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Abstract
Wetlands are globally important ecosystems that provide critical services for natural com-

munities and human society. Montane wetland ecosystems are expected to be among the

most sensitive to changing climate, as their persistence depends on factors directly influ-

enced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and

climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative

to what is available for other ecosystem types. Here, we develop and demonstrate a new

method for projecting climate-induced hydrologic changes in montane wetlands. Using

observed wetland water levels and soil moisture simulated by the physically based Variable

Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models

relating soil moisture to observed wetland water levels to simulate the hydrologic behavior

of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wet-

lands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynam-

ics in many cases, though were less robust in others. We then used these models to a)

hindcast historical wetland behavior in response to observed climate variability (1916–2010

or later) and classify wetland types, and b) project the impacts of climate change on mon-

tane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emis-

sions scenario). These future projections show that climate-induced changes to key driving

variables (reduced snowpack, higher evapotranspiration, extended summer drought) will

result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to sys-

tematic reductions in water levels, shortened wetland hydroperiods, and increased probabil-

ity of drying. Intermediate hydroperiod wetlands are projected to experience the greatest

changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-

drying ephemeral wetlands will likely reduce wetland habitat availability for many species.
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Introduction
Wetlands are universally recognized as a globally important ecosystem type that provides food
and habitat to a wide range of aquatic and terrestrial species. Wetlands also influence local
hydrologic processes (e.g. groundwater recharge, surface water storage, and filtration) and bio-
geochemical cycles (nutrient cycling, carbon sequestration, sediment and contaminant trans-
port) [1–7]. Wetlands are widely considered to be among the most vulnerable ecosystems to
climate change [1, 3–4, 8–9], particularly in montane and alpine areas that are already
experiencing accelerated effects of climate change such as reduced snowpack [2–4, 10–11].
However, the vulnerability of montane wetlands to climate change has not been quantified due
in part to a dearth of empirical data and methods for modeling wetland dynamics. Data con-
straints also exacerbate a broader impression that these diverse and dynamic ecosystems may
be too complex to model because of limited ability to characterize the hydrologic details in spe-
cific locations.

Mountain wetlands remain far less impacted by anthropogenic disturbance in comparison
to those in the lowlands where water withdrawal, land-use change, and direct destruction (e.g.
draining or filling) have caused substantial losses of wetlands over the past two centuries (e.g.
>50% loss in the contiguous U.S.) [12]. For this reason, wetland data from alpine regions are
an important resource for understanding baseline patterns and processes of hydrologic varia-
tion over time as a function of climate. Also, as climate change accelerates, impacts on montane
and alpine areas are expected to intensify [3–5]. In the western U.S. where snow is an impor-
tant component of the hydrologic cycle [13–16], increased warming in all seasons and pro-
jected decreased summer precipitation are likely to result in loss of mountain snowpack,
increased evapotranspiration and increased soil-moisture stress in late summer [17–25]. We
hypothesize that these hydrologic impacts would also result in loss of sensitive montane wet-
lands and systematic, landscape-scale changes in wetland structure and function in areas that
are otherwise highly protected, such as National Parks andWilderness Areas. These changes
compound lower elevation losses of wetlands due to human development [12].

Hydrologic changes and potential shifts in the distribution of wetlands across montane
landscapes could have substantial consequences for wetland species, ecosystems, and their
extended biological networks. Because many wetland species sort along coarse hydrologic gra-
dients, such as duration of inundation or wetland permanence, as a function of life history and
developmental requirements [26–27], their vulnerability to climate-induced habitat loss will
not be distributed evenly [28–29]. Therefore understanding climate impacts on different
hydrologic classes of wetlands is critical to assessing vulnerability of particular species or types
of wetland ecosystems, and more generally to understanding how the wide range of ecological
services wetlands provide is likely to change over time.

The shortage of empirical data on wetland dynamics, coupled with the inherent complexi-
ties of studying wetlands (e.g. sheer number of sites, diverse range of wetland types, highly
dynamic hydrologic responses, etc.), has allowed an untested assumption to persist, i.e. that
wetlands are simply too complex to model with the limited site specific information and data
that are available. The challenges are real: existing methods for wetland hydrologic modeling
largely focus on individual sites and require a detailed understanding of fine-scale surface and
subsurface hydrologic processes (e.g. [1, 30–31]). The data necessary for these models are
almost universally lacking for wetlands in general and for small wetlands in particular, which
are largely defined by the microtopography of their surroundings and connections to ground-
water and small streams. Where data and models are available, a key limitation of such fine-
scale approaches is that they generally cannot be applied to answer questions of how wetland
dynamics will respond to climate change at the landscape scale. The limited approaches that do
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exist for predicting landscape-level response require longer time series of hydrometeorological
data than are generally available (e.g. WETLANDSCAPE models) [1, 32].

Here we present new methods not only for reconstructing historical dynamics when
observed hydrologic data are limited, thereby filling important data gaps, but also for project-
ing the impacts of future climate change on wetland water levels. We draw upon an empirical
dataset (125 ponds across 5 National Parks and Wilderness Areas in the U.S. Pacific North-
west) to develop a new set of hydrologic models for four classes of montane wetlands that
vary in hydroperiod. Our methods generate projections at two spatial scales: a) individual
wetlands and b) landscape scales. The approaches we develop allow us to quantify the com-
bined effects of projected future reductions in snowpack and of warmer and drier summers
on mountain wetlands. Looking forward, these projections can be used to develop testable
hypotheses for wetlands research, develop climate adaptation strategies, and provide specific
decision support for managers tasked with wetlands conservation, restoration, and
management.

Materials and Methods

Wetland classification
We define wetlands broadly as any area where shallow surface water collects. Wetlands exist
on a hydrologic continuum and many different methods of wetland classification exist (e.g.
Cowardin, hydrogeomorphic (HGM)). We use a simple hydrologic classification scheme based
on hydroperiod and wetland sensitivity to climate variability to characterize four ecologically
relevant types of wetlands–ephemeral, intermediate, perennial, and permanent (Table 1). This
approach is similar to other hydrologic classifications based on hydroperiod [33] and volumet-
ric water loss [34] in that it relates inherently continuous hydrologic variation in water perma-
nence and periodicity to more discrete ecological thresholds determined by species’
development and life history requirements (e.g. number of months or years that ponds must
hold water for an insect, frog, or salamander to develop and metamorphose).

Table 1. Hydrologic Classification of MontaneWetland Types.

Wetland
Classification

Hydrologic Characteristics Ecosystem Characteristics

Ephemeral Ephemeral or short-hydroperiod wetlands dry in most years, in
some cases soon after the cessation of snowmelt or seasonal
rains.

Ephemeral montane wetlands are not used by many animals due
to their extremely brief inundation, but may support wetland
plants.

Intermediate Intermediate-hydroperiod wetlands tend to dry in late summer or
early fall in years with low precipitation. During relatively wet
years, they hold water year-round. Water levels fluctuate
considerably during the summer.

Intermediate-hydroperiod wetlands support populations of fast-
developing amphibians, invertebrates with resting egg stages that
can survive desiccation, migratory birds, mesopredators, and
wetland-obligate plants.

Perennial Perennial wetlands do not dry except in the most extreme dry
years, but often lose a substantial percentage of their volume
during dry periods.

Perennial wetlands often support the greatest diversity and
abundance of amphibians and invertebrates, including fast-
developing species and those that require multiple years to
complete larval development in high elevation environments,
while lacking predators such as introduced fish that often reduce
species diversity (Bahls 1992). Wetland-obligate plants, birds,
and mesopredators, may also rely on perennial wetlands.

Permanent Permanent wetlands do not dry and lose a relatively small
percentage of their volume even during unusually dry periods.

Permanent wetlands support a broad range of mammals and
birds, and can be used by the full suite of wetland-breeding
amphibians and most invertebrates, though increased predation
(by native and introduced predators) limits actual occupancy.
Primary poductivity depends in part on the amount of shallow
littoral habitat. Wetland macrophytes are common.

doi:10.1371/journal.pone.0136385.t001
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Quantitatively we define the four wetland types based on average minimum water levels.
Generally shallow ephemeral wetlands dry completely or drop, on average, below 3% of their
maximum water levels. Ephemeral wetlands are functionally dry for most aquatic species in
most years, but may have water for the entire summer in unusually wet periods. Intermediate
wetlands drop to between 3% and 33% of their maximum water levels on average and may dry
completely in some years. Perennial wetlands drop to a mean of 33% to 70% of their maxi-
mum water levels and only in extreme droughts do they dry completely. For permanent wet-
lands (lakes and large ponds), the average minimum water levels generally remain greater than
70% of their maximum water levels and are never dry in the historical record. These four types
represent general hydrologic classes of wetlands that can be related to more detailed hydrogeo-
morphic wetland-classification systems such as those used in U.S. Natural Heritage programs
and for conservation decision making [35–36].

Observed wetland data
We collected detailed data on wetland hydrology (wetland depths and spatial extent) for 121
montane wetlands through in situ physical monitoring (3–6 site visits over the course of the
summer and fall of 2012) in Olympic National Park, Mount Rainier National Park, and North
Cascades National Park (Tables 2 and S1). Field permits for hydrologic monitoring were
granted by the National Park Service (Olympic, Mount Rainier, and North Cascades National
Parks). In a subset of wetlands, we also estimated wetland depths using iButton temperature
dataloggers. To do so, we installed iButtons along transects from the edge of the wetland to the
deepest accessible point in the wetland. We identified the date at which wetland water levels
dropped below each iButton based on changes in the variance in temperature (measured every
two hours). Because air temperatures fluctuate more dramatically than water temperatures, it
is possible to compare temperatures of iButtons along each transect to iButtons placed in the
open air adjacent to the wetland to determine when the iButton was submerged or exposed to
the air. Our physical depth measurements validated the estimates of water level derived from
the iButton transects. This larger 2012 dataset supplemented several smaller historical datasets
that we also used in building the models. These included 1) measured wetland water depths for
7 montane wetlands in Olympic National Park from the summer of 2000, 2) wetland water vol-
ume estimates for 10 montane wetlands in Mount Rainier National Park from June through
September 1992 [34], and 3) multiple years of observed wetland depth data for one

Table 2. Summary of observed wetland data used in the study.

Type Period Number of Wetlands Data Source

Ephemeral Intermediate Perennial Permanent

Mt. Rainier Vol. Year 1992 – – 5 5 Girdner & Larson (1995)

National Park, WA Depth Year 2012 4 9 4 13 Field Measurement, M. Ryan

Depth Year 2012 2 – 2 1 iButton, M. Ryan

Olympic Depth Year 2000 1 – 4 1 Field data, W. Palen

National Park, WA Depth Year 2012 17 19 20 21 Field Measurement, M. Ryan

Depth Year 2012 1 – 4 – iButton, M. Ryan

North Cascades Depth Year 2012 2 – – 1 Field Measurement, M. Ryan

National Park, WA Depth Year 2012 – – – 1 iButton, M. Ryan

Willamette National Forest, OR Depth Years 2003–2006 – 1 1 – Field Measurement, C. Pearl

Deschutes National Forest, OR Depth Year 2003 & 2006 – – 1 – Field Measurement, C. Pearl

Trinity Alps Wilderness, CA Depth Years 2003–2007 – 1 – – Field Measurement, J. Garwood

doi:10.1371/journal.pone.0136385.t002
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intermediate and two perennial wetlands in Oregon [37] and one intermediate wetland in Cali-
fornia [38–39] (Figs 1 and 2 and Tables 2 and S1). In total we used data from 125 wetlands.

Macro-scale hydrologic model
To hindcast over a large number of retrospective years and to project climate-induced hydro-
logic change, we used the macro-scale Variable Infiltration Capacity (VIC) hydrologic model
[40–41], implemented at 1/16th degree resolution (roughly 5 km by 7 km) over the Pacific
Northwest (PNW) and California (CA). The PNWmodel implementation, historical simula-
tions, and climate change scenarios are described in detail by Elsner et al. (2010), Hamlet et al.
(2013), and Tohver et al. (2014) [17–18, 42]. The VIC model implementation over the western
U.S. is described by Salathé et al. (2013) [43]. For given input data including temperature, pre-
cipitation, wind, vapor pressure, net incoming longwave and shortwave radiation, and air pres-
sure, the VIC hydrological model simulates daily water balance variables such as snowpack,
evapotranspiration, runoff, baseflow and soil moisture in three soil layers comprising the first
several meters of soil. Simulations at each VIC grid cell cover an extended historical time
period (water-years (i.e. October 1 to September 30) 1916–2012 for the PNW and 1916–2010
for CA). We used these water balance variables to develop empirical regression models of

Fig 1. Regions with observed wetland data used to calibrate montane wetlandmodels.

doi:10.1371/journal.pone.0136385.g001
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wetland response as described below and to hindcast historical variability of water levels in wet-
lands over 97 (PNW) and 95 years (CA) (Fig 3).

Regression models of wetland water levels
Wetlands even in close proximity to each other can show very different hydrologic behavior
reflecting different pond types and different environments surrounding each wetland. Thus we
first considered each unique wetland, investigated the best predictor per wetland, and used the
best predictor to construct a single regression model as discussed below. This approach allows
us to observe which predictors tend to offer the best fit across wetlands and wetland types,
enabling us to estimate the impacts of climate change at the landscape scale.

As a first step, we used the correlation coefficient (Pearson’s R) to identify the strongest rela-
tionships between observed wetland water level at each site and a suite of daily water balance
variables that were input to, or output from, the VIC models, including precipitation, evapora-
tion, runoff, snow-water equivalent, and simulated soil moisture in the three different layers.
Secondly, we constructed empirical models of wetland response by fitting regression equations
to observed wetland water levels (volumes or depths) using the best-correlated water balance
variable. We used the R (version 3.2.0) packages “stats” and “hydroGOF” to develop regression
models and generate model statistics [44–45]. Because montane wetlands are relatively undis-
turbed by human changes in land use, when making future projections we assumed that the fit-
ted regression relationships between wetland response and the soil moisture of the best-
correlated water balance variable will not change with time. We developed a regression model
using only observed data during drawdown periods because we did not have enough observed
data during the rapid refill seasons to develop robust regression models for these. Also, for this
system, the ecological consequences of altered timing of wetland drawdown and drying are
greater than shifting timing of wetland refill, so we focused on the drawdown cycle for this rea-
son as well.

For most Mount Rainier, Olympic, and North Cascades sites, we had only a single year of
data from which to fit the regression models. However, when multiple-years of observations
were available (e.g. for some sites in Mount Rainier and Olympic National Park and for all sites

Fig 2. Locations of focal field sites in Seven Lakes Basin in Olympic National Park (left) and Mazama Ridge/High Lakes in Mount Rainier National
Park (right) with multiple years of hydrologic data. Points indicate the pond type: red is ephemeral, orange is intermediate, green is perennial, and blue is
permanent.

doi:10.1371/journal.pone.0136385.g002
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Fig 3. Schematic diagram of the method of projecting and hindcasting wetland hydrology using the VIC hydrologic model calibrated with
empirical data and driven by historical or simulated future climate inputs.

doi:10.1371/journal.pone.0136385.g003
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in Oregon and California), we investigated the uncertainty in the projections when fitting to a
single year of data. For Oregon and California sites that showed similar gradual drawdown pat-
terns for observed years, we fitted a separate regression model for each individual year of multi-
ple years of observations, developed simulations for all years using each of these models, and
then calculated the squared correlation coefficient (R2) using all observations and the corre-
sponding simulations for each model. We then used the single-year regression model showing
the highest squared correlation coefficient (R2) for all the available data to simulate historical
wetland response and the associated climate-change response. We used the regression models
fitted to other years to estimate the uncertainty in the simulations due to uncertainty in the
regression parameters for individual years. For the Willamette National Forest site, for exam-
ple, the squared correlation coefficient (R2) for the three regression models using 2003, 2005
and 2006 data to train the regression models, was 0.49, 0.88 and 0.75, respectively. Therefore,
we used the regression model fitted on the 2005 observed data to simulate the historical
response and used the regression models for years 2003 and 2006 to estimate the uncertainty of
the simulation due to uncertainty in the regression fit.

The Mount Rainier and Olympic National Park sites with two years of observed data pre-
sented somewhat different drawdown patterns between years in response to different weather
conditions. For example, one site in ONP showed gradual drawdown for year 2012 but, inter-
mittent drawdown and frequent partial refill events for 2000. Thus, we developed a regression
model using the earlier year’s data (e.g. 2000 data for Olympic National Park and 1992 for
Mount Rainier), which had a greater number of observations and showed more dynamic
changes in water levels. We then used the 2012 data from both regions to validate the regres-
sion models in the context of potentially different patterns of drawdown and refill across years.
We used root mean squared error (RMSE) to evaluate how the regression model developed
using the earlier year’s data performed to simulate the 2012 data.

Climate change scenarios
To simulate potential future changes in water dynamics of individual montane wetlands in the
PNW, we used simulated climate from the ECHAM5 general circulation model (GCM) forced
by the A1B emissions scenario, which approximates the average conditions simulated for the
region by ten different GCMs forced by the same emissions scenario. Climate projections were
downscaled with the Hybrid Delta (HD) method described in detail in Appendix A of Tohver
et al. (2014) [42]. Briefly, the HD method uses quantile mapping techniques to produce the
transformed monthly observed climate data (water-years 1916–2006; a 91-year time series) in
response to 30 years of monthly GCM projections for two future time periods: the 2040s
(2030–2059) and the 2080s (2070–2099). The future monthly values are then used to rescale
the daily values from the observed month to produce a future daily time series. As a result, the
HD approach provides 91 years of observed variability ("1916–2006") for each future time
period, and is directly comparable to the historical record on an event basis from 1916–2006.
Note that for historical runs we extended the VIC runs from 1916–2006 to 1916–2012 in order
to use field data obtained in 2012. However, for climate scenarios we used existing data devel-
oped by Hamlet et al. (2013) [17] that have 91 years of observed variability, projected for future
time periods. For landscape scale projections of the probability of drying for intermediate wet-
lands in Washington, we used an ensemble of ten climate change projections from 10 different
GCMs forced by the A1B scenarios [17]. We report the average of these results.

For California, we used the ECHAM5 A1B scenario based on the Distributed Delta (DD)
downscaling approach that is described by Littell et al. (2011) [46] and Salathé et al. (2013)
[43]. Although, ideally, we would have used data downscaled with the same approach for the
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California sites as we did for the Oregon andWashington sites, these data were the ones readily
available from previous studies. Similar to the HD approach, the DD scenarios construct a
95-year time series for two future time periods, which have the same number of years as the
observations used in the downscaling. Although there are some differences in details between
this downscaling method and the HD approach described above (e.g. length of record, method
by which the changes in climate are applied to the historical time series), for our use here these
differences are not particularly important. Both methods incorporate the spatial distribution of
temperature and precipitation changes from GCMs, and changes in the central tendency of
projected temperature and precipitation in each region are similar in each case.

Historical reconstruction, future projections, and frequency analysis of
wetland dynamics
We estimated the average minimum wetland water level for both the historical runs and two
future scenarios with time series behavior derived from the historical period. The average mini-
mum wetland water levels were used to classify wetland types and evaluate the impacts of cli-
mate change on minimum wetland water levels.

To project changes in the distribution and behavior of wetlands at landscape scales, we
investigated a threshold for wetland drying (when ponds reach 0% of maximum water level)
that can be applied generally across different locations and soil types. To do so, we evaluated
the relationship between wetland drying and “field capacity.” Field capacity is the volumetric
soil water content of soil that is partly saturated, but drains very slowly by gravity. This metric
relates directly to our best predictors (soil moistures, as discussed below). We converted abso-
lute soil moisture values generated by the VIC model to the field capacities that vary with soil
type. We then compared simulated soil moisture with wetland water levels for intermediate
wetlands at Mount Rainier and Olympic National Parks to find a threshold below which wet-
lands tend to dry out. Finally, we used the mean threshold of drying across regions and soil
types as a proxy for intermediate wetland drying for each VIC grid cell in the landscape scale
analysis.

To calculate the probability of drying in each cell we counted the number of water-years for
which the magnitude of soil moisture in the bottom soil layer was less than the drying thresh-
old, and then divided by the total number of water-years. Thus the probability of wetland dry-
ing ranges from 0 to 1, with a higher value indicating more frequent wetland drying. We
calculated the probability of wetland drying for the historical run and for all ten Hybrid Delta
A1B scenarios for the 2080s, averaging the latter results for presentation in the plots. We then
estimated the change in the probability of wetland drying by subtracting the probability of wet-
land drying for the historical run from that for the average value for the 2080s, with a positive
value indicating an increase in the probability of drying for the 2080s.

Results

Historical reconstruction of wetland dynamics
The soil moistures in the middle and bottom soil layers were better correlated with observed
wetland water levels than other water balance variables (S1 Fig). The best predictor differed
among years and regions. Soil moisture in the middle soil layer was the best predictor for most
of wetlands based on observed data in 1992 for Mount Rainier National Park and 2000 for
Olympic National Park (S2 Fig). However the strength of correlations differed substantially
between the 1992 Mount Rainier and 2000 Olympics datasets, with fairly strong correlations
between wetland water levels and middle layer soil moisture in Mount Rainier and far weaker
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correlations and poor overall model performance in the Olympic sites in 2000. Overall, though,
soil moisture in the bottom soil layer was the best predictor for all wetlands except the 1992
Mount Rainier and 2000 Olympics datasets, with fairly robust correlations between simulated
and empirical data (S2 Fig). After choosing the best single predictor for each wetland, we devel-
oped a regression model for each individual wetland.

The R2 values showed that the regression models match empirical observations reasonably
well, with a mean R2 for all for wetland types above 0.8, though a few wetlands (6 out of 125;
4.8%) had an R2 value below 0.6 (Figs 4 and S3). Overall, ephemeral and intermediate wetlands
showed the best model fits, while perennial ponds had the weakest fit among wetland types
(Fig 4). The observed timing and pattern of seasonal drawdown generally were captured well
by simulations for montane wetlands across the majority of our different sites (0.82< R2 <

0.98) (Figs 5 and 6). Fig 5 illustrates representative wetlands for each pond type from Mount
Rainier (left column) and Olympic National Parks (right column), selected from sites with the
most observed data. Exceptions to the overall good model performance were the minimum
water level for the year 2006 for Deschutes National Forest, Oregon (Fig 6A) and the timing of
drawdown for the year 2003 in Trinity Alps Wilderness, California (Fig 6C). For the Deschutes
National Forest, the observed minimum water level for year 2006 was 13% of full capacity but
the simulation minimum was 22–34%. For the Trinity Alps Wilderness site, the wetland started
drawdown about one month later in 2003 compared to the other years but the simulation was
not able to reproduce this timing.

Fig 4. Boxplot of goodness of fit (R2) between observed and simulated data for each wetland type.

doi:10.1371/journal.pone.0136385.g004
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Fig 5. Four representative wetlands in Mt. Rainier National Park, WA (a-d) and in Olympic National Park, WA (e-h) for ephemeral hydroperiod (a,e),
intermediate hydroperiod(b,f), perennial (c,g) and permanent wetland (d,h). Solid circles show observed data that are used for developing regression
model and calculating R2 values and open circles are remaining observed data. Blue lines are simulated wetland levels.

doi:10.1371/journal.pone.0136385.g005
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For sites where multiple years of data existed, we found considerable uncertainty and varia-
tion in model performance (Figs 6 and 7 and S4). For example, different regression models for
the Trinity Alps (CA) site, constructed using different years of data, showed an average differ-
ence of 47 days between the earliest and latest prediction of minimum water levels in summer
(Fig 6C). While the regression model for Mount Rainier National Park developed based on
1992 data (0.83< R2 < 0.99; 1.60< RMSE< 8.91) also captured the observed drawdown at
the same wetlands in 2012 (1.77< RMSE< 15.63) (Fig 7), model performance across different
years was poor for Olympic National Park. For Olympic National Park, the regression model
based on 2000 observations (0.51< R2 < 0.81; 4.28< RMSE< 19.67) missed the timing of
drawdown and/or minimum water levels observed in 2012 (17.57< RMSE< 49.12) (S4 Fig).
We therefore might expect comparable levels of uncertainty in the performance of the single-
year regression fits for the broader suite of wetlands at Mount Rainier, Olympic and North
Cascades National Parks. These issues related to the performance of single-year regression fits
once again highlight the need for improved monitoring of wetlands over multiple years.

Fig 6. Observed wetland water levels compared with simulation using the regression models for a) Deschutes National Forest, OR, b) Willamette
National Forest, OR, and c) Trinity AlpsWilderness, CA.Dark blue lines are produced by the regression equation deriving from the best fit from all
available years. Blue bands show the range of uncertainty associated with alternate regression parameters deriving from other years of data.

doi:10.1371/journal.pone.0136385.g006

Wetland Transitions with Climate Change

PLOSONE | DOI:10.1371/journal.pone.0136385 September 2, 2015 12 / 24



Fig 7. Observed wetland water level for year 1992 (a-c) and for year 2012 (d-f) for ponds at Mount Rainier National Park compared with the
simulated wetland water levels using the regression model that were developed based on 1992 observation. Solid circles show observed data that
are used for developing regression model and/or for calculating R2 values and open circles are the other observed data. RMSE is the root mean squared
error, which allows comparison of model fit for the two datasets.

doi:10.1371/journal.pone.0136385.g007
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In investigating the threshold for wetland drying we found that, on average across regions,
wetland drying occurred when soil moisture was at roughly 100% field capacity, though there
was considerable variation among sites (S5 Fig). Therefore to have a single metric for land-
scape-scale analysis, we use 100% field capacity as a mean threshold of drying and proxy for
intermediate wetland drying for each VIC grid cell. These values help quantify systematic
changes in wetland response over large areas in response to climate change, but probably do
not represent the details of individual wetland responses very well.

Future climate projections of wetland dynamics
We found consistent projected effects of climate change on all classes of wetlands, including
earlier drawdown, a more rapid recession rate in summer, and reduced minimum water levels
(Figs 8 and S6). Overall, water levels in ephemeral or intermediate wetlands are most sensitive
to climate change (Fig 8A, 8B, 8E and 8F). In ephemeral or intermediate wetlands, the effects
of earlier drawdown, more rapid summer recession rate, and reduced minimum water levels
result in a longer dry season in summer (Figs 8A, 8B, 8E and 8F and S6C). Results for perennial
and permanent wetlands also showed earlier drawdown and/or reduced water levels in future
climates (Figs 8C, 8D, 8G and 8H, and S6A and S6B). Our projections also revealed variations
in the magnitude of changes that were dependent on wetland type and location.

These climate-induced shifts in hydrologic behavior across all types of montane wetlands in
our study for which we had site specific models support the hypothesis that climate change will
force transitions among wetland types (Fig 9). By the 2080s, 58% of intermediate wetlands are
projected to become ephemeral hydroperiod wetlands (17/31 sites), whereas 22% of perennial
wetlands are projected to become intermediate wetlands (7/32 sites) and 3% to become ephem-
eral wetlands (1/32 sites) (Fig 9B). Thirty-two percent of permanent wetlands are projected to
become perennial (12/38 sites) (Fig 9B).

Considered at the landscape scale, the projected effects of climate change on future proba-
bilities of drying of intermediate wetlands in mountainous areas of Washington vary geo-
graphically but increase overall in higher elevation regions (Fig 10). Lowland areas are
typically below the soil moisture threshold every year, and the probability of drying (by this
measure) does not change in these areas, thus our model is not appropriate for assessment of
lower elevation regions (grey areas on the maps). Similarly, many mid-low elevation regions
show little change or even a small shift towards becoming wetter (light green and purple
regions on Fig 10C). At higher elevations, both along the crest of the Washington Cascades
and in the Olympic Mountains, the probability of drying for intermediate wetlands changes
substantially. Under the 20th century climate, many cells had a probability of drying of 0.5 or
lower for intermediate wetlands (Fig 10A). By the 2080s, the projected probability of drying
is greater than 0.8 for all but a few model cells (Fig 10B). The largest changes in probability of
drying were simulated for cells that historically represented the wettest regions in the model
domain.

Discussion
In general, the regression models produced for this study successfully capture historical wet-
land dynamics during the ecologically important summer drawdown seasons for four different
wetland types. However, the regression models were not as robust in capturing different behav-
ior in different years, highlighting the need for longer (>5 year) observed datasets. Addition-
ally, datasets with higher within-year resolution would strengthen the regression approach and
enable us to better understand both sources of model error (e.g. geology and soil types,
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Fig 8. Projected wetland response to climate change for sites in Mt. Rainier National Park, WA (a-d) and in Olympic National Park, WA (e-h) for
ephemeral hydroperiod (a,e), intermediate hydroperiod (b,f), perennial (c,g) and permanent wetlands (d,h). Blue solid lines are wetland hydrographs
for representative years 1998 (a-d) and 1985 (e-h) and pink and read dashed lines show wetland hydrographs of year 1998 (a-d) and 1985 (e-h) with climate
change perturbation for the 2040s and 2080s, respectively.

doi:10.1371/journal.pone.0136385.g008
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Fig 9. Scatterplots showing the slope of wetland drying versus the average of annual minimum a) for historical runs and b) for the 2080s.Reds are
ephemeral hydroperiod wetlands, oranges are intermediate hydroperiod wetland, greens are perennial wetlands and blues are permanent wetlands.

doi:10.1371/journal.pone.0136385.g009
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topography, distance from weather stations, etc.) as well as the uncertainty in the range of
potential climate impacts and the hydrologic drivers that underlie impacts on wetlands.

Nonetheless, these models are an important first step in understanding wetland response to
climate, and strongly suggest that, looking forward, climate change will significantly alter water
availability for individual wetlands, which will lead to substantial future shifts in the distribu-
tion and composition of wetlands across montane landscapes of the Pacific Northwest. These
hydrologic shifts imply widespread changes in the many ecological roles served by wetlands,
including: habitat for plants and animals, water storage, groundwater recharge, water quality
(filtration), and shifts in nutrient cycling. For wetland-reliant species like amphibians and
invertebrates that are particularly sensitive to the timing of water availability in montane areas,
the projected changes in wetland hydrologic response are likely to reduce habitat availability
and recruitment, and cause declines or extinctions in some regions [28–29].

Historical model performance
Soil moisture in the bottom soil layer was the best predictor of wetland drawdown for most
of the sites investigated, supporting the hypothesis that wetland drawdown cycles are fre-
quently associated with relatively slow drainage and evapotranspiration processes. The
regression models demonstrated generally good performance across all four types of mon-
tane wetlands within years, successfully capturing the general time series behavior of each
wetland. However, regression models performed better in some years than others and simu-
lations were not able to capture all observed variability (e.g. overestimated wetland minimum
water level during 2006 in the Deschutes National Forest site, the error in drawdown timing
in the Trinity-Alps in 2003, and the missed drawdown timing and/or minimum water levels
in Olympic National Park in 2012). These spatial and temporal variations in model perfor-
mance are expected, and are seen in other comparisons between simulated and observed data
at fine spatial scales, such as snow water equivalent measured at individual snow courses
[15]. One reason for the discrepancy is that local precipitation is often imperfectly captured
in the driving data sets for the VIC model at high elevations (e.g. data from meteorological
stations at lower elevations are interpolated to higher elevations in landscapes with high oro-
graphic variation). The estimated uncertainty using multiple years of observations in the
Oregon and California sites confirmed that our approach is fairly robust in some regions
and/or years. However, at times uncertainties are broad enough to be biologically meaningful
(e.g. in terms of evaluating risk to particular species). Likewise, the failure of the regression
models to effectively capture strongly different patterns of wetland response across very dif-
ferent weather years in Olympic National Park shows that this approach is not universally
robust. Additional water-level data would help better evaluate the performance of the mod-
els, and likely also improve their performance by allowing additional explanatory variables to
be included in the regression models.

Climate impacts on wetlands
Our climate-change projections demonstrate that all four of the wetland types on which we
focused (ephemeral, intermediate, perennial, and permanent wetlands) are likely to experience

Fig 10. Map of the difference between historical probability of drying and that of the 2080s for
intermediate wetlands in the mountains of WesternWashington state. Projections for the 2080s are the
average value for all ten GCM A1B scenarios. Colored grid cells are above 250m elevation, the region in
which our projections are most relevant. Topographic contour intervals are 750m.

doi:10.1371/journal.pone.0136385.g010
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hydrologic changes in response to future climate. However, the intensity and duration of cli-
mate change effects will differ markedly among the four types. These changes are also likely to
lead to transitions along the continuum of wetland types captured in our hydrologic classes.
Specifically, some ephemeral wetlands may essentially disappear and more than half of cur-
rently ecologically productive intermediate montane wetlands are projected to become ephem-
eral wetlands by the 2080s, as more rapid recession rate and earlier drawdown cause wetlands
to reach their bottom volume earlier, resulting in more frequent and longer dry seasons in sum-
mer. For some perennial wetlands (e.g. Washington sites), transitions from perennial to inter-
mediate wetlands or even to ephemeral wetlands are also projected as wetland water levels
drop under climate change. Driving these changes is the fact that most montane wetlands are
located either in snow-dominated watersheds or mixed-rain-and-snow watersheds where
snowmelt is a key water source in late spring and summer. Because a warmer climate is likely
to cause less snow accumulation in winter and earlier snowmelt in spring, montane wetlands
are particularly susceptible to climate change, especially in combination with projected drier
summers [17–18].

Comparison between wetlands in Washington and those in Oregon and California also
shows that wetlands with seemingly similar hydrologic characteristics are likely to have dif-
ferent sensitivity to climate change depending on local conditions. For example, perennial
wetlands in our focal sites in Willamette and Deschutes National Forests, Oregon are likely
to be less sensitive to climate change in terms of minimum water level compared to those in
Washington. For perennial wetlands in Oregon, simulated summer soil moisture in the VIC
simulations was close to residual values nearly every year but the wetlands did not dry out
(maintaining ~20% of their maximum depth) under the current climate. This behavior sug-
gests that these wetlands are coupled to more extensive deep groundwater sources, not cap-
tured in the VIC simulations, than wetlands in Washington. For the climate-change
scenarios, wetlands in Oregon and California are projected to have earlier drawdown and
reach their minimum water level earlier, but without drying out. This supports the argument
that wetlands connected to deeper groundwater sources are less vulnerable to increased fre-
quency of drying when compared to surface water-fed wetlands [47]. However, because the
VIC model does not include a deep groundwater component, more sophisticated modeling
approaches (such as the use of fine scale groundwater models) may be required to fully cap-
ture these effects [48–49].

Ecological implications of future wetland change for wetland biota
The broad range of ecological roles played by wetlands means that altered hydrology across
whole landscapes will reverberate in many ways, ranging from shifts in wildlife habitat to water
storage to patterns of nutrient transfer and transformation. Patterns of soil inundation, for
example, determine rates of carbon sequestration and release, nitrogen transformations, and
other nutrient cycles. Likewise, changes in temporal pulses of peak water affect local pond
metabolism and primary productivity, the structure of plant communities, and patterns of
wildlife connectivity [6]. Montane wetlands serve as critical habitat for a wide variety of species,
many of which are adapted and sensitive to particular hydrologic regimes that are projected to
shift under future climates.

For wetland-reliant species like amphibians and invertebrates that require minimum dura-
tions of water availability to breed and complete aquatic life stages, the projected changes in
wetland hydrologic response are likely to reduce the number of sites available for breeding,
may affect larval densities, individual correlates of fitness such as size at metamorphosis, and
reduce recruitment success [29, 50–51]. While many species will be affected by changes in both
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the timing and frequency of drying, those that metamorphose within a single summer may be
more sensitive to changes in the timing of wetland drying. In contrast, species that require mul-
tiple years to complete larval development are likely to be most sensitive to changes in the fre-
quency of drying [28]. In wetlands not at risk of drying entirely, ecological effects may also
depend on how thermal conditions in ponds change as the climate warms and water levels
drop [28, 33, 52]. Finally, as the distribution of wetland hydroperiod changes, so will the spatial
distribution of suitable wetland habitats. This may affect important drivers of population and
community dynamics such as population connectivity, synchrony, and rates of recolonization
[28, 53]. Increased reproductive failures due to drying would further alter local and regional
extinction rates [29, 54].

For amphibians in particular, already known to be in decline in many montane regions, cli-
mate impacts are likely to interact with non-climate threats such as disease, pollution, and the
presence of introduced fish [28, 55–58]. Amphibians and invertebrates are also important prey
for many montane species, so population declines in these assemblages could propagate up
food webs, negatively affecting the birds, non-avian reptiles, and mammals that rely on them as
prey [59–60]. Overall, species’ exposure will depend on what kinds of wetland habitat they use,
the current distribution of wetland types across landscapes, and the degree of change in spatial
and temporal hydrologic patterns under future climates [28].

Next steps
Our approach demonstrates a promising first step in relating simulated macro-scale hydrologic
variables to observed wetland hydrologic behavior, and projecting the impacts of climate vari-
ability and change on montane wetlands in Washington, Oregon, and California. Our relatively
robust results across different wetland types, especially given the limited data on which to build
regression models, contradict the assumption that wetland dynamics are by definition too
complex to model. Challenges remain, however. Because our methods were applied mostly in
wetlands with at most a few years of observed hydrologic data (often only a single year),
extending these approaches to confirm the robustness of our approach over different ecore-
gions, additional wetland types, and across a longer time series are essential next steps. These
models also need to be coupled to better on-the-ground or remote sensing-derived data on wet-
land occurrence and type so that the most useful predictions about historical and/or future wet-
land changes can be made (e.g. existing wetland maps for Mount Rainier National Park miss
>50% of the small, biologically productive wetlands that we discuss here) [61]. New remote-
sensing methods also make it possible in some cases to reconstruct the historical hydrologic
dynamics of wetlands [62], and these in turn provide important validation datasets for retro-
spective modeling studies. Pairing improved maps with VIC hydrologic projections across
large spatial scales will make it possible for the first time to identify hotspots of climate risk to
wetlands, how these may interact with other stressors [28]. Overall, however, the models pre-
sented here offer a first step in beginning to fill the gap in scientific resources for wetland con-
servation, vulnerability assessment, and climate adaptation planning at both local and regional
scales.

Supporting Information
S1 Fig. Correlation coefficients between observed water level and simulated water balance
variables such as precipitation (precip), evapotranspiration (evapot), runoff, soil moistures
in the top (soilm1), middle (soilm2) and bottom (soilm3) layers, and snow water equivalent
(swe).
(TIF)
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S2 Fig. Correlation coefficients between observed water level and middle (top panel) and
bottom soil moisture layers (bottom panel) depending on wetland types, regions, and years
when observed data are available.
(TIF)

S3 Fig. Six wetlands whose goodness of fit (R2) between observed and simulated data are
less than 0.6. Solid circles show observed data that are used for developing regression model
and calculating R2 values and open circles are remaining observed data. Blue lines are simu-
lated wetland levels.
(TIF)

S4 Fig. Relationship between percentage field capacity and wetland drying for intermediate
wetlands across study regions. Spray Park, and Palisades are in Mount Rainier National Park.
(There were no intermediate wetlands by our definition in Mazama Ridge.) Deer Lake, Pot-
holes, Clear Lake, and Upper Lena are in Olympic National Park.
(TIF)

S5 Fig. Observed wetland water level for year 2000 (a-c) and for year 2012 (d-f) for Olympic
National Park compared with. the simulated wetland water levels using the regression
models that were developed based on 2000 observation. Solid circles show observed data that
are used for developing regression model and/or for calculating R2 values and open circles are
the other observed data. RMSE is the root mean squared error.
(TIF)

S6 Fig. Projected wetland response to climate change for a) Deschutes National Forest, OR,
b) Willamette National Forest, OR, and c) Trinity Alps Wilderness, CA. Blue solid lines are
wetland hydrographs for years 2003–2004 and red dashed lines show wetland hydrographs of
years 2003–2004 with climate change perturbation for the 2080s.
(TIF)

S1 Table. List of wetlands used in analysis. Under site locations, MRNP is Mount Rainier
National Park, NCNP is North Cascades National Park, and OLYM is Olympic National Park.
�Our classifications are based on the long-term dynamics of wetlands from the VIC runs. As a
result, some of our classifications at Mazama Ridge differ from Girdner and Larson’s classifica-
tion from the very dry summer of 1992.
(DOCX)

S2 Table. List of parameters used for regression models shown in Figs 5–7 and S4.
(DOCX)
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