugustR July throughAugust average daily rainfall (mm)
1stMay SM Simulated soilmoisture on 1stMay (mm)
1st July SM Simulated soilmoisture on 1st July (mm)
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thresholds.When yield response depends on the inter-
action between climate variables, the yield response
curve for a single climate variable is calculated condi-
tional on the level of the other climate variables.

A Control model (see supplemental material) is
estimated with only temperature and precipitation
variables, similar to past analyses for this region. A
dry-hot model is estimated by adding soil moisture
variables and interaction terms. There are three inter-
action terms in the dry-hotmodel: product of (1) July–
August temperature above its high knot and July–
August rainfall below its low knot, (2) July–August
temperature above its high knot and 1st July soil
moisture below its low knot, and (3) July–August rain-
fall below its low know and 1st July soil moisture
below its low knot. We refrain from using stepwise
regression to find the subset of predictors that seem to
best explain log yield.With our two-knot splinemodel
a statistically insignificant coefficient has a sound
agronomic interpretation. For example, in figure 2 the
slope parameter between the two knots is close to zero.
It would be poor judgment to reject a two-knot spline
in favor of a one-knot spline in this case.

3. Results

3.1. Yield effect of soilmoisture
The dry-hot model contains interaction terms for
July–AugustThigh with 1st July SMlow and July–August
Rlow and 1st July SMlow with July–August Rlow. These
three interaction terms allow analysis of whether high
moisture can reduce yield losses from high tempera-
ture. We interpret May–June rainfall as an immediate
water source during planting and vegetative growth,
and 1st July soil moisture as the lag water source from
previous months’ precipitation (not just May–June)
during pollination and grain fill. The inherent correla-
tion between precipitation and soil moisture raises the
question of whether soil moisture and precipitation
effects can be estimated separately. We find that most

coefficients for 1st July soil moisture have a 95%
Bayesian probability interval that excludes zero, sug-
gesting effects of precipitation and soil moisture can
each be estimated. The value of adjusted-R2 increases
in the dry-hotmodel by 7% in Iowa, 4% in Illinois, 3%
in Wisconsin and 1% in Minnesota. F-test of the null
hypothesis that the two models have the same
explanatory power is rejected at the 5% level. Thus, we
conclude that our data measuring soil moisture has a
statistically significant impact on county log yield.

The yield effect of excessive spring rainfall is not
well established in literature, so we turn to field data to
determine whether the estimated effects have a physi-
cal basis. In all states an increase in May–June R when
it is below May–June Rlow increases yield and an
increase in May–June R when it is above May–June
Rhigh decreases yield. This simply means that more
rainfall in May and June increases yield when it is dry
but reduces yield when it is already wet. In Iowa, yield
loss occurs when planting after 10–14 May. Farnham
(2001) estimates a 10% yield loss with a 31st May
planting date and a 30% loss when planting is on 15th
June. We further evaluate for Iowa the potential for
delay in planting by relating state-level 1 April–15May
suitable fieldwork days to May–June rainfall during
1976–2010 (figure 3). Our model uses May–June rain-
fall, sowe analyze it rather thanApril–May rainfall that
would align with the reporting period for suitable
days. Negative correlation is clear, and linear regres-
sion predicts a reduction of 1.1 fieldwork days for
every 25.4 mm increase in May–June rainfall (a higher
R2 of the linear model for rainfall and suitable days is
obtained when using April–May rainfall). The esti-
mate forRhigh is 246 mm,which is 10 mm less than the
75th percentile of May–June precipitation for
1893–2010. For May–June rainfall equal to May–June
Rhigh, the linear model predicts a reduction of about a
week in suitable fieldwork days. Thus, losses from
planting delay caused by excessive rainfall are con-
sistent with yield effects estimated by ourmodel, and it
is reasonable for the excessive rainfall effect to exceed

Figure 2. Idealized yield response is illustrated for log yieldmodel for precipitationwith two knots. Blue diamonds represent observed
yield-precipitation data. Solid black line is yield response from log yieldmodel. Blue curve is density of observations by precipitation.
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~3% loss due to crop physiological damage from
excessive wetness (Rosenzweig et al 2002).

Our primary interest is yield effects of high tem-
perature in July and August when moisture is not
available andwhen it is available. Temperature effect is
determined atmean and one standard deviation below
mean for July–August rainfall and 1st July soil moist-
ure (table 2). Minnesota is excluded because high tem-
perature effects are essentially absent, and excessive
moisture is the dominant predictor of yield loss. As
expected, increasing July–August temperature when it
is above the second knot (July–August Thigh) nega-
tively impacts yield. But the yield loss is much lower in
all three states when adequate moisture is available.
For example, PYC in Iowa drops from 26.25% to
10.89% and from 32.5% to 15.5% in Illinois if both
soil moisture and rainfall move from one standard
deviation below theirmean value to theirmean.

We further examine how climate variables affect
predicted yield levels and the degree to which rainfall
and soil moisture are fungible. Figure 4 presents
predicted yield levels for Illinois (top two charts), Iowa
(middle two charts) andWisconsin. Two soil moisture
response curves are shown in each chart correspond-
ing to low July–August temperature (one standard
deviation below mean), and high July–August

temperature (one standard deviation above mean).
The left column of charts is response curves when
rainfall in July and August is low (one standard devia-
tion below mean). The right column of charts is when
rainfall in July and August is high (one standard devia-
tion above mean)4. The dashed lines in each chart
represent 95% Bayesian credibility intervals that were
estimated by taking 15 000 samples from the posterior
distributions of the coefficients.

It is apparent by comparing the slopes of the charts
in the left column to the slopes in the right column
that the response of yield to 1st July soil moisture is
higher when rainfall is low. This indicates that 1st July
soil moisture and summer rainfall are substitutes.
Figure 4 demonstrates different yield floors corre-
sponding to different levels of water availability.When
July–August temperature is high, rainfall in July–
August is high, and 1st July soil moisture is high, yield
levels in Illinois, Iowa, andWisconsin, respectively are
150, 170, and 135 bu ac−1. However, when rainfall and
soil moisture are low the yield levels are reduced to
120, 135, and 90 bu ac−1.

When the model is used to extrapolate to higher
temperature than observed, the yield floors separate
further. This occurs because themodel identified a dif-
ferent PYC (table 2) under low compared to highwater
availability. In Illinois the high temperature yield level
whenwater is abundant is 150 bu ac−1 (figure 4), and a
1 °C increase in temperature results in a yield level of
126 bu ac−1. In comparison, when water is limiting
the high temperature yield level is 120 bu ac−1

(figure 4) and a 1 °C increase in temperature decreases
yield to 81 bu ac−1. Thus, the yield floor difference
within the sample of temperature is 30 bu ac−1 (150

Figure 3. Iowa average suitablefieldwork days for 2 April–15May versus IowaApril–May rainfall for 1976–2010. Solid black line is
least squares linear regression prediction. IowaApril–May rainfall 50th, 75th, and 95th percentiles are shownwith light,medium, and
dark blue vertical lines, respectively.

Table 2.Total PYC (units of%) for combinations of 1st July soil
moisture and July–August rainfall at July–AugustThigh.

1st July soil

moisture

July–August

rainfall Iowa Illinois Wisconsin

μ μ –10.89 –15.57 –6.88

–σ μ –15.52 –21.50 –17.16

μ –σ –21.62 –26.62 –16.80

–σ –σ –26.25 –32.54 –27.07

Note: μ indicates variable is at its mean level, and −σ indicates

variable is one standard deviation below itsmean.

4
Iowa average July and August rainfall is used because the

catastrophic 1993 flood skews results for high July and August
rainfall.
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minus 120) and outside the sample is 45 bu ac−1 (126
minus 81). This result shows the importance of con-
sidering whether moisture is a limiting factor when
determining yield effects of climate change and whe-
ther yield loss is measured in percentage terms or in
absolute levels.

4.Discussion

Our results demonstrate that maize sensitivity to high
temperature is dependent on water availability. This
effect is regionally important and not a localized effect
found in only a subset of fields. Several empirical
evaluations of maize yield sensitivity lack interaction
between water availability and temperature. While
Schlenker andRoberts (2009) argue a small correlation
between daily rainfall and temperature suggest non-
interaction, we find substantial interaction when
aggregating over phenological stage. Additionally,

when aggregate weather data are used, it is common
practice to select monthly aggregates through stepwise
regression without consideration of interaction terms
(Thompson 1986, Kucharik and Serbin 2008). By
including interaction terms, we find the percent yield
reduction from high temperature is 10–20 percentage
points greater under low compared to high plant water
availability. Consistent with recent work onmaize heat
sensitivity in France (Hawkins et al 2013), we conclude
that temperature sensitivity of maize should be
evaluated from the long-standing perspective of agro-
nomists and maize breeders who evaluate tempera-
ture-induced stress relative to water availability (e.g.,
Dale and Shaw 1965b, Challinor et al 2007b, Wahid
et al 2007).

Our results predict in the United States Midwest
different maize sensitivity to temperature change
compared to past studies. Kucharik and Serbin (2008)
use data from 1976–2006 and report for Wisconsin
13% yield reduction per °C increase. Only under low

Figure 4.Yield response is shown for July–August temperature, July–August rainfall, and July 1st soilmoisture. First, second, and
third rows are results for Illinois, Iowa, andWisconsin. Left and right columns contain plots for rainfall one standard deviation below
and one standard deviation abovemean temperature. (Iowa results shown formean rather than one standard deviation abovemean.)
Dashed lines show the 95%Bayesian credible interval for temperature one standard deviation below (blue line) and one standard
deviation above (red line)mean temperature. One standard deviation for July–August rainfall, temperature, and 1st July soilmoisture
in Illinois, Iowa, andWisconsin is, respectively, 75.6 mm, 97.0 mm, and 78.7 mm; 1.6 °C1.5 °C, and 1.4 °C; and, 45.3 mm, 53.7 mm,
and 41.3 mm.
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water availability do we find a similar result. Using
data for 1960–2006, Tannura et al (2008) report for
Illinois and Iowa 2%–5% yield reduction per OC dur-
ing July and August, so that the effect of back-to-back
July and August at 1 °C above average is a yield reduc-
tion of 4%–10%. Our model predicts similar yield
response only when July–August temperature is rela-
tively cool (below the second knot), which rarely
occurs at the same time as lowwater availability.When
we compared the Control model to the dry-hot mod-
els, we found similar discrepancies in maize yield sen-
sitivity estimates which suggests that past studies have
conflated yield effects of temperature and water
availability.

We recognize empirical models can be con-
structed in many ways. Our results support the use of
asymmetric temperature response and dependence on
water availability. Soil moisture climatology from rea-
nalysis (Mitchell et al 2004, Messinger et al 2006) pre-
sents a new opportunity to re-evaluate US maize
production sensitivity to extreme heat. A question to
consider is whether agricultural scientists need to
develop soil moisture climatology. Assuming for a
moment this is not the case, a common soil moisture
source would allow systematic experimentation in
yield response variables because the available water
would be consistent acrossmodels that implement dif-
ferent representation of temperature, preferably with
consideration of phenological stage. A variety of per-
spectives could uncover sensitivity not yet identified.
Ultimately, the goal would be convergence that would
signal robust estimates on temperature response given
water availability.

The value of improved high temperature sensitiv-
ity estimates is evident when evaluating adaptation
options. For instance, two approaches for adapting to
increased frequency of high temperature are (1) imple-
menting irrigation and (2) integrating cultivars from
hotter regions. While discussion has emerged on the
possibility for developing cultivars to survive yet-to-
be-observed temperature thresholds, a breeding
development path is not yet clear, so this option is not
considered in this discussion. Yield reduction from
high temperature under high water availability would
provide a conservative estimate of the impact of
adopting irrigation, and our results suggest a con-
servative estimate of reduction in yield loss of 15% in
Iowa, 17% in Illinois, and 21% in Wisconsin. Regard-
ing cultivar adaptation, Butler and Huybers (2013)
estimate reduced yield loss from integrating heat toler-
ant cultivars under an assumed uniform warming of
2 °C and finds for Illinois that cultivar adaptation
reduces yield loss by 4%–6%. Although our reduced
yield loss estimates are made with a similar increase in
July–August temperature in Illinois (1.9 °C), the stu-
dies can only be directly comparedwhen using empiri-
cal models that make heat tolerance dependent on
water availability. This is also the only way to estimate

empirically the combined effect of these two adapta-
tion options.

5. Conclusions

We have clarified the dependence of maize yield
sensitivity to high temperature on available water
using a high maize production region in the United
States. We have identified bounds for maize yield loss
under high temperature. For the portion of the region
with relatively long growing season, the reduction per
°C is 10% for highwater availability and 32.5% for low
water availability. In Wisconsin, where the growing
season is shorter, yield reduction per °C is 6% for high
water availability and 27% for low water availability.
High temperature sensitivity is indeterminate in
Minnesota where extreme temperature yield effect
does not yet exceed excessive water yield effect. We
conclude new soil moisture climatology from reana-
lysis datasets should be evaluated for use in developing
robust estimates of high temperature sensitivity based
uponwater availability.
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