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Abstract

Arid and semi-arid areas in North China are facing the challenge of a rising aeolian desertifi-
cation risk (ADR) due to the intertwined effects of complex natural processes and intensified
anthropogenic activities. An accurate quantitative assessment of the relationship between
ADR and its determinants is beneficial for understanding the driving mechanisms of aeolian
desertification and for controlling future desertification. Previous studies have failed to quan-
tify the relative role of determinants driving ADR and have been limited in assessing their
interactive impacts. In this study, a spatial variance analysis-based geographical detector
methodology is used to quantify the effects of geological, physical, and human factors on
the occurrence of ADR in an area characterized by mountains and hills in northern China. It
is found that soil type, precipitation, and wind velocity are the major determinants of ADR,
which implies that geological and physical elements (e.qg., soil attribute) and climatic factors
(e.g., precipitation and wind velocity) rather than human activities have played a greater role
in the incidence of ADR. Particularly, the results show that the interaction of various determi-
nants causes significant non-linearly enhanced impacts on the ADR. The findings of our
study will assist local inhabitants and policy makers in developing measures for wind pre-
vention and sand control to mitigate the effects of desertification in the region.

Introduction

According to the 1998 United Nations Convention to Combat Desertification (UNCCD),
desertification is defined as land degradation in arid, semi-arid, and dry sub-humid areas due
to a variety of factors, particularly climatic variations and human activities[1]. A relatively
rapid pace of desertification has been observed in many regions around the world. Until today,
nearly 1.3 billion people, living in more than 110 countries have suffered from adverse effects
of desertification [2]. In Northern China, the main form of desertification is referred to as aeo-
lian desertification, in contrast to other land degradation processes (e.g., water erosion and sali-
nization) [3, 4]. Aeolian desertification is frequently accompanied by surfaces partially or
entirely covered by loose sand and finer particles. According to the China National Committee
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for the Implementation of the UN Convention to Combat Desertification, the total desertifica-
tion area in China has reached a size of up to 2.622 million km?.

Both natural and anthropogenic factors can cause desertification, which can be highly het-
erogeneous in both spatial and temporal scales. Accordingly, it is challenging, yet urgent to
quantify the driving factors of desertification [5]. As mentioned above, driving forces of desert-
ification involve climate variations and unsustainable human activities. For instance, some
studies have indicated adverse climatic effects (e.g., drought, severe wind erosion, temperature
fluctuation, and winter precipitation) as the primary causes of desertification [6, 7]. Other
researchers have attributed desertification to improper agricultural practices (e.g., long-term
overgrazing, extensive clearcutting, and widespread conversion of grassland to cropland) [8, 9].
However, no consensus has been reached regarding the exact role of climate versus human
activities. Although recent studies have investigated the relative role of climate dynamics and
human activities in desertification [10, 11], they have not quantitatively determined the relative
importance of each specific driving factor (e.g., soil texture, population, precipitation, etc.), nor
have they addressed the joint impacts of these factors on desertification. Furthermore, previous
results were not suitable for policy-making or further scientific investigations because of the
coarse resolution of these studies [12]. Therefore, there is an urgent need for more detailed
studies of the determinants of desertification.

Previous studies have used various methods to quantify the driving forces behind desertifi-
cation, including regression analysis, factor analysis, principal components analysis, and multi-
ple variable analysis [13-15]. However, the abovementioned conventional statistical
approaches are inadequate to analyze dynamic desertification phenomena [16]. In addition,
these methods cannot handle the dimensional match between coarsely resolved regional-scale
socioeconomic data and more finely resolved raster-scale desertification data [17]. A geograph-
ical detectors model proposed by Wang et al [18] and based on spatial variance analysis, has
been widely used to measure the association between environmental risks (e.g., earthquake-
based mortality and infectious disease) and their determinants [18-21]. This method has made
it possible to analyze the driving factors behind desertification [22].

The article attempts to answer the following questions: (1) which environmental parameter
is the principal determinant of aeolian desertification risk (ADR)? (2) What is the relative
importance of a single determinant of ADR? (3) Do the factors influencing ADR work inde-
pendently or in combination with each other? This study is instrumental in providing a basic
understanding of the role determinants play in triggering ADR and the interactions between
these determinants.

Data and Methods
Study area

The study area is a ecologically fragile mountain and hill area with an elevation between 1200
m and 2500 m, located in the northern Shanxi province of China, roughly between 110.93°E to
114.53°E and 38.65°N to 40.72°N (Fig 1). It covers an area of about 30 000 km? and includes 18
counties. The area contains no privately owned land or is protected in any way. No specific per-
mits were required for the described field studies and the study does not involve endangered or
protected species. The study area is characterized by a temperate continental monsoon climate,
with dry and cold winters and arid and windy springs. The mean annual precipitation ranges
from 350 mm to 500 mm, which mainly occurs during July-September. The mean annual air
temperature is about 7°C, with monthly mean temperatures of —11°C in January and 21°C in
July. The mean annual evaporation is approximately 2000 mm, which is nearly four times
greater than the mean annual precipitation. The mean annual wind speed is more than
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Fig 1. Location of the study area.

doi:10.1371/journal.pone.0151331.g001
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4.0 ms™", with an average of 40 days per year of strong wind (>6.0 m s™"), which usually occurs
from March to May. The study area is a transition zone between warm temperate deciduous
forest and temperate grassland. The main vegetation types are secondary scrubs and grasses.
Zonal soil mainly includes chestnut soil and cinnamon soil. The concurrence of a large number
of windy days per year, low vegetation cover during winter and spring, and loose, dry surface
sediments are the fundamental environmental conditions [23].

The economy of the study area is dominated by rain-fed agriculture, coal mining, and ani-
mal husbandry. During the last 10 years, the average population density has been 155.8 people
per square mile, which is much higher than the population carrying capacity of 7 to 22 people
per square kilometer set by the United Nations Food and Agriculture Organization for arid
and semi-arid regions.

Both the physical environment and economic conditions are largely deficient. According to
a bulletin of status quo of desertification and sandification in China (State Forestry Adminis-
tration, P.R. China, 2011), the area of desertified land caused by wind erosion was 617 7.79
km?, accounting for 25.14% of the total land area in the study area. Although some large-scale
national programs (e.g., Three-North Shelterbelt Program and Beijing-Tianjin Sand Source
Control Program) may have had some beneficial effects on reducing dust storms and control-
ling desertification in our study area, aeolian desertification still remains a major environmen-
tal problem impeding local development.

Data description

Proxy for desertification risk. Caused by aeolian erosion and sediment (sand and dust)
deposition, aeolian desertification is frequently associated with an initial shrinkage in vegeta-
tion cover. This means that land in an unvegetated state is susceptible to desertification, and
that it should be possible to determine desertification risk by evaluating the vegetation [24, 25].
Therefore, the vegetation condition of degraded land has always served as a preferred quantita-
tive indicator of desertification at different spatial-temporal scales [26, 27].

There are a number of vegetation-cover-related variables that have proven to be valid crite-
ria for assessing desertification risk and its evolution such as fractional vegetation cover (FVC)
[28, 29], net primary productivity (NPP) [13, 30], and vegetation rain use efficiency (RUE) [31,
32]. Among these vegetation indicators, FVC can easily be interpreted from remote-sensing
observations. Hence, it is treated as a proxy for ADR in our research according to China’s Land
Desertification Monitoring Method (GB/T 20483-2006). Our hypothesis is that the smaller the
mean annual FVC, the higher the ADR, and vice versa [16, 33].

Monthly MOD 13A3 NDVI products obtained from the NASA LAADS (Level 1 and Atmo-
sphere Archive and Distribution System) web with a spatial resolution of 1 km x 1 km from
2000 to 2012 were aggregated to a yearly time scale applying the maximum value compositing
method [34]. Mean annual FVC was extracted using the dimidiate pixel model [35]. Fig 2 pres-
ents map of the ADR proxy. The study area was covered by four MODIS tiles (h25v04, h26v04,
h26v05, and h27v05) in conjunction with 576 NDVI images. Tiled NDVI data were mosaicked,
reprojected, and overlaid over the study area.

Determinants of desertification risk. Generally, ADR can be ascribed as the compound
effect of the major determinants. Based on a review of the literature on common determinants of
land degradation [5, 25, 36] and the availability of data, we examined nine variables within three
main categories. Specifically, geological and physical conditions (including the following three
variables: soil type, slope, and vegetation type), climatic elements (including precipitation, tem-
perature, and wind velocity), and anthropogenic disturbances (e.g., population densityand land
use type) [37, 38] were included and considered determinants of ADR in this research.
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Slope (Fig 3) is defined by a plane tangent to a topographic surface, which was extracted
from a digital elevation model (DEM). The 90-m DEM was derived from the NASA Shuttle
Radar Topography Mission (SRTM) (http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp).

Vegetation type (VT) data (Fig 4) were obtained from the vegetation map of China
(1:4,000,000), provided by the Environmental and Ecological Science Data Center for West
China, National Natural Science Foundation of China (http://westdc.westgis.ac.cn).

Soil type data (Fig 5) were extracted from the Harmonized World Soil Database, Soil Map
of China (v1.1). The dataset was provided by the Cold and Arid Regions Sciences Data Center
(http://westdc.westgis.ac.cn). According to soil genesis characteristics, soil types in the study
area include chestnut soil, brown soil, alluvial soil, cinnamon soil, and loessial soil.

Meteorological data were collected from the China Meteorological Data Sharing Service Sys-
tem. There are 12 meteorological stations distributed in and near the study area. Three factors
were used in our study, including mean annual precipitation (MAP, Fig 6), mean annual tem-
perature (MAT, Fig 7), and mean annual wind velocity (MAW, Fig 8). The spatial distributions
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Fig 3. Slope distribution in the study area.
doi:10.1371/journal.pone.0151331.9003

of all climatic elements were interpolated using an inverse distance weighted technique in Arc-
GIS software.

Population data for 2000 to 2012 were collected from the Shanxi Statistical Yearbook. Popu-
lation density (Fig 9) was calculated by dividing the population of each county by the area of
the county.

Land use (Fig 10) was visually interpreted and digitized from Landsat TM images in ArcGIS
9.3. Land use was classified into six categories: arable land, forest and shrub, rangeland, water
body, residential land, and barren land (e.g., bare land and saline land). Classification accuracy
was assessed using surveys locations verified in the field in 2012. Overall accuracies were 83%.
Land use data are used as a primary dataset at the local level, because they reflect the impact of
human activities on land resources.

Methods

A spatial variance analysis approach, the geographical detector model (geodetector) is used to
quantitatively assess the effects of driving factors of ADR in our research. The basic principle
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Fig 4. Vegetation types in the study area.

doi:10.1371/journal.pone.0151331.g004

of geodetector is to compare the spatial consistency of driving forces (e.g., geological and physi-
cal conditions, climate and anthropogenic effects) versus relevant resultant outcomes (i.e.,
ADR in our research) [18]. Specifically, this method assumes that a risk would exhibit a similar
spatial distribution to the factors that lead to the risk [39].

The geodetector is based on the power of determinant value (PD), which is expressed by the
following equation:

1
PD=1- NTJQZ;L:]NI- *0; (1)

where, N and ¢* denote the number of samples and the variance of risk incidence (i.e., FVC in
this study) over the entire study area, respectively. The study area is stratified into L subregions
according to the attribute of a suspected determinant or its proxy variable. N; and o;” are the
number of samples and the variance of risk incidence in the same stratum, respectively. PD €
[0,1] means that if the determinant is completely unrelated to the risk, then PD = 0, while if the
determinant completely controls the risk, then PD = 1.
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The geodetector can also be applied to test whether two determinants weaken or enhance
each other, or whether they are independent in their contribution to the desertification risk.
Therefore, the PD value of each determinant and the interactive PD value are used to quantita-
tively assess the relationship between potential risks and their determinants.

A full description of the geodetector can be found in Wang et al. [18, 19, 21, 39]. The geode-
tector used in this study is a version of Excel-GeoDetector (http://www.sssampling.org/excel-
geodetector/).

All continuous data (mean annual precipitation, mean annual temperature, mean annual
wind velocity, slope, and population density) were discretized into different intervals using our
prior knowledge or optimal classifications methods (e.g., natural breaks etc.) [22, 40]. Then, all
proxy variables from different sources were adjusted to a uniform pixel size and projection con-
strained by the same boundary of the study area by creating a fishnet in ArcGIS. Finally, all
data derived from intersecting calculations were input into Excel-Geodetector. The above pro-
cesses were performed in ArcGIS 9.3.
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doi:10.1371/journal.pone.0151331.9g006

Results
Which determinants are responsible for the incidence of ADR?

We quantified the effect of determinants on observed possible risk by comparing the accumu-
lated dispersion variance of each subarea with the dispersion variance of the entire study
region. A statistical F-tests method was used to compare whether the accumulated variance of
each subarea is significantly different from the variance of the entire study area. As described
in the previous section, the PD value is an indicator for the contribution to the occurrence of
ADR, with higher PD values indicating a stronger contribution.

The PD values of the driving factors for the incidence of ADR as represented by its assumed
surrogate FVC, are in decreasing order: soil type (0.274) > mean annual precipitation (0.248)
> mean annual wind velocity (0.132) > vegetation type (0.090) > slope (0.037) > population
density (0.034) > mean annual temperature (0.019) > land use type (0.018). This result indi-
cates that soil and precipitation are the major determinants that would explain the spatial dis-
tribution of the incidence of aeolian desertification risk, followed by wind velocity and
vegetation type, while temperature and land use only show a weak influence. This implies that
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Fig 7. Mean annual temperature in the study area.

doi:10.1371/journal.pone.0151331.g007

natural factors, including geological and physical conditions and climatic elements have a large
relative importance for ADR in the study area.

What are the risks of aeolian desertification for each main determinant
stratum?

Comparing the differences in average risk value between subareas generated by a determinant,
we searched for areas with potential risk in the determinant strata. A statistical ¢-test method
was used to identify whether the average risk values among different subareas are significantly
different. Bigger differences indicate greater risk within the subareas.

The average annual values of FVC for various intervals of each stratum were calculated
using geodetector. The results can help discerning the differences of ADR among subareas gen-
erated by a certain driving variable. For example, the PD value of precipitation shows that pre-
cipitation is a critical determinant for ADR. Mean annual FVC of regions with lower MAP
(<400 mm, semiarid areas) was about 49%. In contrast, regions with higher MAP (>400 mm,
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Fig 8. Mean annual wind velocity in the study area.

doi:10.1371/journal.pone.0151331.9008

semi-humid areas) had nearly 60% FVC (Table 1). In addition, the differences of mean annual
FVC for both precipitation strata were significant at 95% confidence intervals (Table 2). This
finding confirms the expected prediction that semiarid areas have a higher ADR than semi-
humid areas, given that the latter have higher precipitation and FVC.

Soil type has the greatest impact on aeolian desertification according to the PD ranking.
Aeolian desertification risk is significant different among various soil types. The order of
mean annual FVC for the five soil type is: brown soil (67%) > cinnamon soil (62%) > allu-
vial soil (58%) > loessial soil (57%) > chestnut soil (41%) (Table 3). In addition, the differ-
ences of mean annual FVC between five soil types strata is significant at 95% confidence
intervals (Table 4). This implies that each soil type has a distinct effect on the aeolian
desertification risk. Areas with chestnut soil have the greatest aeolian desertification risk
(lowest FVC).

Similar analyses were performed to investigate associations between other variables and
ADR to find areas of potential risk for each stratum and attributed variable.

PLOS ONE | DOI:10.1371/journal.pone.0151331 March 17,2016 11/18
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Are the potential determinants of ADR independent or dependent of
each other?

We analyzed the effect of the interaction (symbolized by N) of two or multiple determinants of
ADR by comparing the combined contribution of two individual determinants to a risk as well
as their independent contributions.

The combined effects of geological, physical, and climatic determinants are summarized in
Table 5. The results are shown as interactive PD values. All interactive PD values are greater
than the highest PD value of a single factor (i.e., the PD value of soil type, which is 0.274). Fur-
thermore, interactive effect of precipitation combined with vegetation type shows a non-line-
arly enhanced impact (defined as the interactive PD value of two variables being higher than
the sum of the two individual PD values). These findings indicate that the interplay between
determinants plays an important role for potential aeolian desertification.

The effect of anthropogenic influences combined with geological and physical variables on
the occurrence of ADR was also investigated (Table 6). All interactive PD values are higher
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Fig 10. Land use in the study area.

doi:10.1371/journal.pone.0151331.g010

than any PD value of a single impact variable. In addition, anthropogenic factors combined
with geological and physical variables exhibit a non-linearly enhanced impact on ADR.

In comparison to geological and physical determinants, interactions between human activi-
ties and climate seem to be much more complicated (Table 7). For example, population density
and wind velocity are recognized as a non-linearly enhanced impact on ADR
(popNWind = 0.159 > pop (0.034) + Wind (0.085)). The same relationship is observed
between population density and precipitation. Moreover, there are other joint impacts between
two determinants such as the combination of population density with temperature
(popNTemp = 0.053 = pop (0.034) + Temp (0.019)), land use type with wind velocity (Land
useNWind = 0.103 = Land use (0.018) + Wind (0.085)), and temperature with land use type
(TempNLand use = 0.037 = Temp (0.019) + Land use (0.018)). The combination of these

Table 1. Mean annual FVC of mean annual precipitation strata.

Stratum <400 mm >400 mm
Mean annual FVC 48.97% 59.96%
doi:10.1371/journal.pone.0151331.t001
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Table 2. Statistical significance of both precipitation strata.
<400 mm >400 mm

<400 mm Y
>400 mm Y

Note: Significant at the 5% level.

doi:10.1371/journal.pone.0151331.t002

factors did not increase the PD values but rather implies that they are independent of each
other in driving ADR, which is defined as an independent effect.

Discussion

There are several natural and anthropogenic driving forces with large impacts and relative
importance. We found that soil type, precipitation, and wind velocity are mainly responsible
for ADR, which indicated an erodible soil integrate with an erosive climatic conditions were
very prone to trigger a high ADR. The interactive effects between pairs of above determinants
are greater than their individual impacts. Although the individual effects of slope, population
size, temperature, and land use type are weak, they contribute more strongly to ADR when
combined with soil type, precipitation, wind velocity and vegetation type.

Previous research indicated soil types played an important role in speeding up the desertifi-
cation process[41]. We also found that soil type has the greatest effect on ADR. The dominant
soil types in the study area are chestnut soil, brown soil, alluvial soil, cinnamon soil, and loessial
soil. The parent material for these soils originated from loose Quaternary sediments, which are
highly vulnerable to wind erosion due to an abundance of unconsolidated sand grains. As a
result, these soil types are highly prone to degradation [3].

Climate affects aeolian desertification mainly through changes in air temperature, precipita-
tion, and wind velocity [42]. The PD results illustrate that precipitation and wind have a greater
effect on the occurrence of aeolian desertification than temperature. According to the data for
our study area, annual and seasonal mean precipitation has shown a fluctuating increase over
the past decades, and annual and seasonal mean wind velocities have varied with a clearly
decreasing gradient. Especially in spring and winter, ADR is high because of low vegetation
cover. The increase in precipitation activated the vigor of surface vegetation, and the decrease
in wind velocity benefited soil and water conservation. Therefore, changes in precipitation and
wind activity have contributed to a reduction in aeolian desertification areas as identified by
FVC. Annual and seasonal mean temperature obviously increase. The increasing temperature
would cause an increase in FVC, Thus the desertified areas which was defined by FVC reduced.
However, increased temperature should increase topsoil evaporation and reduced topsoil mois-
ture content. Consequently, ADR increased correspondingly. The continuous warming was
consistent with the decrease of aeolian desertification in recent decades years in our study area.
One possible reason is that increasing precipitation and decreasing wind velocity maybe offset
the adverse effect of temperature on land desertification (e.g., PD (precipitationNtemperature)
=0.258 > PD (temperature) = 0.019, and PD (wind velocityNtemperature) = 0.088 > PD (tem-
perature) = 0.019). Although anthropogenic activities and climate fluctuations have jointly

Table 3. Mean annual FVC of soil strata.

Stratum chestnut soil brown soil alluvial soil cinnamon soil loessial soil
Mean annual FVC 41.43% 66.95% 57.72% 61.92% 56.93%
doi:10.1371/journal.pone.0151331.t003
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Table 4. Statistical significance of soil strata.

chestnut soil brown soil alluvial soil cinnamon soil
brown soil Y
alluvial soil Y Y
cinnamon soil Y Y Y
loessial soil Y Y Y Y

Note: Significant at the 5% level.

doi:10.1371/journal.pone.0151331.t004

caused desertification in semi-arid North China [11], the findings of our study highlight the
importance of geological, physical, and climatic elements for accelerating the incidence of
ADR. For instance, PD values demonstrate that the impact of human activities on ADR is
much lower than that of natural factors. This means that the proxies we used for human
activities did not support the hypothesis that anthropogenic factors are principally responsi-
ble for ADR. These results are in contrast to conclusions by previous studies [3, 11] of semi-
arid China that human activity is a contributing factor to desertification in this region. From
1999 to 2011, the population in the region has risen to almost three times the original level.
In contrast, the desertified area decreased by 1,658.830 km? from 7,836.64 to 6,17.790 km>
during the same period in our study area according to a bulletin of status quo of desertifica-
tion and sandification in China. Evidently, the decrease in area of desertified land is incon-
sistent with the rapid increase in population. The population density showed a relatively
weak effect to population on the incidence of ADR according to the PD value. One possible
One possible reason is that we used the total population rather than population density in
rural areas as the variable. However, the population density in rural areas data was not avail-
able in our study area. Similarly, landuse had a weak influence on the ADR. One plausible
explanation is that the yearly-scale landuse data could not precisely match the FVC which
was the mean value of 13 years.

Although we used a new spatial variance analysis method to compare spatial consistency of
risk distribution versus the determinant strata, there are some limitations to our study. For
example, the divergence interval of discretize continuous parameters and the lagged effect of
determinants on FVC might be impact the results. Consequently, the presented exemplary case
highlights that the effect of the determinants of land desertification risk is not likely to be com-
mon in all terrestrial zones. Despite the above-mentioned issues, the results obtained in our
preliminary analysis are valuable when proposing policies to control land desertification. In the
future, we intend to improve our understanding of the causes for desertification by applying
the knowledge gained in this study and conducting long-term field observations.

Table 5. PD values for interactions between geological, physical, and climatic determinants.

Soil type
Mean annual precipitation 0.394
Slope 0.325
Vegetation type 0.339
Mean annual temperature 0.228
Mean annual wind velocity 0.351

Mean annual precipitation Slope Vegetation type Mean annual temperature
0.280
0.358" 0.122
0.258 0.067" 0.133"
0.307 0.123 0.136 0.088

*non-linearly enhanced effect (i.e., PD (ANB) > PD (A) + PD (B)).

doi:10.1371/journal.pone.0151331.1005
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Table 6. PD values for interactions between geological/physical and anthropogenic determinants.

Population density Land use type
Soil type 0.335% 0.292
Vegetation type 0.180* 0.127*
Slope 0.084* 0.075%

*non-linearly enhanced effect (i.e., PD (ANB) > PD (A) + PD (B)).

doi:10.1371/journal.pone.0151331.t006

Table 7. PD values for interactions between climatic and anthropogenic determinants.

Population density Land use type
Mean annual precipitation 0.250 0.259
Mean annual temperature 0.053" 0.036~
Mean annual wind velocity 0.159* 0.102°

*Non-linear enhanced effect (i.e., PD (AnB) > PD (A) + PD (B)); “independent effect (i.e., PD (ANB) = PD
(A) + PD (B))

doi:10.1371/journal.pone.0151331.t007

Conclusions

In this study, a geographical detector model and GIS techniques were applied to assess the
effects of geological, physical, and climatic elements as well as human activities on ADR. Inter-
relationships between the ADR and its determinants were extracted by studying the correspon-
dence of their spatial distribution. The order of the PD values of single determinants was used
to identify their relative importance for the incidence of ADR, and interactive PD values were
utilized to investigate the combined impact of determinants.

The unique contribution of this study is that we not only assessed the relative role of deter-
minants triggering ADR, but also estimated the effects of the interaction of different determi-
nants, which was lacking in previous studies.

The results demonstrate that soil type, precipitation, and wind speed have the greatest effect on
ADR. Our results also imply that geological and physical elements (e.g., soil attributes) and climatic
factors (e.g., precipitation and wind) rather than human activities play a greater role in the inci-
dence of ADR in our study area of northern China. Furthermore, the interaction of certain driving
forces lead to non-linearly enhanced impacts on ADR. These findings will assist local inhabitants
and policy makers when developing measures for wind prevention and sand control (e.g., planting
windbreaks and forest belts, improving soil and water management, expansion of irrigation, rural-
urban migration, grain for green project, et al) to mitigate the effects of desertification.
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