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Abstract

Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-
scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we
evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998.
We surveyed 291 coral reef sites in 11 countries and over 30u of latitude between 2004 and 2011 to evaluate variations in
coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used
linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids,
faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral
communities. We found strong latitudinal and geographic gradients in coral community structure and composition that
supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern
Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more
northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa
and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-
sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and
temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong
temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were
weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of
resistance to climate disturbances and remains a priority for future regional conservation and management actions.
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Introduction

A key challenge for modern conservation science is to determine

how climate change, ecology, and human resource use interact to

influence ecological resilience and ecosystem services [1,2,3].

Specific objectives for coral reef conservation are to identify

priority sites of high biodiversity value, connectivity, and resilience

that may survive climate change, and to develop appropriate

management that ensures the persistence of potentially resilient

refugia of biodiversity [3,4]. Implementing these objectives

requires evaluation of regional patterns in environmental and

ecological variation, as well as potential for adaptation of taxa and

the maintenance of biodiversity following large-scale climatic

disturbances. However, these regional and seascape patterns

interact, can be complex and sometimes counter-intuitive [5].

Therefore, it is increasingly important to understand how

biodiversity responds to climate change across large spatial scales.

The western Indian Ocean (WIO) provides a unique environ-

mental gradient to examine the interactive effects of environmen-

tal variation, climate change, connectivity, resilience, and adap-

tation on marine biodiversity. The region includes tropical and

subtropical marine ecosystems influenced by complex currents

around the island of Madagascar and the African mainland

coastline [6,7]. Analyses of historical water temperature data

reveal strong gradients in mean temperature and variability, which

leads to different biodiversity responses to the rate of increase and

cumulative anomalies during warming events like the 1998 El

Niño Southern Oscillation (ENSO) that caused mass coral

bleaching [7,8,9,10]. Environmental variability is strongly affected

by regional oceanography, the complex geology of the Eastern

African coastline and the position of the island of Madagascar and,

to a lesser extent, other smaller islands in the region [11,12]. For

example, the South Equatorial Current (SEC) has low variation in

temperature as it moves across the WIO through the southern

Seychelles and the Mascarene islands; the leeward (western) side of

Madagascar has pockets of water retention that produce warmer

temperature distributions and infrequent warm-water skewness
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(low Degree Heating weeks or months), but also has among the

most rapid inter-annual temperature rises [7,13]. As the SEC turns

north and slows into the East African Coastal Current, temper-

atures become more variable and the northern coastline of

Tanzania and Kenya experiences more frequent warm-water

skewness (more Degree Heating Months) [7,13]. This complex

oceanography and environmental variability can and has influ-

enced coral reef communities because of their variable tolerance to

rapid increases in warm water [7,9,14,15]. Northern Madagascar

and Mozambique and the mainland of Tanzania have been

identified to harbour high-diversity coral reefs dominated by

temperature-sensitive corals [10,14].

The natural and unique oceanographic gradients in the WIO

provide an opportunity to examine patterns of biodiversity and

biogeography across different environments and to determine the

resilience of coral reefs to temperature anomalies and associated

coral bleaching events [10,16,17]. Scleractinian reef-building

corals are vulnerable foundation taxa that are among the early

responders to climate change [18,19]; different taxa and different

environments show variable responses to climate change that can

complicate conservation and management prescriptions [6,20].

Studies of coral communities and their associations with biogeog-

raphy and human resource use can improve our understanding of

coral resilience and identify areas of resistance, recovery, and

management needs in a changing climate [21].

Coral reefs in the Indian Ocean are experiencing rapid and

large-scale changes, which likely began in the early 1980s due to

strong temperature anomalies, the strongest of which was the 1998

El Niño Southern Oscillation (ENSO) event [7,16,22,23]. The

greatest coral community changes in response to the 1998

anomaly were documented in the northern-central Indian Ocean

[6] and since 1998 there have been smaller yet still intense thermal

anomalies and coral bleaching events in parts of the region,

including previously less disturbed areas in the southern Indian

Ocean [24,25,26,27]. The interaction between thermal anomalies

and fishing is expected to further influence coral biodiversity by

increasing the dominance of stress-tolerant and opportunistic coral

taxa [28,29,30]. Nevertheless, a global evaluation of the effects of

temperature anomalies on coral reefs in and outside no-take

marine reserves failed to find any strong effects of fisheries

management preventing the impacts of temperature-driven coral

declines, possibly because marine reserves are predominantly

located in more temperature susceptible locations [8,13,31]. These

findings did not account for large-scale biogeographic patterns of

latitude or mainland/island environments on biodiversity. There-

fore, our objectives were to: (1) evaluate regional biogeographic

patterns of coral communities along latitudinal and mainland-

island gradients, (2) continue to assess the status of western Indian

Ocean coral reefs over the 2004 to 2011 period in terms of

abundance, biodiversity, and susceptibility to bleaching, and (3)

evaluate the possible impacts of smaller-scale factors, specifically

fishing and fisheries closures, on the observed patterns and general

reef status.

Methods

Field methods
We conducted coral reef surveys throughout the western Indian

Ocean (WIO) to develop an extensive database on coral reef

communities. All surveys were conducted or led by the authors

and used the same methods. Between 2004 and 2011, we surveyed

291 coral reef sites in 11 countries (398 site x year surveys)

(Table 1). Research clearance was provided by the respective

authorities in each country (see Ethics Statement below). The time

period between 2004 and 2011 represents recovery from the

severe ENSO-driven coral bleaching disturbance in 1998.

Although smaller bleaching events occurred in 2004, 2005,

2007, 2008, and 2010, they were limited in spatial scale and did

not result in large-scale coral mortality at the study sites included

here [7,22]. All surveys were conducted between November and

May during periods of maximum temperature stress. We surveyed

coral reefs along the East and South African coastline (Kenya,

Tanzania, Mozambique, South Africa) and WIO island nations

(Maldives, Seychelles, Comoros, Mayotte, Madagascar, Mauritius,

Reunion). Sites were either open to fishing (‘‘fished’’) or protected

with no-take fisheries closures (i.e., Marine Protected Areas or

‘‘closures’’). Each year, surveys were conducted haphazardly

throughout the region, as it was logistically unfeasible to

systematically survey the entire WIO in one year. We found no

evidence of biased survey design or site selection by latitude,

mainland – island environments or fisheries management (Fig. S1,

S2).

We used two methods to monitor coral reef communities: line-

intercept transects and roving observer surveys. Coral community

structure and composition was recorded using 9 to 12, 10-m

haphazardly placed line-intercept transects (LIT) often at two

locations within each site [32]. On each transect, corals underlying

the LIT were identified to genus, the continuous length of each

coral colony (.3 cm) was measured to the nearest centimeter, and

absolute percent coral cover was estimated as the proportion of

total length of the coral taxon over the total cover of coral and

other benthic categories. In total, we conducted LIT surveys at

119 sites (210 site x year replicates). Sites surveyed with LITs were

typically shallow (1–4 m depth, mean 6 SD: 3.262.4 m), with the

exception of 21 sites (n = 63 site x year replicates) surveyed in the

Seychelles that were slightly deeper (6.461.7 m), but still

represented shallow coral reef systems in the region. Coral

communities in the Seychelles were recorded using visual estimates

within circular point count areas [33], which provided very similar

results to LITs [34]. At each site, we estimated total percent hard

coral cover and the total percent cover of four major coral families

(acroporids, faviids, pocilloporids, and poritiids).

Hard coral communities were also evaluated using roving

observer surveys to quantify bleaching susceptibility, coral genera

richness and diversity over a larger reef area and typically included

deeper sites than the LIT surveys (mean 6 SD: 4.664.4 m, max

30 m). On each survey, an observer haphazardly delineated ,20,

2 m2 quadrats and within each quadrat, identified every coral

colony to genus, and scaled their level of bleaching [6]. We

estimated coral generic richness as the number of coral genera that

were observed on each roving survey and estimated Simpson’s

diversity from the proportional abundance (p) of colonies within

each genus, i, for the total number of genera (S) within the coral

community [35]:

Simpson Diversity~1�
XS

i

p2
i

In total, we conducted roving observer surveys at 257 sites (290

site x year replicates). Estimates of percent coral cover from the

roving observer surveys were similar to estimates from LITs

(R2 = 0.67, P,0.0001, N = 43 sites where both surveys occurred).

We included absolute hard coral cover estimates from both survey

types to maximize data coverage across the region; we averaged

the values for the 43 sites that had coral cover estimates from both

survey methods.

Biogeography and Change among Coral Communities
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Bleaching susceptibility at each site was estimated from the

roving observer surveys as coral community structure weighted by

the region-specific sensitivity of each genus [6,25]. To assess

genus-level bleaching sensitivities during each survey, we scored

the bleaching intensity, and mortality of each coral colony was

assessed on a six-point scale (c0 = normal, c1 = pale live coral,

c2 = 0–20%, c3 = .20–50%, c4 = .50–80%, c5 = .80–100% of

the live coral surface area fully bleached, and c6 = recently dead),

as detailed in [6]. We then estimated the bleaching response of

each coral genus based on a weighted average of bleaching

intensity and mortality of the observed colonies within that genus:

Genus bleaching response~

(0c0z1c1z2c2z3c3z4c4z5c5z6c6)=7

Genus-specific bleaching responses were then averaged across

sites to provide a regional bleaching response that was used in the

calculation of site susceptibilities. Because surveys occurred during

bleaching events and non-bleaching events, we only calculated a

genus’ regional bleaching responses (BR) from the subset of

surveys (N = 141) where the sampling occurred during tempera-

ture anomalies and bleaching events (defined as surveys where .

10% of coral colonies displayed bleaching). While a 10% cut-off

could miss minor bleaching impacts on resistant assemblages, we

feel this is a useful cut-off to assess major beaching events for

communities. We were then able to calculate bleaching suscep-

tibility at each site based on the relative abundance (RA) of each

genus, i, and its bleaching response, BRi [6,25], where:

Site bleaching susceptibility~
Xn

i

(RAi|BRi)

Data analysis
We evaluated the effects of year (2004 to 2011), geography

(latitude, mainland vs. islands), fisheries management (open access

vs. no-take fisheries closures), and their two-way interactions on

coral community structure and composition. Response variables

included: total percent hard coral cover, total percent cover of

acroporids, faviids, pocilloporids, and poritiids, coral generic

richness and diversity, and bleaching susceptibility. Analyses of

richness, diversity, and bleaching susceptibility also included depth

and its interactions; depth was not included in the coral cover

models that used data from LIT surveys, which mostly occurred

on shallow reefs between 0 and 4 m.

We used mixed-effects hierarchical linear models with a random

effect of country to take into account the spatially nested nature of

our surveys. We started with full models of all main effects and

their interactions and carried out model selection using a

backwards elimination process by removing non-significant

interactions and main effects, confirmed by likelihood ratio tests

and AIC scores, until a final model was reached [36]. Model

diagnostics were performed visually and the final models met

assumptions of normality and homogeneity of residuals (the

abundance of faviids and pocilloporids were log10+1 transformed

to meet assumptions). Finally, we calculated pseudo-R2 and P-

values of the final model from the relationship between the fitted

values and the original observations [36]. We used R [37] for all

analyses.T
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Ethics statement
Permission for fieldwork was granted from the following

agencies: 1. Kenya: National Council of Science and Technology;

2. Mozambique: Eduardo Mondlane University; 3. Mayotte:

Head of Equipment, Agriculture and Homing Department; 4.

Mauritius: Mauritius Oceanography Institute; 5. Madagascar:

Ministère de L1Environnement et des Forêts, Direction du

Système des Aires Protégées; 6. South Africa: Departments of

Science and Technology, the Environmental Affairs and Tourism,

Ezemvelo Kwa Zulu Natal Wildlife, and the iSimangaiso

Wetlands Park Authority; 7. Seychelles: Seychelles Bureau of

Standards and Nature Seychelles; 8. Tanzania: Institute of Marine

Science, University of Dar-es-salaam; 9. In the Maldives, we

worked with the Banyan Tree Resort who had permit to conduct

research; 10. No permit was required for Comoros but we worked

with the Coordinator of the Coral Reef Task Force and Focal

point of the Nairobi Convention; 11. No permit was required for

Reunion. Field studies did not involve manipulation of any

endangered or protected species.

Results

Coral cover and community composition
There was a significant effect of latitude, mainland-island

geography and fisheries management on total live coral cover and

community composition of four major taxonomic groups:

acroporids, faviids, pocilloporids and poritiids (Table 2; Fig. S3).

Total coral and acroporids occurred at higher abundances on

southern sites in the WIO while faviids were more abundant at

northern sites (Fig. 1A). However, the northern Maldives island

sites influenced the observed effect of latitude on hard coral cover

(i.e., 15 sites surveyed in 2004). When the Maldives sites were

removed from the analysis, total coral cover was no longer

influenced by latitude (Table S1).

We observed higher coral cover and more abundant faviids,

pocilloporids, and poritiids on mainland East African reefs while

acroporids were more abundant in island environments (Fig. 1B).

However, the ‘island effect’ on acroporid abundance was

influenced by the Maldives; when the Maldives were removed

from the analysis, there was no difference in acroporid abundance

between mainland and island reefs.

There was higher abundance of faviids and pocilloporids within

no-take fisheries closures compared to fished reefs (Fig. 1C). Faviid

abundance was also affected by the interaction between fisheries

management and geography; faviids were more abundant within

coastal closures than closures on islands (islands x management,

Table 2).

Coral cover and community composition was largely consistent

on sites surveyed between 2004 and 2011. However, there were

significant interactions between year and latitude, and year and

geography (Table 2). Hard coral cover and acroporids were less

abundant on sites surveyed in later years at more southern

latitudes (year*latitude interactions, Table 2, Fig. 2). Hard coral

cover was more abundant on island environments at later years as

opposed to mainland reefs (year*geography, P = 0.01) while

acroporids were more abundant on island environments at

southern latitudes as compared to northern latitudes (latitude*geo-

graphy, P,0.001).

Richness, diversity and susceptibility to bleaching
Latitude influenced coral generic richness and community

susceptibility to bleaching (Table 2). Richness was highest at

middle latitudes (,5uS to 15uS) and increased again at higher

northern latitudes in the Maldives (,5uN) as shown by a locally

weighted (LOESS) smoothing function (Fig. 3A). The susceptibility

of coral communities to bleaching also increased towards southern

latitudes and was influenced by an interaction with fisheries

management; coral community susceptibility to bleaching was

slightly higher within fisheries closures at northern sites compared

to higher susceptibility on fished reefs at more southern sites

(Fig. 3B).

Figure 1. Regional patterns of coral cover and community
composition. Coral communities vary across (A) latitude, (B)
geography of mainland or island locations, and (C) fisheries manage-
ment. See Table 2 for model results. In (A), lines indicate significant
relationships between coral abundance and latitude. For (B) and (C),
asterisks indicate significant differences between groups. Boxplots
show median and quartiles, and dots indicate outliers.
doi:10.1371/journal.pone.0093385.g001
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Depth also influenced coral generic richness and Simpson’s

diversity. Deeper sites (up to 30 m) at mid-latitudes contained

more coral genera than shallower sites (depth*latitude, P = 0.027).

Depth also influenced Simpson’s diversity; coral communities were

more diverse (i.e., even distributions of genera) on deeper sites

although there was substantial variation in Simpson’s diversity at

shallower depths (Fig. 3C).

Discussion

Coral communities in the western Indian Ocean (WIO) are

structured by biogeography and a legacy of past and recent

climate-driven coral bleaching events, fisheries extraction, and

their interactions. In fact, the large number of significant

interactions among these variables indicates the challenges of

ascribing the state of WIO corals to a few environmental variables

or overarching conclusions. This complexity can challenge

conservation and management prioritization and actions focused

on corals. Despite some limitations to our regional dataset across

space and time (discussed below), we did observe some consistent

regional patterns to make inference on some management

priorities.

Biogeography: latitude and mainland-island
environments

Latitude was a main biogeographic driver of regional coral

communities. Northern coral reef sites in mainland Kenya and

Tanzania, and the islands of the Seychelles and Maldives, were

greatly affected by the 1998-bleaching event that reduced the

abundance of temperature sensitive competitive dominant genera,

such as Acropora and Montipora [6]. We find limited evidence for any

large-scale recovery of total coral cover or sensitive acroporid

genera after 2004; these taxa remain at low abundances compared

to the rest of the WIO region. Northern coral communities are

composed of a mix of coral genera, predominantly bleaching-

tolerant faviids and poritiids that survived the 1998 bleaching

event; any recovery on northern reefs will be site-specific and

Table 2. Top mixed-effects hierarchical linear models for Western Indian Ocean coral communities.

Hard coral R2 P Genera richness R2 P

0.44 ,0.0001 0.34 ,0.0001

t P t P

Year 0.78 0.434 Depth -0.14 0.89

Latitude -2.13 0.034 Latitude 6.92 ,0.001

Geography -2.59 0.032 Depth*Latitude -2.23 0.027

Year*Latitude 2.13 0.034

Year*Geography 2.59 0.01

Acroporids R2 P Simpson’s diversity R2 P

0.55 ,0.0001 0.18 ,0.0001

t P t P

Year -2.85 0.005 Depth 2.85 0.005

Latitude -5.50 ,0.001

Geography 3.03 0.029

Year*Latitude 5.49 ,0.001

Latitude*Geography 4.65 ,0.001

Faviids R2 P Bleaching susceptibility R2 P

0.21 ,0.0001 0.30 ,0.0001

t P t P

Latitude 3.42 0.001 Latitude -7.60 ,0.001

Geography -1.70 0.15 Management 1.84 0.068

Management 2.74 0.007 Latitude*Management 2.35 0.02

Geography*Management -2.36 0.02

Pocilloporids R2 P

0.11 ,0.0001

t P

Geography -3.7 0.014

Management 2.58 0.011

Poritiids R2 P

0.21 ,0.0001

t P

Geography -7.29 ,0.001

The original model for each response contained all main effects and their two-way interactions. Geography indicates mainland - island environments. The best-fit top
model was reached after step-wise backwards elimination of non-significant predictors; significant parameters for each final model are highlighted in bold.
doi:10.1371/journal.pone.0093385.t002
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associated with local environmental factors [22,29,38]. However,

an important exception is the demonstrated coral recovery in the

remote and relatively ‘pristine’ Chagos Archipelago that also

occurs at more northern latitudes within the WIO (,6uS)

[6,7,39,40].

The southern WIO and particularly mid-latitude reefs in the

northern Mozambican Channel (i.e., western Madagascar,

Comoros, Mayotte, northern Mozambique, southern Tanzania)

had higher hard coral cover, acroporid cover and subsequently

coral communities that are more susceptible to future bleaching.

These patterns likely reflect the lesser extent and impacts of

temperature anomalies on more southern reefs over the past few

decades [8,16,22]. Consequently, temperature-sensitive genera,

such as acroporids and pocilloporids, remained relatively common

in the southern WIO between 2004 and 2011. While not observed

here, studies on other reefs have found declines in coral cover and

the abundance of acroporids, which probably reflects the effect of

small-scale temperature anomalies and reported bleaching in this

region since 1998 [26]. Nevertheless, some areas in this region,

particularly reefs in southern Tanzania, Madagascar, and north-

ern Mozambique, continue to support healthy populations of

bleaching susceptible genera, high coral generic richness and have

low to modest levels of environmental stress [10,14]. Historical

temperature studies of this region have found warm but not

extreme temperatures (i.e., platykurtic and less skewed tempera-

Figure 2. Latitudinal gradients affect coral community change.
(A) Total coral cover and (B) acroporid cover are declining faster in the
southern WIO (,15uS) than the northern WIO (.15uS). Note: Latitude is
shown as ‘north’ (open circles, dashed line) and ‘south’ groups (filled
circles, solid line) to illustrate the significant interaction between year x
latitude; latitude is a continuous factor is all analyses. See Table 2 for
model results.
doi:10.1371/journal.pone.0093385.g002

Figure 3. Latitude and depth influence coral richness, diversity
and bleaching susceptibility. (A) Coral genera richness peaks at
middle latitudes as shown by a locally weighted least squares (LOESS)
non-parametric smoother. (B) Bleaching susceptibility of coral commu-
nities is higher at more southern latitudes. (C) Simpson’s diversity is
higher at deeper reefs (up to 30 m) compared to shallower reefs.
doi:10.1371/journal.pone.0093385.g003

Biogeography and Change among Coral Communities

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e93385



ture distributions), suggesting that temperature stress anomalies

are less frequently experienced in these reefs [7,9,41]. Further-

more, the northern Mozambique Channel area boasts a unique

oceanography of large tides and associated local currents and

eddies, and reefs that are less exposed to wave action and storms,

which may also explain their high coral richness [13,14].

Whether reefs were on mainland or islands was an important

biogeographic factor structuring coral communities. We found

that faviids, pocilloporids and poritiids were more abundant in

coral communities on mainland East African coastal reefs [29,38].

While acroporids have contributed to the recovery of some

northern islands in the Chagos and Seychelles archipelagos

[39,40], these bleaching sensitive taxa remain uncommon on

disturbed mainland reefs. It should be noted that removal of the

Maldives data from the analysis made this effect non-significant for

acroporids because the Maldives were dominated by bleaching

tolerant massive and sub-massive forms. Coral communities may

also depend on the type of substratum; for example, Montipora and

encrusting faviids have been reported to recover more quickly on

granitic than carbonate substrates in the Seychelles [40].

No-take fisheries closures
Our regional study lends further support to the emerging

findings that fisheries closures are not the only solution to maintain

coral communities across temperature disturbances [29,31,42].

We find no evidence that no-take closures promote more coral

genera or more diverse communities, or that closures have

promoted the recovery of total coral cover or bleaching-sensitive

taxa like acroporids. The main influence of closures was increased

abundance of pocilloporids and faviids, although the higher

abundance of faviids was limited to coastal reefs (Fig. 1). While

fisheries closures can have higher coral cover prior to large coral

bleaching events, particularly in older closures, this pattern may be

lost or even reversed following a bleaching event

[17,22,38,43,44,45]. Fisheries closures may also be located in

areas with stable background temperatures that promote high

coral cover and generic richness that can build up a high

abundance of space-occupying and thermally sensitive taxa over

time [8,17,45,46], making fisheries closures and their communities

more susceptible to rare temperature anomalies that can cause

substantial coral bleaching and mortality [13,29,31,43]. While no-

take closures are an important management tool for coral reef

ecosystem processes and fisheries (see [44]) and may increase

recovery rates after disturbances [22], their ability to resist and

promote the full community recovery of reef communities to pre-

disturbance levels after extreme climate events appears more

limited [29,42]. Nevertheless, the effectiveness of fisheries closures

may vary with age, size and compliance and environmental

location, all of which requires further investigation [29,31,42,45].

Our study spans a relatively short period of time, and may not

capture the full potential of fisheries closures to influence coral

recovery rates. Given more time, closures may be able to promote

coral recovery, as observed on other remote and ‘pristine’ reefs in

Western Australia [47] and the Chagos Archipelago [39].

However, it is concerning that smaller no-take closures within

the WIO have not demonstrated full recovery 13 years following

the mass coral-bleaching event in 1998. Even if closures eventually

promote coral recovery, the window for this potential recovery

may be shrinking as climate disturbances become more frequent in

the future [18].

Caveats of a regional approach
While our study combined with previous findings presents a

long-term and large-scale perspective for WIO coral reefs, there

are cautions and caveats for our conclusions. Our results rely on

the site-for-time comparison of this regional approach although

logistically our surveys were unable to be fully balanced and

carried out at every site in each year. For example, the most

northern reefs in the Maldives comprise only fished sites at the

start of our study (2004; Table 1); including or not including these

sites changed our results (Table S1; see Results). Nevertheless,

recent studies of Maldivian reefs, ten years after the 1998 event,

reported coral community homogenization that may reflect the

uniform and continued influence of the 1998 bleaching event [48].

Further, we were only able to sample Mauritius reefs in early years

and surveyed more Mozambican reefs in later years. Additionally,

some recovery following the 1998-bleaching event likely occurred

at many sites before our regional surveys began in 2004. Smaller

and more localized bleaching events affected some reefs through-

out our study. For example, we surveyed reefs in Mayotte in 2009

and 2011, before a small-scale bleaching event in late 2011 and

early 2012 that would have affected our results. Similarly,

Mauritian reefs were badly disturbed by a highly localized

bleaching event in 2008, which occurred after our sampling

(Moothien-Pillay, K.R. personal communication). It is clear that

these space-for-time issues and limitations of our dataset should be

taken into consideration when considering the implications of our

conclusions. Nevertheless, the objective of our large-scale regional

survey (i.e., 398 sites in 11 countries across 30u of latitude over 8

years) was to identify the strongest drivers of biodiversity (and their

interactions) as opposed to smaller-scale and more local patterns of

coral recovery or community composition.

Conclusions
Large-scale biogeographic patterns that reflect the importance

of geography and local contexts are critical to understand

ecosystem recovery from disturbances, such as climatic impacts.

While all coral reefs in the WIO are experiencing climate change

and coral bleaching, the rate, timing, and magnitude of impacts

vary geographically. The northern region is recovering from the

devastating 1998 event and, while there was a pulse of recovery

shortly after this event [22], the rate appears to have slowed during

the 200422011 period studied here. Nevertheless, incomplete

sampling through the study period in all locations may have also

influenced these conclusions. In contrast, there was continued

decline in overall coral cover and the abundance of sensitive

acroporids in the southern region that may reflect more localized

bleaching in the south WIO during this decade.

This study highlights the need to improve efforts and identify

actions that can sustain less disturbed reef conditions in the south

western Indian Ocean. Specifically, the area between northern

Madagascar and the African coastline between northern Mozam-

bique and Tanzania appear to have environmental conditions that

promote coral diversity and its persistence [10,14]. As such, the

northern Mozambique Channel is a priority for conservation and

management efforts in the WIO. This area continues to persist

through climate disturbances compared to other studied locations

in the region and consequently it is expected to have the elements

of an ecological and possible evolutionary refuge to climate change

[10,14]. It is, however, not immune to climate and human impacts

and increasing fishing pressure and gas exploration and extraction

are among the current human impacts that could potentially

undermine the refuge potential of this area. Appropriate

restrictions and management are therefore necessary to help

secure the future of these regionally important reefs.

Biogeography and Change among Coral Communities

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e93385



Supporting Information

Figure S1 Latitude and mainland-island location are
robust indicators of biogeography. There was no evidence

of a sampling bias over time across (A) latitude, however we did

find evidence of a sampling bias across (B) longitude, which was

removed from further analysis. (C) Mainland-island comparisons

were not biased across sampling year. White bars indicate

mainland reefs (Kenya, Tanzania, Mozambique, South Africa)

and grey bars indicate islands reefs (Maldives, Seychelles,

Comoros, Mayotte, Madagascar, Mauritius, Reunion). We use

latitude and geography (mainland vs. islands) as robust indicators

of regional biogeography in all analyses.

(DOCX)

Figure S2 Fisheries management sampling across time.
We found no evidence of a sampling bias over time across fisheries

management. White bars indicate fished reefs open to exploitation

and grey bars indicate sites within no-take fisheries closures.

(DOCX)

Figure S3 Country-level effects of mainland-island
geography and management. Total hard coral cover varies

across countries to reflect latitudinal patterns of biogeography that

are also influenced by reef geography and fisheries management.

(DOCX)

Table S1 Sensitivity analysis of regional trends without
the Maldives.

(DOCX)
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Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:

137821386.
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