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Abstract

Choice of variables, climate models and emissions scenarios all influence the

results of species distribution models under future climatic conditions. However, an

overview of applied studies suggests that the uncertainty associated with these

factors is not always appropriately incorporated or even considered. We examine

the effects of choice of variables, climate models and emissions scenarios can

have on future species distribution models using two endangered species: one a

short-lived invertebrate species (Ptunarra Brown Butterfly), and the other a long-

lived paleo-endemic tree species (King Billy Pine). We show the range in projected

distributions that result from different variable selection, climate models and

emissions scenarios. The extent to which results are affected by these choices

depends on the characteristics of the species modelled, but they all have the

potential to substantially alter conclusions about the impacts of climate change. We

discuss implications for conservation planning and management, and provide

recommendations to conservation practitioners on variable selection and

accommodating uncertainty when using future climate projections in species

distribution models.
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Introduction

Species distribution models (SDMs) are one of the most important tools currently

available to assess the potential impacts of climate change on species [1]. They are

commonly used to project potential future changes in the geographic ranges of

species [2,3], estimate extinction rates [4,5], examine the efficacy of existing

reserve systems [6,7] and prioritise biodiversity conservation efforts [8,9].

However, a range of factors influence the results of SDMs under future climatic

conditions, including the choice of statistical model, variable selection, climate

model range and emissions scenarios [10,11,12].While many of these issues have

been highlighted in the scientific literature (for example,

[13,14,15,16,17,18,19,20,21,22]), less attention has been given to providing

explanations and practical solutions to assist conservation planners and managers

apply the results of SDMs. Yet these issues contribute to cascading uncertainty

that makes decisions based on modelled future projections very challenging.

The emphasis of much ecological research in this area has been the validation of

statistical models [11,23,24,25], and the development of ensemble approaches to

represent the range in SDM outputs [10,19,23,26,27,28,29,30,31,32,33,34,35,36].

Ensemble approaches produce multiple distribution maps that require

summarising before interpretation is possible. Several methods have been

suggested to achieve this and deal with the errors and uncertainties of different

statistical models [37]. These include representing the central tendency with

median or mean values; highlighting spatial extents within which either one or all

models show suitable habitat; presenting the degree of model agreement with

frequency histograms; or probabilistic forecasting when large numbers of models

are used [37]. However, while ensemble-based statistical methods may be

appropriate to deal with errors and uncertainties between models, they may not

always be the best way to summarise projected habitat ranges in SDMs due to the

influence of differences in variable selection, climate model range and emissions

scenarios.

Global climate models (GCMs) and emissions scenarios represent a range of

plausible futures [38,39]. They are not intended to provide accurate predictions

regarding the future state of the climate system at any given point in time, but to

establish the envelope that future climate could conceivably occupy. For this

reason, important information may be lost if an ensemble of GCMs are

summarised inappropriately. For example, presenting a multi-model mean

provides a ‘central estimate’ of the projections obtained under a particular

selection of GCMs and does not consider the variability represented by different

climate models and/or emissions scenarios.

In this paper, we assess the literature in relation to SDM projections in applied

ecological studies and evaluate the extent to which uncertainties attributable to

selection of climatic variables and GCMs are addressed. Some uncertainty is not

taken into account with SDMs, the classic example is the physiological response of

plants and animals to an atmosphere with elevated CO2 concentrations. In this

paper the uncertainty from changing concentrations of CO2 in the atmosphere
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cannot be addressed and thus these results assume a constant atmospheric

concentration for a given emissions scenario. Informed by the findings of our

literature review, we explore the influence of the choice of climatic variables and

approaches to assimilating multiple SDMs based on a range of climate models and

emissions scenarios using two threatened species from Tasmania, Australia, as

case studies. We conclude with recommendations on the use of SDMs for

conservation planners and managers.

Common approaches to SDM in applied ecology

To gain an overview of how SDMs are being used in applied studies of species

distributions under climate change, we searched for articles in the ISI Web of

Science database (http://www.webofknowledge.com) from 1982 to 2013, where

the phrases ‘bioclimatic’ and ‘climate change’ occurred in the title, abstract or

author’s keywords. In SDM literature, it has become common practice in

ecological studies to refer to climatic variables derived from spatial interpolation

of long-term mean monthly data as ‘bioclimatic’ variables [40]. The aim of this

overview was to provide a substantive sample of relevant literature rather than

being a systematic review of all the literature and available databases. The search

yielded 562 records, which we refined by selecting articles that contained the

words ‘niche’ or ‘habitat’, resulting in a total of 221 publications (the list of

reviewed articles can be found at: http://www.mendeley.com/groups/3315561/

bioclim-review/papers/). Since we focused on applied studies, review articles were

omitted. A total of 163 articles had constructed SDMs for current or future

terrestrial species distributions. From each article, we analysed information

relating to predictor variables used in the SDM, the taxa, the scale and location of

the study region, and how future climate projections were used. Data from the

review were analysed using R [41].

Most of the reviewed articles focused on Europe (,30%), North America

(,17%), Africa (,12%), South America (,11%), Australia and Oceania

(,10%), with a small fraction on Asia (,3%). Note that the sum of fractions is

,100% because some articles were methodological and did not include case

studies. The majority of studies (58%) were carried out at the regional scale (e.g.

geographic extent >10000 km2 ,continental), 14% were at the continental scale,

and just over 10% of the articles reported studies at scales of either ,10 km2 or

between 1000 km2 to 10000 km2. A small proportion of articles (,2%) carried

out SDMs at the global scale. SDMs were used to study the potential impacts of

climate change on the distributions of a wide range of taxa, including birds

(,43%), reptiles and amphibians (,32%), plants (,19%), invertebrates (,12%)

and mammals (,10%) with some articles modelling more than one taxon.

From the reviewed literature, we identified three common approaches to

variable selection. The first common approach uses all available bioclimatic

variables without justification. The BIOCLIM software, a sub-package of

ANUCLIM [42] provides 35 variables, while WORLDCLIM [43] provides a subset

of 19 bioclimatic variables. The second common approach reduces the number of
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bioclimatic and biophysical covariates to account for colinearity. The third selects

variables based on ecological knowledge. Typically, the third involved assuming a

causal relationship between a climatic variable and a theoretical or empirically

established understanding of a species’ eco-physiology, life history traits, patterns

of movement, reproductive cycle or habitat requirements. Often the assumed

causal relationship was general, such as the relationship between growing degrees

days and biological growth rates [44]. A total of 119 distinct variables were used in

the reviewed articles (see Figure S1) the most common being mean annual

precipitation and mean annual temperature used by 43% and 37% of the articles,

respectively.

Diagnostic statistics regarding performance of SDMs were reported by 55% of

the articles. The most commonly used statistics to assess the performance of

SDMs were the area under the receiver operating curve (AUC), Akaike

information criterion (AIC), Bayesian information criterion (BIC), Kappa and R2.

We found three approaches were commonly used to summarise the outputs of

SDMs: (1) model mean tendency; (2) model agreement; and (3) the bounding box

[23].

About 10% of the reviewed papers provided justification for the selection of

GCM. About 40% of the reviewed articles used two or more GCMs with one or

two emissions scenarios. Only seven articles [19,45,46,47,48,49,50] used more

than 10 GCMs and acknowledged variability in these inputs. Each of these seven

articles focused on testing SDM methods, rather than applying SDMs to practical

conservation problems. The review database can be found in File S2.

Material and Methods

We used two contrasting species as case studies to examine the issues related to

variable selection and GCMs that commonly arise when modelling future species

distributions for applied conservation: the King Billy Pine (Athrotaxis

selaginoides); and the Ptunarra Brown Butterfly (Oreixenica ptunarra). King Billy

Pine is a long-lived paleo-endemic tree that grows at altitudes of 600 m to

1100 m. In contrast, the Ptunarra Brown Butterfly is a short-lived species, which is

active for three to four weeks in late February to April, at altitudes from 200 m to

1200 m. These species are endemic to Tasmania, Australia, and have been listed as

endangered under the Environment Protection and Biodiversity Conservation Act

1999. We conducted SDM experiments to examine the range in projected

distribution due to (a) the three common approaches to variable selection

identified in the review and (b) the three different ways of accounting for the

range in SDM results from using multiple GCMs and emissions scenarios.

Species Distribution Models

Presence data for the species were downloaded from the online database Atlas of

Living Australia (http://collections.ala.org.au/public) and databases of the state
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conservation agency, the Department of Primary Industries, Parks, Water and

Environment (DPIPWE, https://www.naturalvaluesatlas.tas.gov.au/). There were

212 unique observations for the Ptunarra Brown Butterfly from 1949 to 2007; and

672 observations for The King Billy Pine from the period 1847 to 2005.

The MaxEnt model [51] was used to model the suitability of future climate for

each species. While there are several other methods for modelling species

distributions (e.g. generalised linear models, boosted regression trees, mechanistic

models and ensemble techniques), we used MaxEnt because it is not

computationally expensive, is widely used in applied ecological studies by

government agencies and research organisations, and has been shown to perform

well in comparison to several other models when there are relatively few presence

records available [52]. We did not use an ensemble approach because, as noted,

that issue has been extensively investigated and our focus here is on tools that are

usable by conservation planners and managers who generally do not have access

to the high computing capacity needed for ensemble modelling. We used R [41]

to run MaxEnt, with fifteen replicate runs calculated by cross-validation using

30% of the data and default values for all other parameters (iterations5500,

convergence threshold50.00001, and regularization value51). Results are

presented as the relative probability of occurrence, with suitable climate identified

where this value is greater than 0.5 [53].

Three MaxEnt models, that represent the three common approaches to variable

selection, were run for the two species using different sets of bioclimatic predictor

variables. The first model used all available variables (see Table A1 in File S1). The

second model used principal component analysis (PCA) to identify a subset of

available bioclimatic variables that are not strongly correlated (R2,0.6). The third

model used expert knowledge of the target species to identify subsets of

bioclimatic variables. The available bioclimatic variables represent annual trends

(e.g. mean annual temperature and precipitation), seasonal trends (e.g. annual

range in temperature or precipitation), and extreme or limiting environmental

factors (e.g. temperature of the coldest and warmest month, precipitation for

wettest or driest quarters). Model 1 used the most commonly used set of variables,

based on the literature review, comprising 35 variables provided by BIOCLIM.

These BIOCLIM variables defined the baseline climate.

Model 2 used a subset of uncorrelated bioclimatic variables selected using PCA

that explained more than 90% of the variance. For the Ptunarra Brown Butterfly,

the variables were: temperature seasonality (coefficient of variation, hereafter cv);

maximum temperature warmest period; and mean temperature driest quarter and

annual precipitation. For the King Billy Pine, the variables were: annual mean

temperature: temperature seasonality (cv); temperature annual range; annual

precipitation; annual mean radiation; radiation seasonality (cv); annual mean

moisture index; and highest period moisture index.

Model 3 used variables chosen by experts based on knowledge of the species’ life

cycle. For the Ptunarra Brown Butterfly the selected bioclimatic variables were:

March minimum temperature; April minimum temperature; annual minimum

temperature; radiation with rainfall for April; and annual rainfall (Dr Peter
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McQuillan and Dr Phil Bell pers. comm.). For the King Billy Pine the selected

bioclimatic variables were: maximum temperature warmest period; minimum

temperature of coldest period; mean temperature warmest quarter; mean

temperature coldest quarter; annual precipitation; precipitation driest period;

annual mean moisture index; lowest period moisture index; and mean moisture

index lowest quarter (Dr Jennie Whinam and Ms Louise Gilfedder pers. comm.).

We only used bioclimatic variables rather than other physical environmental or

vegetation habitat variables in the model in order to provide an indication of

changing climatic suitability assuming all else remains equal. Model performance

was assessed using the area under the receiver operating Curve (AUC) and the

information criteria Akaike information criteria (AIC), corrected Akaike (AICc),

and Bayesian information criteria (BIC) calculated using ENMTools [54]. These

tests can be used as an objective measure of model performance and provide

guidance where there are large differences between models. The degree to which

novel climate conditions are encountered is assessed with the ‘multivariate

similarity surface’ (MESS) output from MaxEnt. The MESS shows similarity

between each point in future projections to conditions observed during model

training. In addition, similarity between the outputs for the future projections

based on Model 2 for the species was quantified using the I similarity statistic [54].

The I statistic calculates pair-wise similarity between two probability distributions

obtained, in this case from MaxEnt, where values close to zero represent

distributions with no geographic overlap, and values close to one represent similar

distributions. We used SigDiff from the R package SDMTools [55] to compute

significant differences between pairs of maps, using the distribution for the

current climate as a reference [56,57].

We consulted land managers and decision makers from the Australian

Department of the Environment, the Tasmanian Department of Primary

Industries, Parks, Water and Environment (DPIPWE), Natural Resource

Management (NRM) groups and local government to ask how uncertainty in

SDM outputs could be represented to better inform conservation management

and prioritisation (see File S1 for further detail on these consultations).

Future Climate Projections

Future climate projections were derived from six global climate models that were

dynamically downscaled to a resolution of 0.1˚(,10 km) across Tasmania using a

regional climate model (Harris et al. 2014). Downscaling was undertaken by the

Climate Futures for Tasmania project using CSIRO’s Conformal Cubic

Atmospheric Model (CCAM). Details of the CCAM model can be found in [58],

and the modelled projections are available through the Tasmanian Partnership for

Advanced Computing (TPAC) portal (https://dl.tpac.org.au/tpacportal/).

The six global climate models (GCMs) used are available from the CMIP3

archive [59]: GFDL-CM2.0; GFDL-CM2.1; CSIRO Mk3.5; MIROC3.2 (medres);

and UKMO-HadCM3. Each of the six GCMs was run under both the SRES A2

and B1 emissions scenarios to represent high and low emissions scenarios
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respectively. These models are a reasonable representation of the range of the

precipitation and temperature projections for south-eastern Australia indicated in

the full set of GCMs from the CMIP3 archive. Results from three of these GCMs

are presented in Section 3.1.2 as described below, and results from the six GCMs

are used in Section 3.2.

Climate data were spatially interpolated to a grid cell resolution of 0.01˚
(,1 km) using the ANUCLIM 6.1 package [42]. A digital elevation model (DEM)

of 0.01˚ (,1 km) was used as input into ANUCLIM 6.1 [42]. The DEM was

aggregated from the 30 seconds (,30 m) NASA Shuttle Radar Topographic

Mission (SRTM) DEM (http://srtm.csi.org) to 0.01˚ using R [41].

Grids representing the difference in Tmax, Tmin, precipitation and evaporation

at the pixel level were calculated for each of the six downscaled GCMs, for each

month within each of three future time slices, relative to the baselines used in

ANUCLIM (1976–2005 and 1970–1995 for evaporation). Future time slices are

represented by mean values associated with the 30-year periods: 2010 to 2039,

2040 to 2069 and 2070 to 2099. Monthly mean values and bioclimatic variables

were then calculated for the future periods.

Monthly mean values for Tmax, Tmin, precipitation and evaporation for the

baseline climate, used to project current species suitable climate, were generated

using the MNTHCLIM sub-package in ANUCLIM 6.1, and the 35 bioclimatic

variables based on these outputs were generated by BIOCLIM.

Species Distribution Models for future climate

As noted above, for each of the case-study species, three SDMs were calculated for

baseline (e.g. current) climate conditions using each of the three different

approaches to variable selection (Models 1 to 3). We then assessed the results

using statistical metrics (AIC and BIC) and feedback from our species experts. We

used outputs from all six available GCMs under both CO2 emission scenarios (A2

and B1) to calculate future climate SDMs for the two species, that is, 12 SDMs for

each species giving a total of 24.

We decided that Model 2 (variable selection based on PCA) was the most

accurate. We then used the outputs from Model 2 to compare the three

commonly used approaches to summarising the output from multiple SDMs

based on future climate (model mean tendency, model agreement and the

bounding box).

Mapped projections are presented here for those SDMs that were based on

three of the GCMs (UKMO-HadCM3, GFDL-CM2.0, and MIROC3.2 (medres))

under each CO2 emissions scenario (A2 and B1). These three GCMs were selected

because they are representative of the range in projected conditions. In Tasmania,

UKMO-HadCM3 is wetter than the mean of all models considered in the CMIP3

archive, GFLD-CM2.0 is drier, and MIROC3.2 (medres) is closer to the mean of

all models (see IPCC AR4 Chapter 11 supplemental figure 18, http://www.ipcc.ch/

graphics/ar4-wg1/jpg/fig-11-18-sm.jpg) [60].
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Results

Species Distribution Models

The effect of variable choice

Species distribution models for the baseline period show variable choice to be an

important factor in determining suitable climatic habitat for the Ptunarra Brown

Butterfly (Figure 1) and less so in the case of King Billy Pine (Figure 2). However,

differences between modelling approaches (Models 1 to 3) are greater under

projected future climate conditions (Figures 1 and 2, and Table 1). For example,

models constructed using Models 1 and 3 for the Ptunarra Brown butterfly offer

sharply contrasting futures under the future climate projected by MIROC3.2

(medres). Based on Model 1, the butterfly’s suitable climate envelope shifts to the

west, while based on Model 3 it shrinks towards the southeast (Figure 1).

Each model was ranked by its performance based on indices shown in Table 2.

For both species, Model 2 (subset of bioclimatic variables selected using PCA)

performed best in terms of the AICc and BIC, and Model 1 (all bioclimatic

variables) performed the best in terms of the AIC. Model 1 had higher values of

AICc and BIC in both species because these indices penalise models with large

numbers of variables more heavily to correct for finite sample sizes and to avoid

over-fitting.

There was little difference between the AUC values of Models 1, 2 and 3 in King

Billy Pine but for the Ptunarra Brown butterfly Model 1 (all available bioclimatic

variables) had the highest AUC value (0.966) and better represented the current

distribution (Figure 1).

The multivariate similarity surfaces (MESS) show areas in which one or more

variables were outside the range present in the training data (based on baseline

climate) when considered under projected future conditions. In the Ptunarra

Brown butterfly case (Figure 1), Model 3 had no negative values, while Models 1

and 2 had substantial areas with negative values, suggesting that projections in

those areas should be treated with caution. Model 3 for King Billy Pine (Figure 2)

also had fewer negative values than Models 1 and 2.

Climate model and emissions scenario effects

Climate data from distinct GCM projections of future conditions also have an

effect on species distribution model results and depend on the sensitivity of the

species in question (Figures 1 and 2). The SDMs based on Model 2 and the

selected GCMs showed substantial reductions in area of future suitable climate

relative to the present. For the Ptunarra Brown Butterfly, the SDM-estimated area

corresponding to .0.5 probability of suitable climate under baseline conditions

was 3823 km2 while suitable areas using GCM-projected future climate variables

were 224 km2 (MIROC3.2 (medres)), 566 km2 (UKHadC3.1) and 613 km2

(GFLD-CM2.0). The difference in the future suitable spatial extent therefore

differed by up to a factor of ,3. The difference between baseline and all three

future climate SDMs projections, however, is clearly greater than the difference
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Figure 1. Distribution maps for the Ptunarra Brown Butterfly using baseline climate data (Row 1) and climate projections from three global
circulation models (GCMs) for the period 2070–2099 (Rows 2–4) using two CO2 emissions scenarios: A2 for Models 1 to 3 (Columns 1–3) and B1
(Column 4, only for Model 3).

doi:10.1371/journal.pone.0113749.g001
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Figure 2. Distribution maps for King Billy Pine using baseline climate data (Row 1) and climate projections from three global circulation models
(GCMs) for the period 2070–2099 (Rows 2–4) using two CO2 emissions scenarios: A2 for Models 1 to 3 (Columns 1–3) and B1 (Column 4, only for
Model 3).

doi:10.1371/journal.pone.0113749.g002
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between that arising from the three GCMs. For King Billy Pine, the corresponding

areas for Model 2 were 3806 km2, 134 km2 (MIROC3.2 (medres)), 154 km2

(UKHadC3.1) and 150 km2 (GFLD-CM2.0) (see Table A2 in File S1); a

comparable level of projected reduction from the baseline but with less difference

between GCMs.

Choice of future emissions scenario also affected the results of the SDMs

(Model 3 in Figures 2 and 3). The A2 emissions scenario results in reduced areas

of potential suitable climate compared to the lower B1 emissions scenario and this

was the case for both species (see also Figures S4 and S5). The I similarity statistic

showed SDM predictions based on output from GCMs using A2 (higher)

emissions scenarios to be substantially different from B1 in relation to baseline

predicted suitable areas. Lower values of I found in SDMs derived from the A2

scenario represent higher degrees of difference relative to baseline SDMs

(Table 3). Similarly, the difference maps present a substantial loss in suitable

climate when baseline SDM are compared to the future projections for the A2

emissions scenario using Model 2 (the difference maps in Figures S2 and S3).

These results, while not surprising given the strong association between emissions

and rising temperature, highlight the importance of explicit recognition of

Table 1. Variables identified as important in determining species distribution.

Variable Importance

Ptunarra Brown Butterfly King Billy Pine

Model 1 Mean temperature driest quarter (33%); minimum
temperature coldest period (28%); radiation warmest
quarter (7.7%); radiation seasonality (7%); highest period
radiation (5%); radiation coldest quarter (3%)

Mean temperature wettest quarter (22.0%); radiation coldest quarter
(16.1%); lowest period moisture index (10.4%); mean temperature
warmest quarter (6.3%); temperature seasonality (4%); mean
moisture index lowest quarter (3.8%); radiation seasonality (3.6%)

Model 2 Mean temperature driest quarter (53.8%); temperature
seasonality (28.3%); annual precipitation (10.5%);
maximum temperature warmest period (7.4%)

Annual mean temperature (49.5%), annual mean radiation (17%);
radiation seasonality (12%); annual precipitation (8.2%); temperature
seasonality (4.9%); annual mean moisture index (4.8%); temperature
annual range (3.3%); highest period moisture index (0.2%)

Model 3 April minimum temperature (46%); radiation with rainfall
April (22%); March minimum temperature (16%); annual
rainfall (12%); annual minimum temperature (4%)

Mean temperature warmest quarter (36.8%); mean annual precipita-
tion (14.2%); lowest period moisture index (13.1%); mean tempera-
ture coldest quarter (12%); precipitation driest period (8.2%); annual
mean moisture index (5.1%); mean moisture index lowest quarter
(4.2%); minimum temperature coldest period (3.9%); maximum
temperature warmest period (2.5%)

doi:10.1371/journal.pone.0113749.t001

Table 2. Statistical model selection indices.

Ptunarra Brown Butterfly King Billy Pine

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

AIC 3996.30 4000.22 4142.47 7074.82 7174.78 7302.27

AICc 4568.30 4078.51 4311.20 7280.61 7233.80 7367.39

BIC 4474.30 4245.25 4472.34 7678.87 7538.00 7681.28

AUC 0.97 0.94 0.93 0.95 0.94 0.93

Best performance for each model shown in bold.

doi:10.1371/journal.pone.0113749.t002
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emissions scenario in all SDM construction for any species with potential

temperature dependence. They also point to the potential benefits to biodiversity

of immediate climate change mitigation (Warren et al. 2013).

The effect of different approaches to summarising multiple

species distribution models

Maps showing the spatial effect of the three approaches for summarising multiple

SDMs are shown in Figure 3. Of particular interest is the model agreement map.

While the total geographic area of suitable climate is comparable between the

different future projections, they are not geographically coincident.

Figure 3. Alternative summaries for multiple species distribution models. Maps are model summaries for the Ptunarra Brown Butterfly (left) and King
Billy Pine (right) using models based on six GCM inputs; means and standard deviations (Row 1); spatial extents where at least one model indicates suitable
habitat (Row 2); agreement between models, where at least one model predicted suitability above 0.5 (Row 3); model agreement overlayed on the baseline
distribution for the species (Row 4).

doi:10.1371/journal.pone.0113749.g003

Table 3. The I similarity statistic for future projections of suitable climatic habitat for 2070–2099 using Model 2 in relation to the baseline predicted habitat for
the species.

UKHadC3.1 GFDL-CM2.1 Miroc2.0 (medres)

A2 B1 A2 B1 A2 B1

Ptunarra Brown 0.551 0.656 0.531 0.651 0.547 0.720

King Billy Pine 0.513 0.543 0.735 0.855 0.711 0.848

Values range from zero (no distribution overlap) to one (identical distributions). A2 values show reduced similarity in every instance.

doi:10.1371/journal.pone.0113749.t003
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Discussion

Common approaches to modelling future species distributions in applied

ecological studies do not always represent the uncertainty associated with variable

selection and the influence of the range in future climate projections and

emissions scenarios. Using two species as case studies, we have shown that these

uncertainties can affect the results of SDMs.

Ignoring the uncertainty associated with modelling future distributions may

lead to over-confidence in single maps of future distributions, with consequences

for conservation planning. The literature review revealed that both choice of

variables and representation of future climate, by using a range of GCMs, are

frequently opportunistic for SDMs in applied ecological studies. Using all

available bioclimatic variables, instead of a tailored selection, increases the

possibility of over-fitting species distribution models, and may lead to an over-

estimate of range reduction and the likelihood of a forecasted extinction under

climate change [16].

The importance of variable selection in determining the output of SDM

depends on the characteristics of the species modelled. For example, variable

selection may be less important for long-lived sedentary plant species such as the

King Billy Pine but can be very important for mobile species with specific

biological characteristics or requirements, such as the Ptunarra Brown Butterfly.

For the butterfly, inclusion of different variables in the model led to widely

divergent projected futures for end-of-century, ranging from close to no locations

with a suitable climate [61] to maintenance of the current range.

Biological knowledge of the species can help in choosing variables amenable to

ecological interpretation. Ideally, modellers, species experts and conservation

practitioners should work as a team to build the SDM, interpret results and

consider conservation management responses. However, such interdisciplinary

exercises are uncommon and often little is known of the species’ biology and

ecology as they relate to climatic factors. In these cases, a range of statistical

diagnostics can provide some guidance as to relative model performance, but

there is no objective method for identifying the ‘best’ SDM when projecting into

the future. Statistical methods of model selection alone are not sufficient to accept

or reject a model, as different performance indices (e.g. AUC, AIC, BIC) can give

conflicting rankings [62]. Furthermore, statistical models are a measure of

internal model performance, not a measure of ecological validity.

The accuracy with which the current distribution is represented by a SDM is an

important consideration. However, an accurate fit with current distributions does

not guarantee that the prediction of future potential distribution will be accurate.

The underlying statistical relationship between the climatic variables and the

distribution of the species may change due to, for example, nonlinear functional

responses of the species or indirect impacts such as an altered fire regime.

Considering the extent to which a SDM is attempting to project into novel

climatic conditions is also an important consideration in model evaluation.

Predicted potential distribution maps with large areas in which one or more
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climate variables were outside the range present in the data used to train the SDM

should be treated with caution.

In contrast to variable selection, the range in outputs from climate models and

emissions scenarios are not species dependent and will always need to be

documented when modelling future distributions. We caution against using an

ensemble mean of projected climate variables as input into an SDM, for several

reasons. First, each global climate model represents one plausible future among

many. The Coupled Model Intercomparison Project Phase 5 (CMIP5) now

includes more than 50 climate models. Although there are several quantitative

model ‘skill scores’ that can be calculated for particular variables and features of

the models, different models tend to perform well on some metrics and poorly on

others. As a result, the IPCC avoids ranking models, and treats each equally (IPCC

2007, 2013). While multi-model GCM ensembles at large spatial scales have been

shown to agree better with observations of present-day climate than single models

for a range of variables [63,64], this is not always the case at smaller scales,

including the continental scale [65]. Considering multiple GCMs is therefore

essential to capture the range of plausible projections. Further, the ensemble mean

may not coincide with any of the climate model’s projections but create a novel

future climate that is merely a statistical derivative. And finally, using a multi-

model GCM ensemble may not be the best approach for risk assessment in

conservation planning, where considering the ‘best’ and ‘worst’ case scenarios may

be a more useful framework in which to make decisions [61,66].

Multiple SDMs need to be run using a range of climate models and emissions

scenarios as input. This approach produces a range of species distribution maps

(12 for each species in our case study) which need to be assessed and combined in

a useful way to help inform decision-making. The method used to combine the

maps (e.g. taking the mean, the median, the bounding box or the minimum

overlap of the different models) will influence interpretation of the results. This

can have consequences where conservation effort is deployed across the landscape

since both extent and location of projected suitable climate will differ between

GCMs. Over-confidence in a single map risks the possibility that conservation

investments are applied to areas that do not support the target species under

future climate. Ongoing monitoring is essential to track changes as the species

responds to changing climatic conditions. Using a map of an ensemble mean

produces a future that was not projected by any single model. Adding all areas

projected to be suitable (the bounding box) will be the most optimistic outlook,

while only concentrating on areas where all models agree will provide the smallest

estimate of future suitability.

The managers we consulted found that the most informative summary was the

map showing the agreement between the models (pixels where all models agree a

potential suitability above a threshold of 0.5) in addition to the current

distribution as projected by the SDM that used baseline climate data. This was

considered a low-risk option to highlight priority areas for biodiversity

conservation in areas that currently support a target species or community.
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One aspect of uncertainty in modelling future species distribution not

illustrated here is that associated with the choice of SDM. Different statistical

models have been shown to have a large influence on the results of SDMs and an

ensemble approach is increasingly being used to account for the range in statistical

models [10,37]. However, the main purpose of this paper was to illustrate the

effect that choice of variable, climate model and emissions scenario can have on

Figure 4. Decision tree to guide the application of SDMs under future climate to conservation
management.

doi:10.1371/journal.pone.0113749.g004

Species Distribution Models and Climate Change for Land Managers

PLOS ONE | DOI:10.1371/journal.pone.0113749 November 24, 2014 15 / 21



the results of SDMs for future climatic conditions. We propose a protocol for

conservation planners and managers that summarises our recommendations for

using SDM under future climate projections in applied ecological studies

(Figure 4).

Our study highlighted that the relative change in the projected suitable climate

envelope for the species is an important factor to consider. Our SDMs, based on

climate variables, show that projections for the King Billy Pine are more

consistent, and more consistently under threat, when viewed as relative change. A

general hypothesis based on our results is that species with strong temperature

dependencies are more strongly influenced by choice of emissions scenarios. If the

future climate projections of the GCMs diverge, so will the SDMs, while if the

climatic factor were not influential in the baseline model, the effect may be

inconsequential. However, there is a threshold below which relative change is not

important because, for example, the projected areas may not be of sufficient

extent to support the species in any case. It is also important to note that our

models, and SDM models generally, do not account for any of the other major

threat to species such as habitat loss. All of these points emphasise that correct

interpretation of a SDM outcome requires rigorous understanding of the inputs

used in its development.

Conclusions

Species distribution models are useful tools for, among other things, informing

the conservation management of wildlife and their habitats under a rapidly

changing climate. They can provide decision makers with information about the

likely degree of change in a species climatic domain and geographic distribution.

However, the uncertainty associated with their estimation needs to be

documented and understood if their output is to be effectively applied. Systematic

conservation planning can draw on this information, together with ongoing field

monitoring of target species to track changes as they occur, providing the

foundation for adaptive management in response to emerging circumstances.

Supporting Information

Figure S1. The proportion of variables used in the revised literature.

doi:10.1371/journal.pone.0113749.s001 (TIF)

Figure S2. Distribution maps of significant difference (SD) between the current

prediction of suitable habitat for Ptunarra Brown (PB) based on baseline climate,

and the future projections, based on 30 Model 2 (M2, PCA selection of bioclimatic

variables). The difference maps showed when the distribution predicted

significantly more (+ve) or less suitable habitat (2ve) (SD>0.975 or SD#0.025,

respectively) and where there was no significant (ns) difference between models.

doi:10.1371/journal.pone.0113749.s002 (TIF)
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Figure S3. Distribution maps of significant difference (SD) between the current

prediction of suitable habitat for King Billy Pine (KB) based on baseline climate,

and the future projections based on Model 2 (M2, PCA selection of bioclimatic

variables). The difference maps showed when the distribution predicted

significantly more (+ve) or less suitable habitat (2ve) (SD>0.975 or SD#0.025,

respectively) and where there was no significant (ns) difference between models.

doi:10.1371/journal.pone.0113749.s003 (TIF)

Figure S4. Differences in annual mean temperature and annual rain within the

current distribution of the Ptunarra Brwon Butterfly. Where the box spans the

interquartile range, the segment inside the box 45 shows the median and whiskers

above and below the box show the locations of the minimum and maximum

values; the circles represent outliers.

doi:10.1371/journal.pone.0113749.s004 (TIF)

Figure S5. Differences in annual mean temperature and annual rain within the

current distribution of the King Billy Pine. Where the box spans the interquartile

range, the segment inside the box shows the median and whiskers above and

below the box show the locations of the minimum and maximum values; the

circles represent outliers.

doi:10.1371/journal.pone.0113749.s005 (TIF)

File S1. Table A1, List of bioclimatic variables used in the SDM for Orexeinica

ptunarra and Athrotaxis selaginoides. Subset of variable using a PCA is denoted

by ‘PCA’ and the subset selection made by experts is denoted by ‘x’. The

Orexeinica ptunarra’s experts selected monthly variables. Table A2, The area

predicted to be climatically suitable for the species based on the current and future

climate projections. Pixels for the Ptunarra Brown Butterfly and the King Billy

Pine that with a value0.5 or more were considered as ‘suitable’. The areas are

shown in km2 for Models 1 to 3 based on the SRES scenario A2, and only for

Model 3 based on SRES scenario B1. Maps were projected to 25 World Geodetic

System 1984, Universal Transverse Mercator coordinate system Zone 55 South.

doi:10.1371/journal.pone.0113749.s006 (PDF)

File S2.

doi:10.1371/journal.pone.0113749.s007 (ZIP)
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