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Abstract
The aim of this work is an analysis of the causes of spruce (Picea abies L.) decline andmortality in
Belarus. The analysis was based on forest inventory and Landsat satellite (land cover classification,
climate variables (air temperature, precipitation, evaporation, vapor pressure deficit, SPEI drought
index)), and GRACE-derived soilmoisture estimation (equivalent of water thickness anomalies,
EWTA).We found a difference in spatial patterns between dead stands and all stands (i.e., before
mortality). Dead stands were located preferentially on relief features with higher water stress risk
(i.e., higher elevations, steeper slopes, south and southwestern exposure). Sprucemortality
followed a series of repeated droughts between 1990 and 2010.Mortality was negatively correlated
with air humidity (r=–0.52), and precipitation (r=–0.57), and positively correlated with the
prior year vapor pressure deficit (r=0.47), and drought increase (r=0.57). Mortality increased
with the increase in occurrence of spring frosts (r=0.5), and decreased with an increase in winter
cloud cover (r=–0.37). Sprucemortality was negatively correlated with snowwater accumulation
(r=–0.81) and previous year anomalies in water soil content (r=–0.8).Weakened by water
stress, spruce stands were attacked by pests and phytopathogens. Overall, sprucemortality in
Belarussian forests was caused by drought episodes and drought increase in synergy with pest and
phytopathogen attacks. Vast Picea abiesmortality in Belarus and adjacent areas of Russia and
Eastern Europe is a result of low adaptation of that species to increased drought. This indicates the
necessity of spruce replacement by drought-tolerant indigenous (e.g., Pinus sylvestris, Querqus
robur) or introduced (e.g., Larix sp. or Pseudotsugamenzieslii) species to obtain sustainable forest
growthmanagement.

1. Introduction

Forest mortality is increasing in every continent (Martí-
nez-Vilalta et al 2012, Andregg et al 2013, Kharuk
et al 2013a, b, Bond-Lamberty et al 2014, O’Connor
et al 2015), and this phenomenon has been attributed to
increaseddrought episodes in synergywithbiotic attacks
(Breda et al 2006, Aitken et al 2008, Allen et al 2010,
Lausch et al 2013, Hart et al 2014, Millar and Stephen-
son 2015). In the USA, Engelmann spruce mortality
causedbybark-beetleoutbreaks coupledwith increasing
summer temperatures and water stress has been among
the largest and most severe in the documented record
(Hart et al 2014, O’Connor et al 2015). In central and
eastern Europe, where Norway spruce often grow in

monocultures, large-scale bark beetle outbreaks have
had rapid and pronounced effects on a variety of
landscapes (Raffa et al 2008, Sproull et al 2015). In
easternEurope, spruce (Picea abies, P. obovata)mortality
has been documented in Belarus (Sazonov et al 2013),
LithuaniaandLatvia (Arkhipova2013,Vasiljuskas2013),
andUkraine (figure 1, sites 10–13;Usitsky 2013). Spruce
monocultures are considered more vulnerable to
drought and biotic disturbances (Yousefpour et al 2010,
Sproull et al 2015). Simulation models suggest that by
the end of this century climate-induced changes in
temperature, precipitation, and the frequency and
intensity of extreme disturbance events are likely to
reduce the ecological suitability of spruce monocultures
in Europe (Feltona et al 2010).

OPEN ACCESS

RECEIVED

24 July 2015

REVISED

19October 2015

ACCEPTED FOR PUBLICATION

9November 2015

PUBLISHED

27November 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd

http://dx.doi.org/10.1088/1748-9326/10/12/125006
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/12/125006&domain=pdf&date_stamp=2015-11-27
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/12/125006&domain=pdf&date_stamp=2015-11-27
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


In Russia, the decline andmortality of dark-needle
conifers (DNCs) have been reported from the Baltic
Sea to the Pacific Ocean [DNC: Siberian pine (Pinus
sibirica (Rupr.) Mayr.), spruce (Picea obovata L.), and
fir (Abies sibirica L.]. In the European part of Russia,
spruce decline has been observed over an area of over 2
million hectares (sites 2, 3–7; figure 1). As potential
causes of spruce mortality stands, overmaturity,
drought impact, root fungi and insect attacks have
been considered (Chuprov 2008, Zamolodchi-
kov 2011). In the Asian part of Russia, fir mortality has
been described in Baikal and in trans-Baikal regions;
the mortality was attributed to bacterial attacks and
climate impact (Roslesozashchita 2010, Stavnikov
et al 2011). Siberian pine mortality has been observed
in the Altai-Sayan region and was caused primarily by
drought, with bark beetles and fungi attacks as a co-
factor (Kharuk et al 2013a). Firmortality in the Eastern
Sayan Mountains over recent decades was attributed
to drought episodes in synergy with biotic impact
(Kharuk et al 2015). In the Russian far east, spruce
(Picea ajansis) and fir (Abies nephrolepis) mortality
were described byMan’ko et al (1998) and were attrib-
uted to unfavorable climatic factors, with fungi as a co-
factor. In addition, a hardwood species (Betula verru-
cosa) was negatively impacted by severe drought
in trans-Baikal forest–steppe ecotone (Kharuk et al
2013b), although in western Siberian forest–steppe
ecotone, birch stands showed an increase in growth
(Kharuk et al 2014).

Along with climate variables, topographymay play
a significant role in the spatial pattern of drought stress
and tree mortality. Relief features (slope aspect and
slope steepness) are known to strongly influence site
moisture conditions (Whittaker 1967). Consequently,
spatial variations in site moisture conditions may
influence the spatial pattern and severity of drought-
induced tree mortality (Guarin and Taylor 2005). The

potential mediating effects of topography on treemor-
tality were also evaluated in a few studies (e.g., Lausch
et al 2013, Kharuk et al 2013a, Sproull et al 2015).

In this paper, the possible causes of spruce stand
decline andmortality in Belarus were analyzed. Spruce
mortality in Belarussian forests was documented for
an area of about 300 thousand ha, which resulted in 29
million m3 of wood loss (Shatravko 2013, Forest pro-
tection 2014). As possible causes of spruce mortality,
pollution, insect attacks, and unfavorable climate
change were considered (Sarnatskii 2012, Sazo-
nov 2013, Kharuk et al 2015). The latter hypothesis has
been considered during recent years only, and to date
has not been robustly tested.

We aimed to check the hypothesis of drought
increase as a primary cause of spruce decline andmor-
tality in Belarus, with biotic impact as a co-factor. We
quantitatively analyzed spruce mortality dynamics
with respect to (i) the main climate variables (temper-
ature, precipitation, water vapor deficit, evapo-
transpiration, and drought index), (ii) anomalies in
soilmoisture, and (iii) relief features (elevation, aspect,
slope steepness, and surface curvature).

2.Methods

2.1. Study area
Spruce species are among the dominant forest types in
Belarussian forests, and occupy about 750 thousand
ha, or 9.5% of forested territory with total stocks of
180 million m3 (Shatravko 2013). The first signs of
spruce decline were observed in 1989, withwidespread
mortality occurring since 1993 (Fedorov and Sarnats-
kii 2001). The area with spruce mortality in Belarus is
shown in figure 1. Spruce mortality dynamics for the
period between 1996 and 2012 were described based
on forest inventory data (Forest protection 2014). The
yearly percentage of spruce mortality to the total area

Figure 1.Regions of spruce standmortality in eastern European countries andRussia. 1—Belarus, 2, 3, 7—western and central
Russian, 4—southernUralMountains, 5, 6—southern andnorthern Russian forests, respectively, 8—Lithuania, 9—Latvia, 10–13—
Ukraine. Dark grey background: closed spruce stands, grey: water bodies. Inset: Belarus with areas of sprucemortality (grey colored)
locations. Thin lines show ‘leskhoz’ (forestmanagement enterprises) boundaries.
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of spruce stands derived from the inventory data is
shown infigure 2.

2.2. Climate
The climate within the study area is temperate
continental with frequent winter thaws. The mean
winter, summer and annual temperatures are –5 °C,
+18 °C and +6 °C, respectively. Mean annual pre-
cipitation varies from 500 mm yr−1 in the southern
region to 800 mm yr−1 in the northwestern part.
Maximum precipitation falls in the autumn and
winter. The temporal dynamics of the climate vari-
ables are presented in figure 3. The climate variables
analyzed included monthly, seasonal and annual air
temperature, precipitation, atmospheric humidity,
vapor pressure deficit, evapotranspiration, drought
index (SPEI, the standardized precipitation–evapo-
transpiration Index), the number of spring frost days,
and the average daily cloud coverage (in%). SPEI is the
difference (Di) between precipitation (Pi) andpotential
evapotranspiration (PETi), where i=period (Vice-
nte-Serrano et al 2010):

D P PETi i i= -

Climate data were obtained from http://badc.
nerc.ac.uk and http://sac.csic.es/spei; data were aver-
aged for cells of 0.5°×0.5° (∼33×56 km). We con-
sidered the following periods: winter, summer, the
vegetation period (May–Sep), the hydrological year
(Sept–Aug) and the calendar year (Jan–Dec). SPEI data
were obtained and averaged for all territories where
spruce mortality was observed (figure 1, inset;
figure 3(d)).

2.3.Materials
Remotely sensed data (i.e., Landsat, GRACE (Gravity
Recovery and Climate Experiment; http://www.csr.
utexas.edu/grace)) and forest inventory data, forest
maps, climate variables and GIS-tools were used in the
analysis. Dead spruce stands were detected based on a
joint analysis of (1) a map of spruce stands in Belarus

(Isaev 1990), (2) a sketch-map of the territories where
spruce mortality was documented (Forest protec-
tion 2014; figure 1, inset), and (3) a Landsat-derived
Forest Cover Changemap for the period between 2000
and 2012 (Hansen et al 2013). The latter contains
annual forest loss/gain global data with a spatial
resolution of 30 m.

A sketch-map of spruce mortality was georefer-
enced, and then its vector mask was generated. That
mask contained all Belarus ‘leskhoz’ (i.e., forest man-
agement enterprises) territories (area S= 89 502 km2)
where spruce mortality was documented. That mask
contained both dead and alive stands, as well as non-
spruce stands. Then, the area of spruce and mixed
stands within that mask was obtained. For that pur-
pose the mask was overlain with the IGBP 2001 forest
map, and the area of spruce and mixed stands was
extracted (S=22 805 km2). Thus, the total analyzed
area was 89 502 km2 (almost half of the Belarus terri-
tory)with 22 805 km2 of affected standswithin it.

The spatial distribution of spruce mortality was
analyzed based on SRTM DEM with 90 m resolution
(Jarvis et al 2008). Topographic aspects were divided
into eight sectors (north, northeast, east, southeast,
etc); slope steepness was discretized into one-degree
intervals. In addition, spruce mortality was analyzed
with respect to terrain curvature (i.e., convex or con-
cave surfaces). GIS-analysis was realized using ESRI
ArcGIS software (http://www.esri.com/software/
arcgis). Statistical analysis of the data was carried out
in Microsoft Excel and Statsoft Statistica (http://
statsoft.ru) software. We used regression and Pearson
correlation (r) analysis and Akaike information criter-
ion (Akaike 1974) to determine significant relation-
ships between spruce stand mortality, climate
variables and soil water anomalies (EWTA, equivalent
of water thickness anomalies).

2.4. GRACEdata analysis
GRACE gravimetric data was applied for estimation of
water anomalies in soil and snow.We used annual and
monthly gravimetric values and EWTA for the analy-
sis. EWTA were measured with an accuracy of
10–30 mm/month (Riegger et al 2012, Long
et al 2014). GRACE spatial resolution was one by one
degree (∼66×112 km2 at latitude 54°); data available
since 2003 (http://grace.jpl.nasa.gov). Scale coeffi-
cients have been applied to recover signals reduced by
filtration (Landerer and Swenson 2012). The satellite
data were processed using Erdas Imagine software
(http://geospatial.intergraph.com) and ESRI ArcGIS
software (http://www.esri.com). StatSoft Statistica
(StatSoft Inc 2013) was used in statistical analysis.
GRACE data were analyzed for all ‘leskhoz’ areas
where spruce mortality was documented (S=
89 502 km2;figure 1, inset, Forest Protection 2014).

Figure 2. Sprucemortality (grey bars) and spruce cut (white
bars) in Belarus (in percentage of spruce stands area for the
given year).
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3. Results

3.1. Sprucemortality and relief features
Dead spruce stands over Belarus (for the study period
of 1996–2012) were unevenly distributed with respect
to relief features; the distributions of dead spruce
stands and all spruce stands (i.e., before mortality)
differ significantly (figure 4).With respect to elevation,
maximummortality was observed at higher elevations
(220–240 m), whereas the maximum of the elevation
distribution of all spruce stands before mortality
occurred at 180–220 m (figure 4(a)). Mortality
occurred on relatively steeper slopes (figure 4(b)).
With respect to terrain curvature, mortality was
mainly on convex surfaces (figure 4(c)). With respect
to aspect, mortality was observed mainly on western
and southwestern facing slopes (whereas the distribu-
tion of stands before mortality was approximately
uniformwith respect to slope; figure 4(d)).

3.2. Sprucemortality and climate variables
Spruce mortality increased followed consecutive
droughts in 1992, 1995, 1999, 2002, 2008 and

2010–2011 (figure 3(d)). Mortality was correlated with
the prior year climate variables and decreased with
atmospheric humidity and precipitation increases
(figures 5(a), (c)), and increased with vapor pressure
deficit and drought increases (figures 5(b), (d)).
Notably, the mean drought index SPEI distributions
changed significantly since 1989 (i.e., since the first
signs of spruce mortality were noticed; figures 3(e),
(f)). That is, the drought intensity increased, with the
driest conditions experienced in the spring
(figure 3(f)). Mortality was also correlated with an
increase in late spring frosts (figure 5(e)), whereas a
negative correlation between winter cloud coverage
and mortality was observed (figure 5(f)). Correlations
with air temperatures and evapotranspiration were
insignificant.

Multiple regression analysis showed that spruce
mortality (M)was related mainly with drought and, to
a lesser extent, spring frost impact:

M S F R0.9 0.1 0.1 0.48 ,2( )– * *= + - =

where S is the SPEI value, and F is the number of days
with frosts. The equation is significant at p<0.05; the

Figure 3.Anomalies for temperature (a), precipitation (b), vapor pressure deficit (c) and SPEI (d) (1—summer, 2—winter) and
climatograms (e), (f)within the area of sprucemortality over Belarus. Trends are significant for summer temperature and vapor
pressure deficit at p<0.05, for precipitation at p<0.1. SPEI indicates drought episodes in 1992, 1995, 1999, 2002, 2008 and
2011–2012.Note: negative SPEI values indicated drought increase. Climatograms (e), (f): 1—temperature, 2—precipitation, 3—SPEI
[(e)—for period 1950–1989, (f)—for period 1990–2012].
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Figure 4.All spruce stands (i.e., beforemortality) and sprucemortality distributions over Belarus (both in percent)with respect to
elevation (a), slope steepness (b), surface curvature (c); negative and positive values are concave and convex surfaces, respectively), and
aspect (d).White bars—spruce stands beforemortality, grey bars—dead stands. In figure 4(d), solid lines show the distribution of all
stands beforemortality and dashed lines depict data for dead spruce stands. Data on sprucemortality are presented for the period
1996–2012 (figure 2).

Figure 5. Sprucemortality correlationswith prior yearMJJAS climate variables: (a) precipitation, (b) vapor pressure deficit, (c) air
relative humidity, (d) SPEI, (e) current year spring frosts, and (f)winter cloud cover.
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coefficients of S and F are significant at p<0.05 and
p<0.1, respectively.

3.3. Sprucemortality, snow and soil water
anomalies
Considering figure 6(c), spruce mortality is negatively
correlated with water accumulation in snow (March–
April) and in soil (November of the prior year). Good
correlation was observed between the maximum
March EWTA (i.e., maximal snow accumulation) and
sprucemortality. That is, the higher the snow accumu-
lation, the lower the mortality (figures 6(a), (b)).
Similar correlations were observed with annual soil
water anomalies and June and July soil water content
(figure 6(c)).

4.Discussion

The results obtained indicate that spruce mortality in
Belarus is related to water stress. More dead stands
were located on the relief features with a maximum
water stress risk. In comparison with the stand
distribution before mortality, mortality was observed
in terrain with relatively higher elevation, steeper
slopes, southwestern exposure, and convex relief
surfaces (figure 4). The topographic effect on tree
mortality (drought- and biotic-induced) has been
described in other papers (e.g. Allen and Bre-
shears 1998, Lausch et al 2013). However, the mortal-
ity responses were not temporally resolved.

Spruce mortality in Belarus followed repeated
drought episodes during recent decades (figure 3(d)).
Significant negative correlations were observed
betweenmortality and prior year atmospheric humid-
ity and precipitation, whereas an increase in vapor
pressure deficit and drought caused an increase in
mortality (figures 5(a)–(d)). Since the first signs of
spruce mortality were observed (in 1989; Fedorov and
Sarnatskii 2001), significant changes in the annual pat-
tern of the SPEI drought index occurred. Drought
intensity increased, with maximum drought condi-
tions occurring in April (figure 3(f)). Thus, spruce
stands experienced spring droughts during recent dec-
ades. A persistent spring water stress was one of the
factors in Engelmann spruce decline in the western
USA (O’Connor et al 2015).

Spruce is known to have the highest sensitivity to
water stress among conifer species. In contrast to
Pinus sylvestris, spruce greatly depends on water avail-
ability and is vulnerable to both soils and atmospheric
droughts. The latter is related to a high leaf area index
(LAI), which is the main factor that regulates water
balance in trees. Thus, the LAI of Norway spruce
stands is about 3.1–4.3 (Pokorný and Stojnič 2012),
whereas the LAI of drought-tolerant Scotch pine is
about 2.1 (Soudani et al 2002). Due to the high LAI,
spruce does not tolerate low air humidity, especially in
spring, which became a common occurrence in
1990–2000. Positive spring air temperature provoked
spruce photosynthesis on the background of low

Figure 6.Relationships between sprucemortality (in percent of spruce stands for a given year) andwater anomalies (EWTA) in snow
and soil. (a)Temporal dynamics of volume of dead stands andMarch EWTA (bars—inventory data, solid line—March EWTA). (b)
Sprucemortality versus.March EWTA (p<0.05). (c)Correlations between sprucemortality and EWTA in snow and soil. Black and
hashed bars corresponded to p<0.05 and p<0.1, respectively. Current and previous yearmonths are designated as ‘CJan-CAug’
and ‘PJan-PDec’, respectively. Calendar and hydrological (September–August) years are designated as ‘Hydro’ and ‘Annual’.
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precipitation and limited melted soil water. That may
induce chlorophyll degradation and needlemortality.

Snow water accumulation has a positive effect on
spruce vigor (figure 6(b)). Soil water accumulation
during the previous year’s fall season also leads to a
decrease in spruce mortality (figure 6(c)). Prior year
precipitation, vapor pressure deficit and drought, as
mentioned above, also affected spruce mortality. It is
known that prior year climate conditions have a sig-
nificant impact on current year growth. Thus, tree ring
width depends 20–43% on prior year growth condi-
tions (Kagawa et al 2006, Skomarkova et al 2006). Pre-
vious year water accumulation in soil has a positive
effect on larch (Larix gmelinii) growth (Kharuk et al
2015). Previously, Colenutt and Luckman (1991)
showed that Engelmann spruce (Picea engelmannii
Parry), alpine fir (Abies lasiocarpa (Hook.) Nutt.), and
larch (Larix lyallii Parl.) are strongly influenced by the
precipitation and growing conditions of the previous
year. Bond-Lamberty et al (2014) found that both cur-
rent- and previous-year higher minimum and max-
imumair temperatures exerted a negative influence on
tree growth, while precipitation and climate moisture
index had a positive effect.

Along with climate variables, spruce mortality is
also correlated with late spring frosts (r=0.5;
figure 4(e)). Spruce is known for its sensitivity to late
frosts that kill ‘flushed’ apical shoots (Lesnaya Ency-
clopedia 1985). In contrast, winter cloud cover is nega-
tively correlated (r=–0.37) with spruce mortality.
That should be attributed to reduced winter desicca-
tion supported by the observed negative correlation of
spruce mortality air humidity during winter months
(r=–0.55). Climatograms also showed an increase in
atmospheric drought in December over recent dec-
ades (figures 3(e), (f)).

It is known that drought-weakened trees are tar-
gets for insect and fungal attacks (e.g., Fettig et al 2013,
O’Connor et al 2015). Thus, prior year water stress
weakens trees, which become susceptible to phyto-
pathogen attacks. Indeed, the spruce mortality in
Belarus was followed by bark beetle outbreaks and
increased root fungi growth (e.g., Sarnatskii 2012,
Sazonov 2013, Sazonov et al 2013). Similar synergetic
drought and biotic impacts were reported for Abies
sibirica stands in the East Sayan Mountains, Siberia
(Kharuk et al 2015). This supports the finding that
water stress was the primary cause of spruce mortality
in Belarus, whereas insect and fungi attacks are co-fac-
tors. Similarly, in studies of Engelmann spruce mor-
tality in Colorado, USA, Hart et al (2014) also
considered drought stress (i.e., a decrease in host tree
defenses) as a trigger for spruce beetle outbreaks.
Extensive beetle outbreaks across the Engelmann
spruce range are expected in the western United States
as a consequence of the climatic trend toward warmer
and drier conditions (O’Connor et al 2015). The latter
agrees with the concept of multiple mechanisms of
drought-induced mortality (hydraulic failure, xylem

embolism, and biotic attack; McDowell et al 2008,
Andregg et al 2013, Fettig et al 2013, Millar and Ste-
phenson 2015). Other animal induced impacts (e.g.
bark peeling by moose and elk) on spruce mortality in
Belarus have been documented for young trees within
plantations, but not formature trees (Shatravko 2013).

5. Conclusion

Widespread spruce stand mortality in Belarus was
triggered by repeated drought episodes in synergy with
pest and phytopathogen attacks, and that is a part of
the broader phenomenon of spruce mortality in
Lithuania, Latvia, Ukraine and European Russia
(figure 1). This phenomenon indicates spruce vulner-
ability to increase in drought, which raises the question
of spruce replacement by drought-tolerant species.
One possible adaptation is the introduction of
drought-tolerant species (for example, Larix sp. or
Pseudotsuga menziesii) to Belarus forests. According to
climate models (Climate Change 2014), a future
increase in negative effects is highly probable. Increas-
ing ambient temperature and drought, besides weak-
ening trees, will stimulate pest outbreaks, which in
synergy with negative climate impacts may result in
the mortality of dark needle forest stands across a
significant part of their range (Raffa et al 2008, Gau-
thier et al 2015,Millar and Stephenson 2015).
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