
RESEARCH ARTICLE

Asynchronous Changes in Vegetation,
Runoff and Erosion in the Nile River
Watershed during the Holocene
Cécile L. Blanchet1,2*, Martin Frank1, Stefan Schouten2

1. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2. Department of Marine Organic
Biogeochemistry, NIOZ-Royal Netherlands Institute for Sea Research, ‘t Horntje (Texel), The Netherlands

*cblanchet@geomar.de.

Abstract

The termination of the African Humid Period in northeastern Africa during the early

Holocene was marked by the southward migration of the rain belt and the

disappearance of the Green Sahara. This interval of drastic environmental changes

was also marked by the initiation of food production by North African hunter-

gatherer populations and thus provides critical information on human-environment

relationships. However, existing records of regional climatic and environmental

changes exhibit large differences in timing and modes of the wet/dry transition at

the end of the African Humid Period. Here we present independent records of

changes in river runoff, vegetation and erosion in the Nile River watershed during

the Holocene obtained from a unique sedimentary sequence on the Nile River fan

using organic and inorganic proxy data. This high-resolution reconstruction allows

to examine the phase relationship between the changes of these three parameters

and provides a detailed picture of the environmental conditions during the

Paleolithic/Neolithic transition. The data show that river runoff decreased gradually

during the wet/arid transition at the end of the AHP whereas rapid shifts of

vegetation and erosion occurred earlier between 8.7 and ,6 ka BP. These

asynchronous changes are compared to other regional records and provide new

insights into the threshold responses of the environment to climatic changes. Our

record demonstrates that the degradation of the environment in northeastern Africa

was more abrupt and occurred earlier than previously thought and may have

accelerated the process of domestication in order to secure sustainable food

resources for the Neolithic African populations.
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Introduction

The Sahara Desert is presently one of the most arid regions on Earth, but also

experienced some of the most drastic environmental changes of the past 10,000

years. During the African Humid Period (AHP, ,10,000 to ,6,000 calendar years

before present, hereafter referred to as ka BP), monsoonal rains reached areas of

the Sahara Desert much further north than today and permitted the development

of grasslands and water bodies that hosted large herds of wild game [1]. Human

populations thrived in this fertile environment and occupied a large part of the

nowadays hyper-arid desert [2]. Due to decreasing summer insolation in the

intertropical zone (i.e., between 20˚S and 20˚N), the rain belt and the vegetation

receded to the South and forced the human populations to leave the Sahara at

,6.5 ka BP [2, 3]. It was during this period of large environmental changes that

major societal reorganizations occurred, such as the implementation of

pastoralism and agriculture into human lives, as well as the development of

collective rituals and religious beliefs [3, 4]. Uncontroversial archeological

evidence demonstrates the presence of domesticated cattle in human settlements

from ,8 ka BP onwards in northern Egypt (Nabta) [5–7]. There is an ongoing

debate as to whether North Africa has been a center of domestication or whether

the domesticated cattle found there originated from the Near East [7]. In any case,

North Africa played a decisive role as a focal center and a corridor for the dispersal

of domesticates throughout the African continent [6]. Furthermore, the initiation

of food production in NE Africa occurred with a delay of about 2000 years as

compared to the Fertile Crescent of the Near East and exhibited a very distinctive

pattern. Archeological evidence in NE Africa suggests that animal domestication

occurred without agriculture but within mobile hunter-gatherer groups and post-

dated the development of pottery [8]. The role of the major local environmental

changes and their influence on these different models of food production has not

yet been clearly determined.

The environmental degradation at the end of the AHP has been considered an

important factor for the introduction of domesticates in Neolithic populations

[4]. However, the exact timing of the wet-dry transition in NE Africa is still

debated. A reconstruction of environmental changes obtained from geological and

archeological data showed a gradual decline in rainfall and a southward retreat of

the vegetation during the Holocene [2]. Such a gradual transition was also

observed in the pollen and sedimentological record of Lake Yoa (central Sahara)

for the past 6 kyr [9] and in the speleothem record of paleo-rainfall on the Oman

Peninsula between 8 and 2 ka BP [10]. This view has recently been challenged by

the reconstruction of the wet-dry transition within in a few centuries around

5.5 ka BP from a sediment core off Somalia, similar to records from western

Africa [11]. These discrepancies question the exact role of environment-human

relationships at the beginning of the Holocene.

Here we present an alternative view on the evolution and the timing of

environmental changes during the Holocene by reconstructing conjointly the

changes in vegetation, erosion and rainfall dynamics from the same sedimentary
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archive. This allows the establishment of a precise timeframe for the different

processes in order to understand their causal relationships and provides a detailed

environmental context for human evolution in North Africa. We used sediment

core P362/2-33 that was retrieved from the Nile deep-sea fan at 700 m water

depth [12, 13] (Fig. 1). The unique feature of this 6-m long core is a 5-m thick

section of finely laminated sediments, which were deposited during the AHP and

which are a local expression of sapropel S1 [13]. These sediments offer a very high

temporal resolution of several mm/year and provide an integrated record of past

environmental changes within the Nile watershed. During the AHP, the drainage

area of the Nile was significantly larger than today due to the contribution from

lake and river systems located in the present-day Sahara Desert [1, 14]. The fluvial

input of particulate and dissolved matter that has been stored in sediments on the

Nile deep-sea fan is thus a unique source of information on past environmental

changes in NE Africa.

Material and Methods

Marine sediment core P362-2/33 (700 m water-depth, 31 4̊0.51N; 29 4̊5.00E) was

retrieved during the project ‘‘West Nile Delta’’ funded by RWE-Dea but not

specifically for the purpose of the present study. The cruise permit 201–2008 was

issued on the 21.01.2008 by the Egyptian Ministry of Defense (Authority of

Armed Forces Operations, through the Naval Forces based at Alexandria Naval

Base) for RWE-Dea. The core location is in public area. No human or vertebrate

animals were used during this study.

The sedimentation on the Nile deep-sea fan is largely controlled by the seasonal

discharge of the Nile River (especially at the location of core P362/2-33, which is

in the vicinity of the most active Rosetta Canyon) [12]. Precipitation patterns at

the source of the Nile River largely determine sediment provenance: While the

White Nile and Sobat River contribute a minor part of the annual sediment load

(3.5%). but provide a quasi-constant flow of water to the Nile, the Blue Nile and

Atbara River provide the major part of the annual sediment load (96.5%) mainly

during boreal summer (Fig. 1a) [15]. Eolian dust originating from North African

sources and hemipelagic sedimentation (diatoms, foraminifera) also contribute to

sedimentation at the core location during the spring and winter months [13].

Description and age control of sediment core P362/2-33

A detailed description of core P362/2-33 and the age model were published

previously in ref. [13]. The upper 70 cm of the 6-m long sediment core consist of

brownish to greyish bioturbated sediments, below which faint laminations are

observed between 75 and ,105 cm core depth. Well-preserved millimeter-scale

laminations are observed below 140 cm core depth and most probably result from

deposition of highly dense, suspension-rich (hyperpycnal) flows formed by

particle-laden seasonal Nile flood plumes in the water column [16]. The age

Holocene Paleoenvironments in the Nile River Watershed
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model of the sediment core was based on fourteen 14C ages of fossil planktonic

foraminifera shells, measured at the Leibniz-Laboratory for Radiometric Dating

and Isotope Research (University of Kiel). Correction of reservoir ages and

calibration of the 14C ages are described in ref. [13]. The core covers most of the

Holocene, with the bottom of the core being dated at ,9000 14C yrs BP (9.5 ka

BP) and the uppermost sediment sections were deposited prior to 1800AD.

Sedimentation rates vary from ,650 cm/kyr in the lower part of the core to

,8 cm/kyr in the upper part.

Stable oxygen isotope of foraminifera

Stable oxygen isotopes (d18OC) were measured every 3 cm on the planktonic

foraminifera G. ruber (white and .250 mm) at the GEOMAR (n5176) (S1 Table).

The sediment samples were washed and dry-sieved and ,20 specimens were

Fig. 1. Map of the present-day land cover in northern Africa. A: Location and averaged radiogenic isotope composition of the three main sources of
sediments to the Nile deep-sea fan [44]. B: Types of vegetation and estimated percentage of trees at present in Northern Africa [58]. The gray color
represents the Sahara Desert, which is presently non-vegetated. The course of the Nile River is represented by the dark blue line. The location of core P362/
2-33 is indicated by the red star. The present-day northern reach of the summer and winter African Rain Belt (ARB) are depicted as red and blue dashed
lines, respectively.

doi:10.1371/journal.pone.0115958.g001

Holocene Paleoenvironments in the Nile River Watershed
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picked, crushed and gently cleaned with ultrapure (Milli-Q) water. The shells were

dissolved in orthophosphoric acid at 70 C̊ in a Kiel II carbonate device and the

CO2 released was analyzed by a Thermo Scientific MAT 252 isotope ratio mass

spectrometer (IRMS). The 18O/16O ratios are reported in % relative to the

Vienna-Pee Dee Belemnite (VPBD) standard, where: d18O5[((18O/16O)sample/

(18O/16O)VPDB)-1]*1000. Analytical precision of ,0.06 % for the d18O

measurements was determined from repeated analyses of a Solnhofen limestone

which is calibrated against NBS19 as internal standard.

Radiogenic neodymium and strontium isotope signature of detrital

sediments

The methodology used for extracting neodymium (Nd) and strontium (Sr)

signatures from detrital sediments is similar to that described in ref. [13].

However, the set of samples published in ref. [13] (a few grain-size fractions) is

very different to the one we present here (bulk sediment measurements for the

whole core), which is unpublished. The bulk sediment samples (,3 g) were first

decarbonated (using a buffered acetic acid solution, pH ,4.5), then leached to

remove any authigenic ferro-manganese coatings [17] (using a buffered

hydroxylamine hydrochloride solution, pH ,3.9) and finally ,0.05 g of the

homogenized detrital sediment was totally dissolved (using Aqua Regia, HNO3

conc. and HF conc.) (S2 Table). The samples were purified and separated using

standard ion-chromatography procedures [18, 19]. The Nd and Sr isotope

compositions were measured on a Nu Instruments multi-collector inductively-

coupled plasma mass spectrometer at GEOMAR. Blank concentrations were

negligible for isotopic analyses (,0.3 ng for Nd and ,3,4 ng for Sr).

External reproducibility (2s) was first estimated by repeated measurements

of in-house SPC and SPEX standards for Nd and the AA standard for

Srranging from ¡0.14 to ¡0.63 eNd units (¡14–63 ppm, n557) for Nd and

from ¡0.000009 to ¡0.000048 (¡12–68 ppm, n558) for Sr. External

reproducibility was further assessed by repeated measurements of the JNdi

standard for Nd isotopes and the NBS SRM 987 standard for Sr isotopes, and

yielded 2s uncertainties of ¡0.3 eNd units (¡30 ppm, n557) and ¡0.00003

(¡42 ppm, n558) for Sr. The isotope results reported were normalized to the

accepted values of the JNdi standard for Nd (143Nd/144Nd50.512115) and of the

NBS SRM 987 standard for Sr (86Sr/87Sr50.710245). The Nd isotope ratios are

reported as eNd: "Nd~ corr143Nd=144Nd
� �

sample= 143Nd=144Nd
� �

CHUR
� �

-1
� �

�
10000,where 143Nd=144Nd

� �
CHUR~0:512638 [20].

Alkenones, stable carbon isotopes of n-alkanes and BIT index

The lipids were extracted from 43 sediment samples with a DIONEX Accelerated

Solvent Extractor 200 at the NIOZ using a solvent mixture of 9:1 (v/v)

dichloromethane (DCM)/methanol (MeOH). After the addition of internal

standards C22 anti-isoalkane (n-alkanes), 10-nonadecanone (alkenones) and C46

Holocene Paleoenvironments in the Nile River Watershed
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glycerol trialkyl glycerol tetraether (GDGTs), the total lipid extract was separated

into apolar, ketone and polar fractions using pipette column chromatography

loaded with aluminum oxide and the solvent mixtures 9:1 (v/v) hexane/DCM, 1:1

hexane/DCM and 1:1 DCM/MeOH as eluents, respectively. The apolar fraction

was then separated into saturated hydrocarbon (long-chain odd n-alkanes and the

C22 anti-iso standard) and aromatic fractions using pipette columns loaded with

Ag+-impregnated silica and hexane and ethylacetate as eluents, respectively.

Molecular identification of the alkenones and n-alkanes was performed on a

Thermo Finnigan Trace Gas Chromatograph (GC) Ultra coupled to a Thermo

Finnigan DSQ mass spectrometer (MS). The alkenones and the n-alkanes were

quantified using HP 6890 GCs with CP Sil-5 columns (50 m for the alkenones and

25 m for the n-alkanes) and helium as the carrier gas. The Uk379 index [21],

defined as C37:2/(C37:2+C37:3), was used to estimate surface seawater temperatures

(SSTs) for 39 samples run in duplicate (mean reproducibility of ¡0.8 C̊) (S4

Table and S1b Fig.), following the equation [22, 23]:

SST520.957+54.293(Uk379)252.894(Uk379)2+28.321(Uk379)3.

The stable carbon isotope compositions of the long-chain odd n-alkanes were

measured for 41 samples (in duplicate or triplicate) on an Agilent 6800 GC

coupled to a ThermoFisher Delta V Isotope Ratio MS (S3 Table and S2 Fig.).

Isotope values were measured against calibrated external reference gas and the

performance was checked daily by injection of two calibrated n-C20 and n-C24

perdeuterated n-alkane standards. The 13C/12C isotope ratios of n-alkanes are

reported in the standard delta notation (d13C) in % against the V-PDB standard:

d13C5[((13C/12C)sample/(
13C/12C)VPDB)-1]*1000. The average reproducibility is

0.47% for the n-C27 n-alkane, 0.32% for n-C29, 0.29% for n-C31 and 0.49% for

n-C33. The average reproducibility of the internal C22 anti-iso standard was 0.9%
(n562) and the reproducibility of an external n-C24 standard was 0.46% (n531).

A weighted average was calculated using the relative proportion (area under the

peak divided by the sum of the areas of n-C27, n-C29, n-C31 and n-C33) and

isotope ratio of each n-alkane (S2 Fig.). The estimation of the % fraction of C4

plants (%C4) was realized using a two end-members mixing equation [24]:

%C45100-(27.4627* d13Cwax2160.82). The terrestrial provenance of the n-

alkanes was assessed by calculating the carbon preference index (CPI), which is

the ratio between odd and even n-alkanes [25]. Long-chain odd n-alkanes

originate from terrestrial higher plants with a CPI of .3, whereas long-chain even

n-alkanes originate from petroleum sources with a CPI of ,1. The CPI in core

P362/2-33 ranges from 3 to 9 with a mean value of 6.6, which indicates the

terrestrial origin of the n-alkanes throughout the record.

The polar fraction of 41 samples (S4 Table), containing the GDGTs, was

dissolved in a mixture of 99:1 (v/v) hexane/propanol and filtered through

0.45 mm PFTE filters. GDGTs were analyzed (in triplicate) by high performance

liquid chromatography (HPLC)/MS in single ion monitoring mode on an Agilent

1100 series LC/MSD SL [26, 27]. The Branched and Isoprenoid Tetraether (BIT)

index was calculated following [28]: BIT5 (GDGT-I+GDGT-II+GDGT-III)/

(GDGT-I+GDGT-II+GDGT-III+Crenarchaeol), whereby the GDGTs refer to

Holocene Paleoenvironments in the Nile River Watershed
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structures shown in S3 Fig. The averaged standard deviation for the calculated

BIT index is ¡0.01.

Results and interpretations

The strength of river runoff is reconstructed from stable oxygen isotope

compositions of surface seawater obtained from planktonic foraminifera

(d18OSW) (Fig. 2a). The d18OSW record was obtained by correcting the measured d
8O signature of planktonic foraminifera for changes in surface seawater

temperature (SST) determined using the Uk937 paleothermometer (S1 Fig.). The

SSTs reconstructed for core P362/2-33 fall in the same range as those previously

reconstructed in the Levantine Basin (16 to 26 C̊) (S1b Fig.) [29, 30]. To estimate

the d18OSW, we used the paleotemperature equation established for Orbulina

universa [31] and applied a correction for changes in the ice volume [32]. The

d18OSW values obtained for Late Holocene sediments are similar to the present-

day eastern Mediterranean seawater d18O [33] (S1c Fig.) and the values for the

Holocene fall in a similar range and follow a trend similar to those previously

obtained in the Levantine Basin (,2 to 21%) [29]. This demonstrates that the

reconstructed d18OSW is not biased by the fact that foraminifera and

coccolithophores bloom during different seasons (summer and spring, respec-

tively) and therefore potentially recorded different SSTs (see discussion in ref.

[29]). The d18OSW has primarily been related to the changes in surface seawater

salinity (SSS) changes, which has been influenced by the precipitation/evaporation

balance and by the changes in river runoff (amount effect) [34]. However, as

recently shown [35], the d18OSW/SSS relationship may have varied during the

Holocene due to changes in the d18O of freshwater end-member (i.e., the

precipitation and the Nile River water), resulting from changes in the hydrological

cycle or in the provenance of the river water. In our case, these various effects

cannot be deciphered but they all have the same effect on the d18OSW: a decrease

in d18OSW can be interpreted as a decrease in salinity (either due to a higher

precipitation/evaporation ratio or increased runoff), and/or as an increase in d18O

of the freshwater end-member (either due to a more intense convection or a

dominant Blue Nile source for the river water [36], which both led to higher

runoff). During the early Holocene, d18OSW values around 0% were closer to the

present-day d18O signature of Nile River water (0.8 to 20.6%, ref. [36]) and

might therefore reflect enhanced river runoff leading to lower salinities (S1c Fig.).

During the early Holocene, the d18OSW exhibited large amplitude and high

frequency variations, which might be related to a large variability of the Nile

runoff during the so-called ‘Wild Nile’ period (Fig. 2a). The geomorphological

record of this time interval has demonstrated the occurrence of very intense floods

with Nile river levels up to 5 m higher than at present [15, 37]. This is also

reflected by very high sedimentation rates and the deposition of mm-thick layers

of flood-derived sediments in our record (Fig. 2f) [13].

The close similarity in long-term trends between our d18OSW record and the

speleothem d18O record of paleo-precipitation on the Oman Peninsula suggest

Holocene Paleoenvironments in the Nile River Watershed
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Fig. 2. Changes in precipitation, vegetation and erosion dynamics in the Nile watershed during the Holocene. A: Summer (June-August) insolation at
20˚N [59] (dashed line) and oxygen isotope signature of the surface seawater (d18OSW) at the location of our core, which reflects changes in sea-surface
salinity and river runoff (S1 Fig.) and has been controlled by orbitally-induced changes in precipitation. B:. Paleo-precipitation records obtained from a

Holocene Paleoenvironments in the Nile River Watershed
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that river runoff responded quasi-linearly to changes in rainfall intensity in the

Nile watershed (Fig. 2b) [10]. The speleothem record of Quunf Cave on the

Oman Peninsula exhibits a gradual decline in precipitation throughout the

Holocene that followed the changes in summer insolation, which is also observed

in our d18OSW record. This implies that non-linear and threshold mechanisms

(such as lake overflow) played a limited role in controlling freshwater discharge.

Recently, another paleoprecipitation record was obtained from dD analyses of n-

alkanes in marine sediments retrieved off the coast of Somalia/Ethiopia that

challenged the prevailing consensus of a gradual wet/dry transition at the end of

the AHP in Eastern Africa [11]. Contrary to the speleothem record from the

Oman Peninsula and other regional records [2, 9, 10], this dD record exhibits a

rapid decrease in rainfall/humdity between ,6 and 4 ka BP (Fig. 2b). The authors

infer that such a rapid termination of the AHP (which was also observed in other

records from eastern African lakes [11]) was due to the fact that the hydroclimate

regime on the Horn of Africa has mostly been under the influence of deep

convection and sea surface temperatures in the western Indian Ocean.

New environmental information on the evolution of vegetation cover, soil

dynamics and erosion patterns has been generated from sediment core P362/2-33.

Changes in vegetation cover are reconstructed using the stable carbon isotope

composition of long-chain odd n-alkanes, which originate from higher plant leaf

waxes (d13Cwax) (Fig. 2c). Plants with C4 and C3 photosynthetic pathways

(essentially corresponding to warm-season grasses/sedges and cool-season grasses/

trees/shrubs, respectively) produce leaf waxes with different d13C values that are

preserved during transport and sedimentation, and particularly during oxidative

diagenesis [38–40]. Here we use the weighted average of d13C of four n-alkanes

(n-C27, n-C29, n-C31 and n-C33) to estimate changes in the contribution of plants

using a C4 metabolic pathway to the n-alkane pool (%C4) in the drainage basin

(Fig. 2c). Due to their CO2-concentrating mechanism, C4 plants (such as warm-

season grasses and sedges) are generally isotopically enriched in 13C compared to

C3 plants, which include most trees, cool-season grasses, and sedges [40]. The

d13C records measured on each n-alkanes have similar long-term trends, with

higher values (reaching 221% for n-C33) between 9.5 and 8 ka BP and lower

values (down to 230% for n-C31) between 6 and 0 ka BP (S2 Fig.). The

estimation of the % fraction of C4 plants (% C4) was realized using the 2 end-

members mixing equation from ref. [24] and the terrestrial provenance of the n-

alkanes was assessed by calculating the Carbon Preference Index (see ‘‘Material

and Methods’’). The n-alkanes can be transported by wind or rivers but it is

assumed here that they have been mainly transported to the core site by the Nile

speleothem on the Oman Peninsula (d18O), rainfall regime of which has been under influence of the Indian monsoon system [10] and obtained from marine
sediments off the coast of Somalia (dD of n-alkanes), the rainfall regimes of which has been under the influence of deep-convection in the Indian Ocean [11].
C: Stable carbon isotope composition of higher-plant n-alkanes reflecting the proportion of C4 (mainly grasses) versus C3 plants (trees/shrubs). D: BIT index
recording changes in the relative contribution of soil organic matter input. E: Radiogenic Sr and Nd isotope signatures of the bulk detrital fraction of the
sediments documenting changes in sediment provenance. F: Sedimentation rates. Radiocarbon dates are indicated at the bottom of the panel as red
triangles and black rectangles at the bottom of the figure indicate the laminated parts of the core (see ‘‘Material and Methods’’ section and ref. [13]).

doi:10.1371/journal.pone.0115958.g002

Holocene Paleoenvironments in the Nile River Watershed

PLOS ONE | DOI:10.1371/journal.pone.0115958 December 31, 2014 9 / 18



River because the concentration and accumulation rates of n-alkanes show a long-

term trend similar to that of the branched GDGTs, which are transported only by

rivers (S3a,b Fig.) [28]. Furthermore, Blanchet et al. [13] have shown that at core

site P362/2-33, the terrigenous sedimentation has been largely controlled by

fluvial inputs and that eolian inputs were significant only around 3–4 ka BP, when

the amount of n-alkanes was low in the sediments (S3a Fig.). The d13Cwax varied

by 5% in our record, which corresponds to proportional abundances of C4 plants

between ,80 and 40% (Fig. 2c), although these numbers have to be interpreted

with some care due to the widely varying concentrations of n-alkanes in C3 and

C4 plants [41]. The prevalence of C4 grasses during the AHP reflects the

northward migration of the African Rain Belt that led to the expansion of C4-

dominated savannah-type vegetation into areas of the Sahara that are not

vegetated today (Fig. 1b) [42, 43]. A rapid stepwise decrease in d13Cwax between

8.5 and ,7.8 ka BP and between 6.5 and 6 ka BP (from 224 to 228%)

documents a drastic reduction in C4 plant cover, which was a consequence of the

retreat of the vegetation in the Sahara during the southward migration of the

African Rain Belt at the end of the AHP.

Another prominent feature of our record is the abrupt switch in sediment

provenance accompanied by a decrease in soil organic matter input and erosional

activity. The amount of soil organic matter input to the sediments was estimated

using the Branched and Isoprenoid Tetraethers (BIT) index (Fig. 2d), which is the

ratio between the contents in terrigenous branched GDGTs and marine

crenarchaeol [28]. Castañeda et al. [30] showed that the BIT index can be strongly

influenced by the production of marine crenarchaeol and therefore advised to

compare the contents and accumulation rates of branched GDGTs and

crenarchaeol to the BIT index. At the site of core P362/2-33, the BIT index has

obviously been affected by changes in the soil organic matter content rather than

by the changes in crenarchaeol content (S3b,c,d Fig.), which suggests that the

changes in the BIT index most likely reflect changes in soil formation and erosion.

A marked decrease in soil organic matter input is documented by the BIT index

from 0.7 to 0.2–0.3 between ,9 and 7.3 ka BP (Fig. 2d). This decrease in soil

organic matter input is nearly synchronous with a switch in sediment provenance

recorded in the radiogenic Nd and Sr isotope signatures (eNd and 87Sr/86Sr) of the

detrital sediment fraction (Fig. 2e). As shown on Fig. 1a, the sources of the Nile

River are characterized by specific eNd and 87Sr/86Sr signatures depending on

their lithology [44]. At 8.7 ka BP, the eNd and 87Sr/86Sr of the detrital sediment

fraction recorded an abrupt shift from more basaltic (eNd ,23 and 87Sr/86Sr

,0.707) to more granitic (eNd ,24 and 87Sr/86Sr ,0.71) signatures. This

documents a decrease in the proportion of sediments originating from the Blue

Nile (Ethiopian Highlands) and an increased supply of sediments from the White

Nile/Sahara regions (Fig. 2e). This enhanced contribution from the White Nile/

Sahara regions was already reported in core P362-2/33 based on the grain-size

distribution of the terrigenous fraction (i.e., changes in the proportion of grain-

size end-members) [13]. This switch in sediment provenance was accompanied by

a drop in sedimentation rate from 6 mm/yr to less than 2 mm/yr between 9 and
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8.7 ka BP (Fig. 2f) and implies that the massive erosion of Blue Nile soils due to

intense flooding activity decreased abruptly at 8.7 ka BP and thus preceded the

rapid degradation of the green Sahara.

Discussion

These drastic modifications of the environment during the early Holocene

reconstructed from the proxy-record of core P362/2-33 have important

implications. Firstly, the proxy-records of the termination of the AHP in NE

Africa show considerable spatial and temporal variability. While some records

have depicted a gradual and sometimes stepwise desiccation following the

decrease in summer insolation [9, 45, 46], others indicate a rapid desiccation

around 5.5 ka BP that occurred significantly faster than the change in orbital

forcing [11, 47]. Our record supports an alternative scenario in which a rapid

degradation of the environment occurred between 8.7 and 6 ka BP, significantly

earlier than previously inferred from eastern Saharan records (Fig. 2). It must also

be noted that this environmental degradation occurred while water discharge in

the Nile drainage basin and precipitation on the Oman Peninsula [10] decreased

gradually and did not exhibit a rapid wet/dry transition between 4 and 6 ka like

on the Horn of Africa [11]. This non-linear response of the environment to

changes in river discharge (precipitation) might be explained by feedback

processes or threshold mechanisms between vegetation and precipitation [48, 49].

A recent study highlighted the potential role of differential responses of distinct

components of the vegetation system during a climatic transition [50]. Depending

on their sensitivity to environmental constraints, various types of plants exhibit

distinct behavior during a climatic transition, but the presence a large diversity of

plant types (including more resilient plants) might help to stabilize the

environment and generate a gradual change. The pollen record of a gradual

transition of vegetation during the AHP termination at Lake Yoa might reflect

such a process [9]. In contrast, our record of an early abrupt retreat in grass cover

might reflect the high sensitivity of C4 plants to small changes in precipitation. A

modeling study described the process by which the vegetation system degraded

quickly (faster than the forcing) after reaching a precipitation threshold, causing

the switch to the other stable equilibrium condition, the desert state [49]. If this

interpretation were correct, it would imply that large-scale vegetation changes

might occur in the absence of strong precipitation-vegetation feedback processes

(i.e., the degradation of the vegetation did not provoke a further decrease in

precipitation) contrarily to what was proposed in earlier studies [48].

An early arid event such as that in our record at ,8.7 ka BP was previously

identified in several records in NE Africa around 8.6–8.2 ka BP as a transient

episode that sometimes marked the initiation of the AHP termination [45–47, 51].

In our record, however, this event marked a permanent modification of erosion

dynamics and vegetation cover. It was claimed previously that arid events in

North Africa resulted from teleconnections to cooling events in the Atlantic (such

Holocene Paleoenvironments in the Nile River Watershed

PLOS ONE | DOI:10.1371/journal.pone.0115958 December 31, 2014 11 / 18



as the 8.2 ka event) [3] given that they occurred during periods of low sea-surface

temperatures in the Mediterranean [52] and the tropical Atlantic Ocean [53].

However, our record shows that the onset of desiccation in the Nile watershed

preceded the cooling event by at least 500 years, which suggests that arid events in

North Africa may as well have resulted from internal destabilization of the

climate-vegetation system, which in turn may have influenced the climate at

higher latitudes [46, 54].

Another important implication of our record is the establishment of a detailed

environmental context for the major reorganizations within the human

populations in the Sahara Desert. The transition between the Paleolithic and the

Neolithic is marked by the beginning of food production by the human

populations and coincided with the drastic modification of the environmental

conditions in NE Africa. The beginning of food production occurred through

animal domestication in the form of mobile herding [6, 8] but the origin of the

domesticated cattle, whether it was introduced from the Near East or originated

from a local bovid source remains an unresolved question [5, 7]. In any case,

northern Africa has played a decisive role as a focal center and a corridor for the

dispersal of domesticates throughout the African continent [6].

Uncontroversial archeological remains date the first domesticated cattle at

around 8.5–7.5 ka BP in the Nabta-Bir Kiseiba region [5–7] immediately

following the significant environmental change that occurred in the Nile

watershed at 8.7 ka in our record. This was characterized by a switch in sediment

provenance towards higher contributions by the White Nile and Saharan areas

[13] (Fig. 3b) and by a retreat of the savannah with lowest grass content attained

between 7 and 6 ka BP (Fig. 3a). Human populations were thus probably forced

to adapt to the rapid degradation of the environment by relying increasingly on

domesticated animals and by migrating to areas allowing sustainable herding,

which supports the hypothesis that human-environment relationships played a

significant role in the domestication process [4, 55].

The first evidence of domesticated cattle in NE Africa lags behind the Fertile

Crescent occurrence by ,2000 years [8]. It thus seems that early Neolithic

populations in the Fertile Crescent benefited from the favorable conditions during

the AHP to implement agriculture and then herding while NE African

populations thrived in the Green Sahara and only turned to pastoralism when the

living conditions became more difficult [6, 8].

Around 6 ka BP, widespread ritual burial of cattle, known as the ‘African Cattle

Complex’ [55], and the first evidence of dairying in the Central Sahara [56]

demonstrated that pastoralism had spread in the Sahara and had become a well-

established subsistence method. At this time, the savannah had almost entirely

disappeared from the Sahara, which became increasingly arid between 6 and

2.5 ka BP, as shown by the radiogenic strontium signature of detrital sediments

(Fig. 3b), as well as grain-size data from core P362/2-33 [13]. From 5 ka BP

onwards, the population in the Nile Valley increased gradually and gave rise to the

Egyptian Pharaonic Kingdoms and to the subsequent development of agriculture

[57]. In our record, this period is marked by the most arid conditions as

Holocene Paleoenvironments in the Nile River Watershed
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evidenced by the highest amounts of eolian dust found in the sediments between

,5 and 3 ka BP (Fig. 3b and ref. [13]).

A pronounced shift in sediment provenance towards a Blue Nile source

occurred at 2.5 ka BP (Fig. 3a) and reflects the re-establishment of seasonal

rainfalls in the Blue Nile drainage basin after 3 ka BP due to an increase in

autumn insolation [13, 46, 57]. However, these floods were much less vigorous

than those during the Early Holocene (as documented by the lower sedimentation

rates, Fig. 2f), because summer insolation that mainly controls monsoon strength

at the Blue Nile source was lower during the Late Holocene than during the Early

Holocene [13].

Our new continuous high-resolution record of changes in vegetation, erosion

and river runoff within the Nile River drainage area allows to place the main steps

of Neolithic human evolution into a detailed environmental context. An abrupt

degradation of the vegetation and a switch in sediment source during the Early

Holocene (at 8.7 ka BP) occurred without a significant decrease in river runoff

Fig. 3. Environmental context of major steps of human evolution in NE Africa during the Holocene. A: Percentage of C4 plants, as estimated from the
d13C of higher-plants n-alkanes (see Fig. 2). B: Sediment source as estimated from the radiogenic Sr isotope signature of the detrital sediment fraction. C:
Phases of human evolution, as compiled from ref. [5–8] and [54–56].

doi:10.1371/journal.pone.0115958.g003
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and precipitation. Our record therefore confirms the large regional heterogeneity

of environmental change in NE Africa and provides new insights into the climatic

mechanisms involved in the termination of the North African Humid Period, in

particular the existence of threshold mechanisms. The degradation of the

vegetation probably had a considerable impact on the initiation of cattle

domestication in North Africa and confirms the hypothesis that aridification in

North Africa had a profound impact on human evolution.

Supporting Information

S1 Fig. Reconstruction of d18O of surface seawater. A: d18O measured on the

planktonic foraminifera Globigerinoides ruber. B: Surface seawater temperatures

(SST) reconstructed using the alkenone insaturation index (Uk379). Measured

points are indicated by the filled diamonds; values in between measured points

were estimated using linear interpolation provided by the Analyseries software

package (http://www.lsce.ipsl.fr/Phocea/Page/index.php?id53) in order to pro-

vide the same spatial resolution as the d18O record. C: d18O of the surface seawater

(d18OSW), as compared to the present-day values for the Nile freshwater and the

eastern Mediterranean surface seawater (0–200 m water depth) [33, 36].

doi:10.1371/journal.pone.0115958.s001 (TIFF)

S2 Fig. Isotopic composition of long-chain odd n-alkanes. A: Carbon isotope

composition (d13C) of n-C27; B: d13C of n-C29; C: d13C of n-C31 and D: d13C of n-

C33. E: Weighted average of the d13C of n-C27-n-C33.

doi:10.1371/journal.pone.0115958.s002 (TIFF)

S3 Fig. Content and accumulation rates (AR) of lipid biomarkers. A: AR

(dashed orange line) and concentration (thick red line) of long-chain odd n-

alkanes. B: AR (dashed green line) and concentration (thick green line) of

branched GDGTs, with the structure of the dominant branched GDGTs. C: AR

(dashed blue line) and concentration (thick blue line) of crenarchaeol, with its

structure. D: BIT index.

doi:10.1371/journal.pone.0115958.s003 (TIFF)

S1 Table. Surface seawater properties. Stable oxygen isotopes (d18O) for the

planktonic foraminifera Globigerinoides ruber; surface seawater temperature (SST)

as evaluated using the alkenone paleothermometer (Uk379) for 39 samples and

linearly interpolated; d18O of the surface seawater (d18OSW) obtained using the

paleotemperature equation of ref. [31].

doi:10.1371/journal.pone.0115958.s004 (DOC)

S2 Table. Radiogenic Nd and Sr isotopes for the total dissolutions. The

radiogenic Nd and Sr isotopes of the total dissolutions is the signal carried by the

siliciclastic (detrital) fraction of the sediments. All Nd and Sr isotope ratios are

given with a 2s external reproducibility.

doi:10.1371/journal.pone.0115958.s005 (DOC)
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S3 Table. Carbon isotope ratios in long-chain odd n-alkanes. The weighted

average of the d13C of the n-C27, n-C29, n-C31 and n-C33 n-alkanes is given with

the standard deviation. The percentage of C4 plants was calculated using the

mixing model by ref. [24].

doi:10.1371/journal.pone.0115958.s006 (DOC)

S4 Table. Concentration and accumulation rates of GDGTs and BIT index.
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