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Abstract

We examined the potential effects of environmental variables, and their interaction,

on phytoplankton community succession in spring using long-term data from 1992

to 2012 in Lake Taihu, China. Laboratory experiments were additionally performed

to test the sensitivity of the phytoplankton community to nutrient concentrations and

temperature. A phytoplankton community structure analysis from 1992 to 2012

showed that Cryptomonas (Cryptophyta) was the dominant genus in spring during

the early 1990s. Dominance then shifted to Ulothrix (Chlorophyta) in 1996 and

1997. However, Cryptomonas again dominated in 1999, 2000, and 2002, with

Ulothrix regaining dominance from 2003 to 2006. The bloom-forming

cyanobacterial genus Microcystis dominated in 1995, 2001 and 2007–2012. The

results of ordinations indicated that the nutrient concentration (as indicated by the

trophic state index) was the most important factor affecting phytoplankton

community succession during the past two decades. In the laboratory experiments,

shifts in dominance among phytoplankton taxa occurred in all nutrient addition

treatments. Results of both long term monitoring and experiment indicated that

nutrients exert a stronger control than water temperature on phytoplankton

communities during spring. Interactive effect of nutrients and water temperature

was the next principal factor. Overall, phytoplankton community composition was

mediated by nutrients concentrations, but this effect was strongly enhanced by

elevated water temperatures.
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Introduction

Phytoplankton community structure has been the subject of intense study for

many decades. In general, increased nutrient loads are considered to be the driver

of cyanobacterial dominance and blooms in lakes [1]. However, it has also been

shown that dominance shifts from cyanobacteria to chlorophytes under excessive

nutrient loading (i.e., hypertrophic) conditions [2] because in temperate lakes,

chlorophytes are characterized by high growth and loss rates and they have a high

demand for nutrients, whereas cyanobacteria have lower growth and loss rates and

hence a lower demand for nutrients [3]. Based on previous works in shallow

freshwater lakes, it is apparent that climate change may also cause qualitative

changes in phytoplankton community dynamics, shown as changes in

phytoplankton species composition or changes in the seasonal succession of

phytoplankton groups [4]. Many studies have reported that rising temperatures

enhance cyanobacterial biomass and dominance along a range of latitudes [5–7].

In addition, other aspects of climate change, including increases in rainfall and

nutrient runoff are also intensifying the symptoms of eutrophication through the

enhanced nutrient loading to lakes due to rainfall [8–10].

It was reported that nutrients are the more important predictor of

cyanobacterial biovolume compared to water temperature as lakes become more

eutrophic [11]. However, there is currently a critical knowledge gap in how

eutrophication and climate variables individually and interactively impact the

dynamics of marine ecosystems [12]. Being able to distinguish the individual and

cumulative effects of physical, chemical and biotic controls of phytoplankton

productivity and composition is key to understanding, predicting, and ultimately

managing eutrophication [13].

Lake Taihu is the third largest freshwater lake in China. Previous studies on

Lake Taihu have found that water temperature or accumulated water temperature

was the principal force driving Microcystis blooms [14, 15]. Other studies have

concluded that climatic variables rather than nutrients are crucial in predicting

cyanobacterial bloom events because nutrients are present in sufficiently high

quantities to sustain the formation of cyanobacterial blooms [16, 17]. It has also

been reported that the spring season in the Lake Taihu region has become warmer

[18], and as a result, the initiation time for cyanobacterial blooms has advanced

further from summer into spring [16]. However, all the aforementioned studies

on Lake Taihu have largely focused on bloom events or the harmful (toxic, food

web disrupting, anoxia generating) genus Microcystis. This may lead to a bias in

studying the effects of global change, eutrophication and their interactions on lake

ecosystems, because specific phytoplankton taxa will response differently to

nutrient enrichment and increasing water temperatures [19–21]. For instance,

Thackeray et al. [22] demonstrated that nutrients play a more important role than

water temperature when considered at the phytoplankton community level.

Knowledge of the mechanisms by which nutrients, temperature and their

interactions affect the phytoplankton community succession in the subtropical

shallow lakes remains limited. To address this information gap, we examined
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long-term monitoring data and conducted laboratory experiments in order to 1)

assess the relative importance of temperature, nutrient concentrations and their

interactions in driving phytoplankton community dynamics in spring in Lake

Taihu, and 2) test whether conclusions based on the community level might be

different from those based on single species.

Materials and Methods

Ethics Statement

No permits were required for the field studies, because the location was not

privately-owned or protected, and the field studies did not involve endangered or

protected species.

Study site

Lake Taihu is a shallow, subtropical lake situated in the Changjiang (Yangtze)

Delta (Figure 1). The lake is a polymictic [23], and as a result, differences in water

temperature between the surface and the bottom are generally less than 1
˚
C [24].

In 1960s, Lake Taihu was mesotrophic; however, by 1981 water quality had

deteriorated. Currently, Lake Taihu is eutrophic [23]. Since the 1980’s, rapid

economic development in the Taihu basin has resulted in increasing levels of

pollutants being discharged to tributaries emptying into the lake. As a result, rapid

deterioration of water quality has occurred, accelerating eutrophication and

increasing the frequency and intensity of cyanobacterial blooms (Microcystis spp.)

[25].

Meiliang Bay is one of the lake’s most eutrophic bays, located in the northern

part of Lake Taihu. The blooms there are more intense than in most other regions

of the lake [26]. The bay is also an intensively monitored region of the lake.

Hence, Meiliang Bay was selected as our study area.

Physicochemical variables

Four sampling sites (THL1#, THL3#, THL4# and THL5#, see Figure 1) were

selected because they cover major sections of Meiliang Bay. Monthly sampling has

been conducted at these sites since 1992. Surface water temperature (WT, C̊) was

measured with a mercury thermometer at 0.5 m below the water surface at the

sampling sites. Integrated water samples were taken using a 2 m long, 10 cm

diameter plastic tube. Physicochemical variables, including Secchi depth (SD, m),

conductivity (Cond, mS?cm21), chemical oxygen demand (COD, mg?L21) and

nutrients concentrations were analyzed following Chinese standard methods [27].

Specifically, total nitrogen (TN) and total phosphorus (TP) concentrations were

determined using a combined persulfate digestion followed by spectrophoto-

metric analysis as for soluble reactive phosphorus and nitrate. NH4
+ concentra-

tions were measured by the indophenol blue method, and NO3
2 and NO2

2

concentrations were analyzed by the cadmium reduction method [27, 28]. COD
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was measured by titration with acidic potassium permanganate. SD was

determined by the classical procedure using a Secchi disk (diameter 0.3 m). Eight

major ions (K+, Na+, Ca2+, Mg2+, Cl2, SO4
22, Si and F2) were measured by ion

chromatography. Chlorophyll a (Chl a, mg?L21) concentrations were determined

spectrophotometrically after extraction in 90% hot ethanol [29]. Cumulative

water temperature (CWT, C̊) was calculated by summing each month’s

monitored surface water temperature in the spring season (March, April and

May). The mean values of physical and chemical variables during the spring

season were used in our analysis.

A tropic state index (TSI) was used to evaluate the trophic state of Lake Taihu.

We used functions fitted according to original Table 6–11 in Wang and Dou [30]

to calculate the TSI during our study. The TSI was calculated based on Chl-a, TN,

TP, COD and SD (Equation 1). TSI,40 indicates an oligotrophic, 40#TSI,80 a

mesotrophic, and TSI>80 a eutrophic state. The index for each month in the

spring seasons from 1992 to 2012 was calculated, and then the mean index was

calculated as a proxy of trophic state for the spring season of each year.

TSI~ TSIChlazTSITPzTSITNzTSICODzTSISDð Þ=5 ð1Þ

Where TSIChla~11:62|ln CChlað Þz21:21

TSITP~12:51|ln CTPð Þz90

Figure 1. Location of Lake Taihu in China and the sampling sites. Map was redrawn from [26].
Phytoplankton biovolume together with water quality were monitored monthly at THL1#, THL3#, THL4# and
THL5#, generally in the middle of each month.

doi:10.1371/journal.pone.0113960.g001
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TSITN~13:3|ln CTNð Þz60

TSICOD~15:1|ln CCODð Þz32:9

TSISD~-20:7|ln CSDð Þz52:7

Phytoplankton community dynamics

One liter of a vertically integrated sample was collected at each site for

phytoplankton species identification and enumeration. Phytoplankton samples

were fixed with Lugol’s iodine solution and sedimented for 48 h prior to

microscopic enumeration at 5126 magnification. Phytoplankton species were

identified according to Hu et al. [31] and Hu and Wei [32]. The phytoplankton

community was identified to the genus level (whenever possible). Algal

biovolumes were calculated from cell numbers and cell size measurements.

Conversions to biomass assumed that 1 mm3 of volume was equivalent to 1 mg of

fresh-weight biomass [33]. Phytoplankton biovolume data were not collected

during 2004.

Experimental design

Laboratory experiments were conducted in the laboratory from January 13–25,

2013. There were three nutrient levels (low: TN,2 mg?L21, TP,0.06 mg?L21;

medium: TN,7 mg?L21, TP,0.3 mg?L21 and high: TN,10 mg?L21,

TP,1 mg?L21; L, M and H were used for short) and six water temperature levels

(unheated, 12
˚
C, 14

˚
C, 16

˚
C, 18

˚
C and 20

˚
C; A, B, C, D, E and F for short,

respectively) in our experiment. Low nutrient concentrations treatments were

used as nutrient control treatments in which no extra nutrients were added. We

selected these temperatures because the mean water temperature in spring was

16
˚
C in Lake Taihu according to our monitoring data. Six large tanks (,400 L)

were used as water-bath heaters (Figure 2). Five of them (labeled as B, C, D, E,

and F) were heated to different temperatures using immersion heaters, and the

temperatures were controlled by thermostats (CHD702, China). The temperature-

control-system operated with a precision of ¡0.2
˚
C and functioned without any

interruption or breakdown. The sixth tank (labeled A) was not heated as a

temperature-treatment control, and the water temperature was recorded using a

YSI 6600V2 probe (Yellow Springs Instruments, USA).

Incubations were conducted in 4 L plastic boxes; 8 boxes were floated in each

tank (Figure 2). In the ‘‘L’’ treatment, no nutrients were added. In the ‘‘M’’ and

‘‘H’’ treatments, KNO3 and K2HPO4 were added to specific concentrations. Both

the ‘‘M’’ and ‘‘H’’ treatments consisted of three replicates, and the ‘‘L’’ treatments

consisted of two replicates because of the limited space in each tank. Six

Nutrients and Temperature Affect Phytoplankton Community
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fluorescent lamps (Power rating: 11 W) were attached to the roof to prolong the

illumination time.

All 48 boxes were filled with 4 L of lake water from Meiliang Bay on the

morning of January 13, 2013. Samples were taken from each box at 13:00 on a

daily basis. Concentrations of cyanobacteria, Chlorophyta and Bacillariophyta and

Chl a were estimated using Phyto-PAM (Walz, Germany). Phyto-PAM is a non-

intrusive method [34] that measures fluorescence at four wavelength signals

(470 nm, 520 nm, 645 nm and 665 nm) and therefore shows the contribution of

various types of pigments [35]. The Chl a data for cyanobacteria, green algae and

diatoms were calculated from the original 4-channel fluorescence data by an on-

line deconvolution routine, based on previously stored ‘‘reference excitation

spectra’’. Such ‘‘spectra’’, which consist of only four points at 470, 535, 620 and

650 nm, can be readily measured under ‘‘Reference’’ for any pure algae culture.

However, in any case, the differences between cyanobacteria, green algae and

diatoms are sufficiently large to allow at least a coarse differentiation, even if the

particular species contained in a sample were not identified [36]. The references

used for cyanobacteria in our experiments were obtained according to pure

Microcystis aeruginosa culture, references for green algae were obtained from

Scenedesmus obliquus and diatom references were obtained from Aulacoseira

granulata. All the species isolates were obtained from the Freshwater Algae

Figure 2. Diagrams illustrating the general arrangement of incubation and heating elements. Water
containing a natural phytoplankton community from Taihu was incubated in boxes floating on the surface of
large water-filled tanks equipped with a heating system. The heater was put in the middle of the tank with a
stirrer beside it. A temperature transducer was placed a bit farther from the heater. The heating process was
controlled by a thermostat to maintain a constant water temperature in the tank. There were six such tanks
used in our experiment. There was no heating system in the first tank. The others were heated to 12

˚
C, 14

˚
C,

16
˚
C, 18

˚
C and 20

˚
C. There were three nutrients levels, labeled as L, M and H, in each tank.

doi:10.1371/journal.pone.0113960.g002
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Culture Collection of Institute of Hydrobiology, Chinese Academy of Sciences,

which located in Wuhan, Hubei Province. Phytoplankton community structure

was determined based on microscopic observations, using the same procedures as

described for the field studies, at the beginning and end of the experiment.

Data analysis

The temporal trend in conductivity was evaluated for significance using the non-

parametric Mann-Kendall test [37]. A correlation analysis (Pearson correlation, r)

was performed between conductivity and the other environmental variables.

Ordination was used to quantify the influence of environmental variables on

phytoplankton community succession in spring. Two data matrices were used.

One included the phytoplankton biovolume, and a second one included the

environmental variables. To run the analysis, species that occurred in more than

40 of the 80 total samples were included. Before conducting RDA, we analyzed the

historical dynamics of spring phytoplankton community between 1992 and 2012

by using two indexes, the Bray & Curtis (BC, dissimilarity coefficient) index and

Sørensen coefficient (non metric coefficient). Results (Table S1 and Table S2)

indicated that the dynamics of spring phytoplankton community were mainly

influenced by biomass variation; no new species arise and no initial resident

species dying out. In this case, only include those species that occurred in more

than 40 of the 80 total samples would not introduce too much bias due to omit

rare species. The environmental matrix included water temperature in May (WT),

cumulative water temperature in spring (CWT), mean conductivity in spring

(Cond) and mean trophic state index (TSI). Here we used WT and CWT as

proxies of climate change, and Cond and TSI as proxies of trophic state. Species

data were square root transformed, and environmental variables were center and

standardization transformed before analyzing. Detrended correspondence analysis

was used to determine the maximum gradient length of species metrics, which was

2.9, indicating that linear methods would be appropriate [38]. All canonical axes

were used to evaluate the significant variables under analysis by means of a Monte

Carlo test (1000 permutations). There were no colinearities among the

environmental variables (variance inflation factors ,20). The variance parti-

tioning technique (partial ordination analysis) was applied to separate the effects

of climatic variables and trophic state and their interactive effects on

phytoplankton community [39].

Treatments effects, and interactions between them, on phytoplankton

community shifts in our experiment were determined by univariate analysis of

variance (ANOVA) using general linear models (the procedures followed [40]).

The ratio calculated follow Equation 2 was used as the dependent variable. The

proportion of cyanobacteria was small, and hence, it was omitted in our

calculation. Incubation days, water temperatures and total nitrogen concentra-

tions were used as independent variables. The interactive effect of water

temperature and total nitrogen was included in our analysis as well.

Nutrients and Temperature Affect Phytoplankton Community
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Ratio~(BiovolumenDiatiom-BiovolumeGreen)=(BiovolumeDiatomzBiovolumeGreen)ð2Þ

Where Ratio.0 means phytoplankton community was dominated by diatom,

Ratio,0 means it was dominated by green algae, and when the ratio around 0

means they were diatom and green algae co-dominated.

ANOVA provides an extremely powerful and useful tool for statistical tests of

factors and their interactions in experiments [41]. However, it was not

appropriate for comparing the contribution of each treatment. Hence, partial

regression coefficients [42] of linear regression models both with and without

interactive factor [43] were used to compare the contributions of treatments and

their interactive effects to the ratio. The interactive effect was calculated by TN6
water temperature.

The Mann-Kendall test was performed with R statistical software [44] using the

Kendall package for R. The correlation analyses, univariate analysis of variance

and linear regression were conducted using IBM SPSS Statistics 20. Ordination

analyses were performed by using Canoco 5. Graphs were draw with OriginPro

8.0.

Results

Long term changes in environmental variables

Conductivity exhibited a significant increasing trend before 2007 (t50.9,

p,0.001). It has decreased since 2008 (Figure 3). The variation in conductivity

was strongly and significantly related to the variations in Cl2, SO4
22 and K+

(Pearson correlation r.0.5, p,0.01). It was also related to those of NO2
2, NO3

2,

Na+, Ca2+ and NH4
+ (p,0.01) (Table 1).

Over the past 20 years, nutrient concentrations during spring in Meiliang Bay

were 0.1¡0.05 mg?L21 for TP and 4.3¡1.2 mg?L21 for TN, respectively. There

were two remarkable peaks in N concentrations (Figure 3). The first one occurred

in 1996 and another in 2006. There was only one noticeable peak for TP in 1996

(Figure 3). However, the P concentration exhibited an additional small peak in

2008.

Long term changes in the phytoplankton community

According to the monthly monitoring data, a total of 31 genera of phytoplankton

belonging to 6 phyla have been identified during the past two decades (Table S3).

Cyanobacteria and Chlorophyta were the two main phyla in late spring in

Meiliang Bay during the past twenty years. The next two most abundant phyla

were Bacillariophyta (diatom) and Cryptophyta. These four phyla comprised 98%

(ranging from 53% to 100% in all the samples) of total phytoplankton biovolume.

Among the 31 genera identified, only 10 were present in more than half of 80

samples. As showed in Figure 4, Microcystis biovolume was high in early 1995,

Nutrients and Temperature Affect Phytoplankton Community
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2001 and 2007–2012. Cryptomonas biovolume was high in the early 1990s, 1999–

2000 and 2002. Ulothrix biovolume was high from 1996–1997 and 2003–2006.

Ordination

The first four RDA axes ordinations accounted for 39.6% of total variance

(p,0.01), and the first two could explain 36.9%. TSI was the most significant

variable that affect phytoplankton community succession in spring (p,0.01). TSI

alone explained 27.6% of total variance. CWT was the next most significant

environmental variable and it explained 3.4% of total variance (p,0.05). Cond

and WT in May were not significant in our analysis (p.0.05). However, they were

Figure 3. Trends of the physical and chemical variables. All data are shown as the mean ¡ SD.

doi:10.1371/journal.pone.0113960.g003

Table 1. Pearson correlations between conductivity and main ions.

Cl2 SO4
22 K+ NO2

2 NO3
2 Na+

Pearson Correlation 0.8** 0.77** 0.5** 0.46** 0.43** 0.4**

Samples number 176 165 156 182 182 156

Ca2+ NH4
+ Si Mg2+ F2 PO4

32

Pearson Correlation 0.36** 0.33** 20.25** 0.09 20.12 0.01

Samples number 165 182 156 165 96 179

** Correlation is significant at the 0.01 level (2-tailed).

doi:10.1371/journal.pone.0113960.t001
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still significant in our following partial ordination analysis, hence, there were

reserved. Accord to Figure 5 (a), most of the dominant genera, for instance,

Ulothrix and Aulacoseira, related to TSI, while Microcystis was close related to

CWT.

The variance partitioning technique showed that trophic state (tropic state

index and conductivity) alone accounted for 33.2% of the total variation (p,0.01)

(Figure 5(b)). The shared fraction of total variation between trophic state and

climatic variables was 3.3% (p,0.01). Climatic variable alone accounted for 1.3%

of total variation, however, it was statistically not significant (p.0.05).

Experimental results

The water temperature in Tank A was 9.56¡1.5
˚
C during the experimental

period. Chl a was strongly correlated to both water temperature and nutrient

concentrations (Figure 6). Chl a concentrations increased slightly beginning on

the 2nd day in all treatments. It increased rapidly from the 5th day in treatments B,

C, D and E and from the 4th day in F. Total Chl a concentrations in the M and H

treatments were higher than in the L treatment at each water temperature

(F534.6, df52, p,0.01) (Figure 6). Chl a concentrations in the 20
˚
C treatments

decreased from the 9th day until the 13th day. Within each nutrient treatment, the

Chl a concentration increased significantly with water temperature.

Diatoms and green algae were co-dominant at the start of the experiment

(Figure 7). The dominant genera were Planctonema, Scenedesmus, Cyclotella, and

Aulacoseira. In the L treatments, the phytoplankton community consisted of both

diatoms and green algae. In the nutrient-added (M and H) treatments, the

dominance shifted to diatoms in treatments B, C, D and E on the 7th day and in

the F treatments on the 5th day.

Total nitrogen (F590.1, df52, p,0.01), water temperature (F59.28, df55,

p,0.01) and their interaction (F54.09, df510, p,0.01) affected phytoplankton

community significantly in our experiments according to univariate analysis of

variance (F545.7, df529, r250.68, p,0.01).

A Linear model without interactive effect between TN and water temperature

indicated TN affected phytoplankton community variations strongly and

significantly (r2 was 0.56, p,0.01 as showed in Table 2). A linear model with

interaction showed that besides incubation days, interactive effect between TN

and water temperature was the most significant variable affecting phytoplankton

community (r250.57, p,0.01 Table 2).

Discussion

In the early 1990s, both the trophic state and conductivity were low in Taihu.

Phosphorus was believed to be the primary limiting nutrient in freshwater systems

[45]; hence, phosphate-free detergents have been used in the Lake Taihu

catchment since 1999 in an effort to reduce P loading. This measure was quite

Nutrients and Temperature Affect Phytoplankton Community
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Figure 4. Biovolumes of the most dominant genera in the spring season from 1992–2012. There were no samples in 2004. Biovolume data were
square root transformed.

doi:10.1371/journal.pone.0113960.g004

Figure 5. Ordination biplot. (a) Environment variables and dominated species against redundancy analysis axes 1 and 2. (b) Variance partitioning of
phytoplankton community, explained by trophic state and climatic variables. See methods for the abbreviations of environmental variables.

doi:10.1371/journal.pone.0113960.g005
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effective [46], and as a result, P concentrations have exhibited only one notable

peak in 1996 during the last two decades. However, with no specific focus on

nitrogen reduction, N concentrations experienced two notable peaks during the

last two decades. The average cumulative water temperature over the last ten years

was a bit higher than for the first ten years of our study period. The warming

trend in Lake Taihu in spring is reflective of increases in the region’s air

temperature in spring [18]. Our monitoring data indicated that Cl2, SO4
22, K+,

NO2
2 and NO3

2 were the main ions that contributed to the variation in

conductivity, and the increasing of their concentrations were mainly due to

human activities [47]. In the basin, NH4Cl, KCl, (NH4)2SO4 and K2SO4 are most

commonly used agricultural fertilizer.

Microcystis biomass was positively related to CWT and WT in our study (as

indicated in Fig. 5), this was in accordance with previous studies and conclusions

[6, 14, 15, 48]. However, when TP and TN concentrations reached their first peaks

in 1996 and 1997, Microcystis became less dominant and green algae appeared at a

very high percentage (as shown in Figs. 3 and Figure 4 in 1996–2000).

Chlorophytes dominated again from 2003 to 2006 when nutrient concentrations

were high (Figs. 3 and 4). In our experiments, the dominant phytoplankton taxa

Figure 6. Trends in the total concentration of chlorophyll-a in the different water temperature
treatments. L, M and H represent the low nutrient concentration treatment (TN,2 mg?L21,
TP,0.06 mg?L21), medium nutrient concentration treatment (TN,7 mg?L21, TP,0.3 mg?L21) and high
nutrient concentration treatment (TN,10 mg?L21, TP,1 mg?L21), respectively.

doi:10.1371/journal.pone.0113960.g006
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remained consistent at all water temperatures in the treatments with no nutrient

enrichment (Figure 7). Dominant taxa shifted to diatoms in all nutrient-add

treatments. Although, there is currently no consensus within the limnological

community about the relative importance of nutrients and temperature in driving

phytoplankton community dynamics, long-term monitoring data indicated that

nutrients exert a stronger control than water temperature over the composition of

phytoplankton communities in spring in Lake Taihu (Figure 5) and this was

Figure 7. Phytoplankton community succession during the experiment.

doi:10.1371/journal.pone.0113960.g007
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confirmed by our laboratory experiments (Table 2). However, there was still a gap

between field monitoring data and laboratory experiments in our study. Green

algae dominated in Meiliang Bay when nutrient concentrations were high, while it

was diatom dominated in the nutrient-added treatments in our lab experiment.

This may reflect the fact that diatoms possess heavy siliceous walls which render

them particularly susceptible to sinking losses in the field [49]. However, the

losses did not happened in our experiments. Besides, diatoms are generally fast-

growing species under non-limiting conditions [50] and thus would respond

quickly in a short time during our incubation. In addition, our experiments were

carried out during winter and illumination was not as strong as in spring in Lake

Taihu. However, diatoms have a higher inherent growth rate compared to other

algae because they have a higher photosynthetic capacity due to a higher

chlorophyll content inside [51]. Other factors, such as grazing [52, 53] and mixing

condition [54, 55], which were not significant in our experiments, may potentially

affect phytoplankton community structure responses. These interpretive problems

have likewise affected previous studies, e.g., [56, 57], and this should serve as a

reminder that extrapolating the laboratory results to the natural environment

should be treated with caution. In our study, laboratory experiments failed to

exactly predict the dominant species in Lake Taihu. However, the results clearly

indicated that in general, phytoplankton community succession is more sensitive

to nutrient concentrations than temperature shifts.

Compared to the published literature on Lake Taihu, which mainly focused on

single species or Chl a as a proxy for phytoplankton (e.g. [14–17] and so on), our

results demonstrated that nutrient concentrations became the principal factor that

affect phytoplankton at the community level. Badeck et al. [58] found that the

correction between satellite and ground phenology estimates was higher when

taxa composition is known or homogenous, suggesting a compositional role. It is

likely that, in many cases, mismatches might result from not considering the

importance of shifts in community composition, especially with respect to

dominant taxa [19].

Our study was carried out in subtropical lake and these results are not the

exception when compared to lakes globally. Phytoplankton community changes

among European peri-alpine lakes over 25 years were mainly driven by variation

in phosphorus concentrations, and it was also affected by warmer winters [59].

Table 2. Results of linear regression models.

Linear regression Partial correlations

r2 TN WT TN6WT

Model without interaction 0.56** 0.41** 0.17** -

Model with interaction 0.57** 20.04 20.06 0.14**

Models with and without interaction were both fitted to phytoplankton community (Ratio). The way calculating ratio please refer to methods. TN6WT means
the interaction between TN and water temperature.
** p,0.01.
-Not included in the model.

doi:10.1371/journal.pone.0113960.t002
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Phytoplankton composition in 35 lakes ranging from the subtropics to the

temperate zone in North America and Europe is primarily driven by nutrient

loading, while climate change effects are less detectable [60]. A study based on

.1000 US lakes found that the most important explanatory driver for

phytoplankton (Chl a was used as proxy) was nutrient availability [11]. In

addition, a paleolimnological study also found that nutrients played a more

crucial role than water temperature in controlling the diatom community over the

past 60 years in Esthwaite Water, UK [61]. Results of one phytoplankton

community model showed that changes in nutrient loading generally had a greater

effect on the composition of phytoplankton communities than changes in water

temperature [62]. Based on these cases, it appears that when compared to water

temperature, nutrients availability is the main driver for phytoplankton

community structure variation.

There is growing concern that interactions between climate warming and

eutrophication affect aquatic ecosystems globally. A previous study reported that

changes on photosynthesis, respiration and growth of natural phytoplankton

communities were strongly related to interactions of temperature and nutrient

availability [63]. Rhee and Gothan [64] argued that as temperature increases, so

does the demand for nutrients in phytoplankton growth as well. Our results also

showed that interactions between nutrients and water temperature have a strong

effect on phytoplankton community succession in Lake Taihu (Fig. 5). The spring

phytoplankton community variation in Lake Taihu was mediated by changes in

nutrient concentrations, and this effect was strongly enhanced by high water

temperature. This was also reported in other studies, e.g., [59]. Studies of climate–

nutrient interactions in lakes, streams and wetlands in the Euro-limpacs project

and elsewhere have shown that warming is likely to exacerbate symptoms of

eutrophication in freshwaters [65]. A study by Rigosi et al. [11] includes an in

depth discussion on the interaction of climate warming and eutrophication on

phytoplankton, although it was mainly focused on cyanobacterial dominance.

They found that the interaction between warming and eutrophication is

dependent on trophic state, especially how it promote cyanobacterial blooms. This

discussion also partly support our earlier conclusion. Although with only a single

case we cannot address such analogous conclusions, our results appear to support

their conclusion. Lake Taihu is eutrophic and the interaction between water

temperature and nutrient availability was significant. Most of the studies that

related to interaction of climate variables and nutrients availability were carried

out in eutrophic lakes, and still we cannot definitively determine the mechanisms

driving this result, we hypothesize that this may be because species response

differently to environmental variable variations, and different species will

dominate among lakes having differing trophic states.

In conclusion, our results show that nutrients concentrations are the dominant

environmental factors that influence phytoplankton community successional

patterns during bloom development in Lake Taihu. However, interactions

between nutrients concentrations and water temperature plays an additional, and
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thus for unexplored, variable involved in structuring phytoplankton communities,

including taxa involved in bloom formation.
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