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Abstract

Global warming induced by atmospheric CO2 has attracted increasing attention of researchers all over the world. Although
space-based technology provides the ability to map atmospheric CO2 globally, the number of valid CO2 measurements is
generally limited for certain instruments owing to the presence of clouds, which in turn constrain the studies of global CO2

sources and sinks. Thus, it is a potentially promising work to combine the currently available CO2 measurements. In this
study, a strategy for fusing SCIAMACHY and GOSAT CO2 measurements is proposed by fully considering the CO2 global bias,
averaging kernel, and spatiotemporal variations as well as the CO2 retrieval errors. Based on this method, a global CO2 map
with certain UTC time can also be generated by employing the pattern of the CO2 daily cycle reflected by Carbon Tracker
(CT) data. The results reveal that relative to GOSAT, the global spatial coverage of the combined CO2 map increased by
41.3% and 47.7% on a daily and monthly scale, respectively, and even higher when compared with that relative to
SCIAMACHY. The findings in this paper prove the effectiveness of the combination method in supporting the generation of
global full-coverage XCO2 maps with higher temporal and spatial sampling by jointly using these two space-based XCO2

datasets.
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Introduction

In recent years, global warming caused by emission of CO2 has

attracted considerable attention from the public. During the past

decade, although tremendous efforts have been made toward

improving the understandings of the mechanism between CO2

increase in the atmosphere and global warming, some uncertain-

ties still exist in the spatiotemporal characteristics of CO2 sinks/

sources on regional and global scales due to the lack of high-

density measurements of such variables with good accuracy [1,2].

To date, the estimates of CO2 flux from inverse methods rely

mainly on ground-based measurements [3,4]. Although providing

highly accurate atmospheric CO2 records, the traditional ground-

based networks intrinsically suffer from sparse spatial coverage

[2,5]. Satellite-based measurements with various spatial and

temporal resolutions provide a unique opportunity to accurately

map atmospheric CO2 in both daytime and nighttime over large

areas, thus having the potential to bridge this gap. As a result,

various satellite-based platforms have been equipped in recent

years for deriving the CO2 concentrations.

Generally, methods for retrieving CO2 from space can be

grouped into two categories: (1) inferring CO2 concentrations by

measuring shortwave infrared (SWIR) reflected solar radiation

around 1.6 and 2.0 mm with sufficient spectral resolution. This

includes the Greenhouse gases Observing SATellite (GOSAT),

operating since 2009 [6], the Scanning Imaging Absorption

spectrometer for Atmospheric CartograpHY (SCIAMACHY), in

orbit since 2002 [7], and the second Orbiting Carbon Observatory

(OCO-2), which, as a rebuild of OCO [8,9], is planned to be

launched in July 2014. In addition, CarbonSat will also be

scheduled to be launched in 2018 (http://www.iup.uni-bremen.

de/carbonsat/). These measurements have a nearly uniform

sensitivity to CO2 from the surface up through the middle

troposphere, and thus are frequently used to derive the column-

average dry air mole fraction of atmosphere CO2 (XCO2) during

the daytime; (2) retrieving CO2 concentrations by interpreting the

recorded spectra of the Earth-atmosphere system in thermal

infrared (TIR) bands (around 15 mm). Instruments that work in

such a way include AIRS [10,11], IASI [12,13], and FTS (Band 4)

of GOSAT [6]. These measurements bring the advantage that

they can detect CO2 during both day and night time, while the

lack of sensitivity in the lower troposphere makes them inappro-

priate to estimate CO2 near the surface where the largest signals of

CO2 sources and sinks occur [1]. The complementarities of these

platforms allow us to combine the SWIR and TIR measurements

for obtaining enhanced understanding of CO2 spatiotemporal

variations globally. Since XCO2 is much less affected by vertical

transport of CO2, it is particularly useful for investigation of CO2

sources and sinks using inversion modeling [14,15]. On the other

hand, the spatial and temporal variations in XCO2 are even
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smaller than that in the surface CO2; therefore, unprecedented

measurement precision and accuracy are highly required for such

column measurements [16–19]. SCIAMACHY (operation

stopped in April 2012) and GOSAT are two typical instruments

that can be used to derive XCO2 from space, and a variety of

retrieval algorithms have been developed for SCIAMACHY

[1,20–27] and GOSAT [2,4,5,28–30] with eyes on improving

XCO2 retrieval accuracy to a great extent. At present, a number

of XCO2 products have been released. These will definitely

enhance our understanding of the global carbon cycle.

Unfortunately, almost all typical instruments currently used to

derive atmospheric CO2 concentration are working in the infrared

spectral range (less than 16 mm). Thus, except for the instrument’s

observation mode (for example, GOSAT observes in lattice

points), the spatial coverage of the derived CO2 is severely

restricted by the presence of clouds. In addition, the lower signal-

to-noise level over ice/snow covered surfaces and ocean for SWIR

instruments (e.g., SCIAMACHY) also contributes to the CO2

sparse coverage. For instance, it has been pointed out that only

about 10% of GOSAT data can be used for retrieval of XCO2 due

to the cloud contaminations [4]. The amount of CO2 measure-

ments will be even smaller if additional screening criteria such as

quality of spectral fit, aerosol loadings, etc. are further applied.

Although the amount of remaining CO2 measurements from

certain space-based instruments may largely surpass that of

ground-based sites, it is still not sufficient enough for accurately

quantifying the spatiotemporal distribution of CO2 over the global

scale. As a result, it is greatly desired to jointly use these available

CO2 measurements derived from various space-based data.

Recently, a novel method has been proposed for combining

CO2 values from seven different algorithms, and a new Level-2

CO2 database (EMMA) from one algorithm is composed

according to the median of monthly average of seven CO2

products in each 10u610u latitude/longitude grid box [31]. In

fact, this method cannot increase the number of CO2 observations

but chooses a product with moderate oscillation among the

available products. Despite the usefulness of the XCO2 measure-

ments (Level 2) in their own right, further spatiotemporal analysis

for interpreting their scientific merit is essentially necessary due to

the retrieval uncertainties and sparse coverage of such Level-2

observations [32]. For this point, many works have attempted to

generate global full-coverage (i.e., Level 3) maps from XCO2

values derived from single satellite observations using a geospatial

statistics approach [32–34]. However, as reflected in these studies

(for instance, Fig. 1 in the work of [33]), a compromise has to be

made between the interpolated accuracy and the spatiotemporal

resolution of Level-3 product because of the limited amount of

Level-2 XCO2 observations being used. For this point, instead of

using Level-2 XCO2 from a single dataset (e.g., GOSAT or OCO-

2) as performed in the existing literature, we attempt to explore the

potential of combining two CO2 datasets (GOSAT and SCIA-

MACHY) in assisting in global Level-3 generation, aiming to: (1)

propose a general strategy for combining (fusing) various CO2

datasets with different instruments, algorithms, averaging kernels,

etc.; and 2) increase the number of daily CO2 points (utilized in

Level-3 map interpolations) through the combination of two

datasets, so that potentially improved Level-3 maps with higher

accuracy and shorter time scale can be generated. The better the

interpretation of the satellite-based CO2 observations one can

make, the higher the resolution (both temporal and spatial) of the

generated global CO2 maps.

Datasets

For GOSAT, the Fourier transform spectrometer (FTS) on

GOSAT is the fundamental unit to retrieve atmospheric CO2 and

CH4. It observes sunlight reflected from the earth’s surface, and

light emitted from the atmosphere and the surface. It is composed

of three narrow bands in the SWIR region (0.76, 1.6, and 2.0 mm)

and a wide TIR band (5.5–14.3 mm) at a spectral and spatial

resolution of 0.2 cm21 and 10.5 km, respectively [35]. Specifical-

ly, four CO2 products from GOSAT have currently been released

to the public: University of Leicester product [9,36], the

RemoTeC product [28], NIES GOSAT product [35] and the

product generated by NASA’s Atmospheric CO2 Observations

from Space (ACOS) team (hereafter called ACOS product) [2,30].

The difference between some of the above mentioned products

with various versions have been investigated in a recent study [37].

In the present paper, the ACOS product of 2009–2010 with

version v2.9 has been employed.

SCIAMACHY was successfully launched on board Environ-

mental Satellite (ENVISAT) in 2002 (unfortunately ceased in April

2012), which is a detector elements satellite spectrometer covering

the spectral range 0.24–2.38 mm with a moderate spectral

resolution of about 0.2–1.6 nm, and spatial resolution at nadir

of 60630 km [7]. It has eight spectral channels, with 1024

individual detector diodes for each band, observing the spectral

regions 0.24–1.75 mm (band 1–6), 1.94–2.04 mm (band 7), and

2.26–2.38 mm (band 8) simultaneously in nadir and limb and solar

and lunar occultation viewing geometries [22]. As mentioned in

Section 1, till today, a number of CO2-retrieval algorithms have

been developed for SCIAMACHY. The IUP/IFE of University of

Bremen has released two XCO2 products, i.e., WFM-DOAS

product [21,22] and the Bremen Optimal Estimation DOAS

(BESD) product [1,26]. In this study, the BESD product with the

versions of v02.00.08 for 2009–2010 is used.

In addition, CO2 profiles of CT [38] are also collected here to

allow the data mentioned above to be properly fused. CT is a

NOAA data assimilation system, which provides the 3D profiles of

CO2 mole fractions in the atmosphere over the globe. For this

study, CT data with version CT2011 is collected. This dataset

provides global CO2 profiles with 3u62u latitude/longitude grid

and 3 hours temporal resolution (a total 8 times from 01 to 22 in

UTC) spanning the time period from January 2000 to December

2010. The CT dataset is used here mainly to assist in adjusting and

time-shifting of the two CO2 products being combined.

Methodologies

For combining the different space-based CO2 measurements,

three steps are adapted in this study. First, taking the global

ground measurements of CO2 as reference, remove the bias of the

individual CO2 retrievals for ensuring the accuracy of the fused

CO2 product; then make some adjustment for both the ACOS and

BESD products, so that they can be physically comparable and

thus combined; finally fuse the ACOS and BESD CO2 products

considering their retrieval uncertainties, spatial scales, differences

in averaging kernels and overpass times, etc.

3.1 Global bias corrections
Removal of any global bias of the retrieved CO2 when

compared with the ground in situ measurements is essential

before performing joint use. Many researches [4,25] frequently

pointed out that CO2 retrievals from GOSAT are low biased with

different levels due to the uncertainties in pressure, radiometric

calibration, line shape model, cloud and aerosol scattering, etc.
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Fortunately, a recent study has proposed a method for evaluating

systematic errors in CO2 and showed that the new version of

ACOS product (v2.9) has a low global bias (,0.5 ppm) [39]. Thus,

there is no global bias correction for the ACOS product being

conducted here, but only the ACOS retrievals that pass the filter of

table B1 in the work of [38] and marked as ‘‘good’’ in the quality

flag are used. For the BESD product, we select Total Carbon

Column Observing Network (TCCON) [15] measurements for

2009–2010 as the ground truth to determine its global bias.

Specifically, BESD retrievals within 62.5u and 62.5u latitude/

longitude box centered at each TCCON site and the mean FTS

value (within 61 h time window of satellite overpass time) are

Figure 1. Validation of the BESD products against in situ TCCON CO2 measurements over globe for 2009–2010.
doi:10.1371/journal.pone.0105050.g001

Figure 2. XCO2 monthly mean maps in May of 2010. ((a) ACOS XCO2, (b) BESD XCO2, (c) combined product, and (d) XCO2 uncertainties of the
combined product).
doi:10.1371/journal.pone.0105050.g002
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extracted and compared (totally ten TCCON sites are utilized).

The coincidence criteria mentioned above ultimately yield a total

of 338 pairs of CO2 measurements. The comparison result is

shown in Fig. 1.

3.2 Retrieval adjustments
As pointed out by most researchers, it is not reasonable to

directly compare or use two XCO2 measurements. A suitable way

to do that is to take the a priori profiles and variations in averaging

kernel into account during the comparison [26,40]. To tackle the a

priori issue, after correcting their global biases, both BESD and

ACOS products are adjusted for a common a priori profile, which

we assume to be the CT profile interpolated at the middle of the

two overpass times (Equation (1)). Specifically, the a priori CO2

profile of both the ACOS and BESD are first interpolated or

extrapolated to the level of the CT CO2 profile according to their

pressure layers. After interpolation, the a priori profiles for both

ACOS and BESD have the same dimension as the CT profile.

Here the reason we take the CT profile at the middle of the two

overpass times is that the time difference for GOSAT (1:00 pm)

and SCIAMACHY (10:00 am) is relative large (3 hours), if we take

one satellite time as reference, the induced error would be large for

the other satellite measurements considering the CO2 natural

diurnal variation. So a middle time between these two satellite

overpass times is selected for minimizing the CO2 uncertainties

during the adjustment.

XCO2 adj~XCO2 retz(hT I{a)(xCT{xa) ð1Þ

Here, XCO2 adj is the adjusted XCO2 for ACOS or BESD;

XCO2 ret corresponds to retrieved XCO2 of ACOS or BESD; a is

the column-averaging kernel (row vector) of ACOS or BESD; h is

pressure-weighting function (column vector); I is an identity

matrix; xCT and xa (column vectors) are the common CT CO2

profile and the corresponding a priori CO2 profile for ACOS or

BESD, respectively.

While it is not trivial to accurately consider the smoothing error

without an estimate of the true atmospheric variability which is

generally not readily available for most cases [39]. Fortunately,

some works revealed that the smoothing error is generally small

[26,39]. Consequently, for the remainder of this paper, only the

adjustment in Equation (1) is applied for both the ACOS and

BESD CO2 products (after bias corrections).

3.3 Combination and time shifting
Based on the processes described above, the world is divided

into a number of 0.5u60.5ulatitude/longitude grid box (totally

7206360). For each grid cell, Equation (2) is used to combine the

corresponding CO2 measurements within that grid.

XCO2 Fued~
Xm

i~1

XCO2 i|
1{Uncert ratioi

Pm
i~1

(1{Uncert ratioi)

0
BB@

1
CCA ð2Þ

where XCO2 Fued is the combined XCO2; m is the total number

of space-based CO2 retrievals (ACOS and/or BESD) within a

certain grid; XCO2 i is the ith XCO2 retrieval in a grid for which

Figure 3. XCO2 monthly mean maps in June of 2010. ((a) ACOS XCO2, (b) BESD XCO2, (c) combined product, and (d) XCO2 uncertainties of the
combined product).
doi:10.1371/journal.pone.0105050.g003
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the global bias and Equation (1) are supposed to be applied;

Uncert ratioi is the ratio of uncertainty of the ith XCO2 retrieval

to its XCO2 value.

Please note that since different CO2 retrievals have distinct

overpass times, it is necessary to unify them to avoid uncertainties

induced from the time discrepancy before fusion. To this end, a

method for considering the CO2 shifting along time has been

developed (Equation (3)). First, designate a specific time or select

one overpass time as reference, then transfer CO2 measurements

at various overpass times to that of the reference time by

interpolating the CT CO2 at temporal scale. Here, it should be

pointed out that despite the CO2 absolute values of CT not being

accurate enough, the daily cycle pattern of atmospheric CO2 it

reflects is assumed to be correct.

XCO2 ref ~
vT X ref CT

vT X tCT
|XCO2 t ð3Þ

Here, XCO2 ref is the transformed XCO2 (ACOS or BESD) at

the reference time; XCO2 t is the retrieved XCO2 from ACOS or

BESD at overpass time t; X ref CT and X tCT are CO2 profiles

of CT at times of reference and t, respectively; v is the pressure-

weighting vector (column vector).

Based on the time-shifting strategy proposed here, a global CO2

map at any specific time can be theoretically produced by

employing the pattern of the CO2 daily cycle reflected by CT data.

For instance, we can unify all XCO2 retrievals being combined

with various overpass times to that of UTC = 1.

Results

Evaluation analysis showed that the global bias for the BESD

product is generally small. In this study, the bias of the BESD

product is corrected by subtracting 0.6 ppm from all XCO2 values

according to the results in Fig. 1. Although the systematic bias of

the XCO2 retrievals is removed, it is supposed that the error

characteristics (random error) within the data are still unchanged.

The bias-corrected XCO2 retrievals of both ACOS and BEDS are

used as fundamental data for the combination algorithm.

By applying the series of processes shown in Section 3, daily,

weekly, as well as monthly maps of combined XCO2 for 2009 and

2010 are generated. Here, as an example, only four maps (from

May to August) of monthly mean XCO2 of 2010 are shown here

(Fig. 2–Fig. 5). In addition, the total XCO2 uncertainties of the

combined product which mainly depend on the uncertainties of

the original ACOS or BESD XCO2 retrievals are also illustrated.

From Fig. 2–Fig. 5, it is not difficult to observe that the

combined data realize the physical complementary of the two

products in terms of spatial coverage. The number of valid CO2

measurements in the fused product is the union of the CO2 data

from both the ACOS and BESD at the same geographical

location. In addition, the combined XCO2 demonstrates similar

spatiotemporal characteristics with that of ACOS and BESD over

the globe, which implies that all processes associated with the

combination do not distort the essential information of the original

XCO2 products (ACOS or BESD). Similar findings can also be

observed in the daily mean and weekly mean XCO2 maps. To

quantitatively investigate the improvement of fused XCO2 in

spatial coverage, the fractional coverage of all three variables

Figure 4. XCO2 monthly mean maps in July of 2010. ((a) ACOS XCO2, (b) BESD XCO2, (c) combined product, and (d) XCO2 uncertainties of the
combined product).
doi:10.1371/journal.pone.0105050.g004
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(ACOS, BESD, and combined XCO2) on both daily and monthly

scales is calculated (Fig. 6). From Fig. 6, it can be seen that the

average global coverage of ACOS and BESD is around 0.46% and

0.21%, respectively, on a daily scale. The monthly mean coverage

of such products accounts for about 5.70% and 3.75%,

respectively. While spatial coverage of combined XCO2 can reach

up to 0.65% and 8.42% on daily and monthly scales, respectively,

it accounts for increments of 41.3% and 47.7% on the daily and

Figure 5. XCO2 monthly mean maps in August of 2010. ((a) ACOS XCO2, (b) BESD XCO2, (c) combined product, and (d) XCO2 uncertainties of
the combined product).
doi:10.1371/journal.pone.0105050.g005

Figure 6. XCO2 fraction of coverage of ACOS, BESD, and combined products. (a) Daily coverage. (b) Monthly coverage. (c) Cumulative
coverage.
doi:10.1371/journal.pone.0105050.g006
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monthly scales with respect to that of GOSAT and it is even

higher relative to the coverage of SCIAMACHY. Likewise, the

cumulative fraction of coverage of the combined XCO2 has risen

to 25% when compared with 20% and 13% for ACOS and

BESD, respectively. The increase in the XCO2 spatial coverage

indicates the potential advantage of the combined XCO2

observations in generating global Level-3 XCO2 maps when

compared with any single dataset by providing more satellite-

based XCO2 retrievals used for optimal interpolating.

For evaluating the performance of our combination strategy, the

combined XCO2 values are compared with that retrieved from

ACOS and BESD as well as XCO2 in the EMMA database at two

TCCON sites (Fig. 7). The results reveal that the XCO2 values

from the combination method show generally consistent variation

in time with TCCON measurements except for a small overall

bias (especially for the Lamont site). On the whole, the new

combined XCO2 product shows good consistency with the

EMMA data, and they are comparable in terms of CO2

magnitude, while the combined XCO2 are shown with a longer

time period, which is in line with the satellite observations, and

possess more data points even over the same period.

Discussions and Conclusions

Despite the fact that space-based measurements can provide a

unique opportunity to map atmospheric CO2 over large areas, the

number of valid CO2 measurements from a single space-based

instrument is generally limited for a certain day over a specific

region due to the presence of clouds. In addition, although these

Level-2 XCO2 retrievals themselves are very important for

inversion modeling of surface carbon sources/sinks, further

comprehensive analysis by investigating the spatiotemporal full-

coverage XCO2 (Level 3) distribution is needed for interpreting

their significant scientific merit [32]. While the limited satellite

observations restrict the generation of Level-3 XCO2 maps with

high spatial and temporal resolutions when only a single satellite-

based XCO2 dataset is considered. This is our main motivation in

this paper.

In this study, a strategy for combining SCIAMACHY and

GOSAT CO2 measurements has been proposed by fully

accounting for the CO2 global bias, differences in averaging

kernels and overpass times, and the Level-2 retrieval errors of the

CO2 measurements being used. The results indicated that the

average global coverage of both ACOS and BESD is less than

0.5% on a daily scale, and less than 6% on a monthly scale. While

spatial coverage of combined XCO2 can reach up to 0.65% and

8.42% on daily and monthly scales, respectively, the comparison

analysis reveals that the combined XCO2 product is consistent

with TCCON and EMMA in both temporal variation and

magnitude except for a small bias when compared with the

TCCON measurements. All these findings herein prove the

effectiveness of the combination method in supporting generation

Figure 7. Comparison of XCO2 measurements from TCCON, ACOS, BESD, EMMA, and our new combination method over
Wollongong and Lamont sites (distance,0.25 degree, temporal difference,1 hour).
doi:10.1371/journal.pone.0105050.g007
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global full-coverage XCO2 maps with higher temporal and spatial

sampling by jointly using two space-based XCO2 datasets. Similar

to the existing studies (e.g. [32–34]), although these combined

XCO2 are not intended to be used in inverse modeling studies,

they deliver a key complement for such research, and can be

deemed as an independent dataset for comparison with model

predictions. Similar to the existing study [31], an improved fusion

approach (based on multiple XCO2 datasets) to create Level-2

XCO2 measurements that can be directly used for inverse

modeling is also attempted and will be presented in another paper.

A last point that needs to be addressed is that although we

employed CO2 data of GOSAT and SCIAMACHY in this study,

the proposed strategies are not restricted to such data. As a general

strategy, it can be refined and adapted to further combine other

XCO2 products, such as OCO-2, CarbonSat, etc. in the future,

and even to be applied to the fusion of other trace gases, such as

O3, CH4.

Acknowledgments

The authors would like to thank the SCIAMACHY team at University of

Bremen IUP/IFE as well as the ACOS scientific teams for providing us the

CO2 products. The authors also thank the anonymous reviewers for their

helpful and valuable comments to improve this work.

Author Contributions

Conceived and designed the experiments: TW JS YJ TZ DJ CX.

Performed the experiments: TW JS YJ TZ DJ CX. Analyzed the data: TW

JS YJ TZ DJ CX. Contributed reagents/materials/analysis tools: TW JS

YJ TZ DJ CX. Wrote the paper: TW JS YJ TZ DJ CX.

References

1. Reuter M, Bovensmann H, Buchwitz M, Burrows JP (2010) A method for

improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds.

Atmos. Meas. Tech 3: 209–232.
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