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Abstract

Across the globe, species distributions are changing in response to climate change and land use change. In parts of the
southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves
(Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range
limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem
regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for
freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem
plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the
optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted
for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-
like morphologies including oligotrophic and arid environments. Many important ecological functions and services are
affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient
cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic
events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with
easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within
the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.
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Introduction

In response to climate change and land use change, species

distributions are changing across the globe [1–3]. Some of these

distributional changes are resulting in comparatively large

ecological transformations, especially where traditional ecosystem

boundaries (i.e., ecotones) are migrating [4–6]. In areas with

shifting ecotones, ecologists and environmental managers seek

information that will enable them to better understand the

ecological implications of ecosystem transformations.

In coastal wetland ecosystems, abrupt ecotones are common

and occur across multiple abiotic gradients (e.g., inundation,

salinity, and macroclimatic gradients) [7–10]. Since tidal wetland

ecotones involve foundation plant species, sensu [11–14], with

divergent growth forms and functionality (e.g., graminoid plants,

microbial mats, succulent plants, and woody mangrove plants), the

ecological implications of shifting ecotones in coastal wetlands can

be substantial.

In the southeastern United States and other tropical-to-

temperate climatic transition zones, the mangrove-salt marsh

ecotone is dynamic, visually striking, and highly productive

[15,16]. Mangroves are woody foundation plant species that are

sensitive to extreme winter temperatures and dominant in warmer

climates [17,18]. In contrast, salt marsh graminoids and salt marsh

succulent plant foundation species are dominant in cooler coastal

reaches [8,19] where extreme winter temperature events lead to

mangrove mortality and/or limit mangrove forest development,

reproduction, and dispersal [10,20,21]. At the poleward man-

grove-marsh ecotone, mangrove abundance and coverage is

winter temperature-sensitive in that it increases and decreases in

response to the absence or presence of extreme winter events,

respectively [22–24]. In response to changing climatic conditions,

a decrease in the frequency, duration, and/or intensity of extreme

winter temperatures is expected which would facilitate poleward

mangrove range expansion at the expense of salt marsh vegetation

[10]. In the southeastern U.S., the northward expansion of
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mangroves is expected to occur in Texas, Louisiana, and parts of

Florida.

The ecological implications of mangrove expansion are poorly

understood. Mangroves and salt marsh ecosystems provide many

important ecosystem goods and services including fish and wildlife

habitat, carbon storage, nutrient and sediment retention, coastal

protection, and maintenance of coastal food webs and fisheries

[25]. Although salt marsh and mangrove forest ecosystems are

both highly valuable and have many ecosystem goods and services

in common, there are structural and functional differences

between these two ecosystems as well as differences in the

provision of some ecosystem goods and services. Like many other

ecotones, structural and functional complexity is higher at the

mangrove-marsh ecotone than in adjacent graminoid or man-

grove-dominated ecosystems. As a result, it is likely that ecological

resilience and the supply of some ecosystem goods and services

within the mangrove-marsh ecotone is equivalent to or even

greater than in adjacent marsh or mangrove-dominated areas.

However, our understanding of the ecosystem goods and services

that would be affected by mangrove expansion and replacement of

salt marsh is limited, and coastal wetland ecologists seek

information and tools that will enable them to better quantify

ecological changes associated with mangrove expansion at the

expense of salt marshes [26–31]. Here, we provide equations that

can be used to quantify changes in important aspects of

aboveground mangrove structure near and within the dynamic

mangrove-marsh ecotone.

Aboveground biomass is an important and fundamental metric

for quantifying change in coastal wetland ecosystems. Many

important coastal wetland ecological functions and services are

affected by changes in aboveground biomass, structure, and

productivity, including resilience to sea level rise [32–34], carbon

storage [18,35–37], coastal protection [18,38,39], recreation, and

fish and avian habitat [40,41]. Allometric equations provide an

approach for estimating plant biomass and structural attributes via

easily-obtained and non-destructive measurements. Most allome-

tric models for determining mangrove aboveground biomass have

been developed in tropical climates in the absence of extreme

freeze events [42]. Within the freeze-dependent mangrove-marsh

ecotone, traditional metrics for quantifying mangrove forest

aboveground biomass are not appropriate because the morphol-

ogy and architecture of freeze-affected mangrove trees is different

than tropical mangrove trees. In the absence of freeze events and

where freshwater and nutrient resources are abundant, tropical

mangrove plants can develop into comparatively tall and straight

trees. In contrast, at the poleward range limit of mangroves, severe

freeze events can either lead to total mangrove mortality or cause

aboveground structural damage that is followed by vigorous basal

resprouting (Figure 1). As a result, mangroves in freeze-prone

areas are often shorter, wider, multi-stemmed, and more shrub-

like relative to their tropical counterparts growing in resource-rich

environments, but see [43]. Tree-focused allometric models for

quantifying aboveground biomass (i.e., dbh and/or height-based

models) [42,44–49] are not suitable for freeze-affected and

shrubby mangrove individuals.

Our objective was to develop aboveground allometric models

for freeze-affected black mangroves (Avicennia germinans). In the

southeastern United States, A. germinans is the most cold-tolerant

mangrove species and the most abundant mangrove species at the

northern range limit of mangrove forests. Based upon studies from

other shrub-dominated ecosystems [50–53] and models for stunted

mangroves in New Zealand [54], southern Florida (USA) [55,56],

and Iran [57], we expected that crown area and height

measurements could be used to develop allometric models for

quantifying total aboveground biomass, leaf area, and leaf biomass

for freeze-stunted A. germinans individuals.

Materials and Methods

Study Area
Allometric equations were developed using mangroves from two

tidal wetland sites near Port Fourchon, Louisiana (USA;

29u89520N, 290u149380W and 29u69580N, 290u119260W9;

Figure 2), which is within the Mississippi River Deltaic Plain.

Tidal wetlands in this area are abundant and dominated primarily

by Spartina alterniflora (smooth cordgrass) and/or A. germinans. For

more information about the study area, see [26,29,58–62]. Port

Fourchon is near the northern limit of A. germinans along the Gulf

of Mexico coast and is periodically exposed to extreme winter

events that can damage or kill A. germinans (see photos in Figure 1),

reducing areal coverage and limiting structural development.

Historical accounts of A. germinans in the region document freeze-

induced mortality during the 1960’s [63] and 1980’s [24]. The

aerial extent and abundance of A. germinans has expanded and

contracted in response to extreme winter events [22,24,63,64].

Figure 1. Photos of freeze-affected black mangroves (Avicennia
germinans) in Louisiana (USA) near their northern range limit.
The upper two photos show the shrub-like morphology. The middle left
photo shows the size of the smallest individuals included in the
analyses. The middle right photo shows leaf damage from an extreme
winter temperature event in January, 2014. The lower two photos show
the high stem density of freeze-affected individuals.
doi:10.1371/journal.pone.0099604.g001
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Although most of the A. germinans stands in the Port Fourchon

vicinity were less than 3 m in height at the time of this study, some

individuals were between 4.5 and 5 m in height and some stands

were in the 3–4 m height range (RHD and MJO, personal

observation). This study was conducted, with permission, on

private lands owned by The Louisiana Land and Exploration

Company LLC (LL&E) and managed by the Conoco Phillips

Company/LL&E office in Houma, Louisiana.

Allometric Measurements
In February and May 2013, we selected a total of 56 A. germinans

individuals for allometric equation development. We selected 40

individuals in February and 16 individuals in May. For each

individual, we measured the height and the basal diameter at

30 cm above the soil surface. We also measured crown diameter in

two perpendicular directions, across the widest crown section

(CD1) and at the widest section perpendicular to the first section

(CD2). The two crown diameter measurements were used to

calculate crown area via the equation for an ellipse: crown

area = [(CD1)/2)*(CD2)/2)]*p. When an individual had multiple

stems, height was measured only on the tallest stem and basal

diameter was measured only on the thickest stem. Whereas height

was measured to the base of the highest leaf, crown diameter

measurements were made to the edge of the most horizontally-

distant leaf tips. Crown area and height were integrated into a

single estimate of volume via the following equation: volume =

crown area*height. Once in situ measurements were recorded, we

cut each individual at the soil surface and transported the samples

back to the laboratories of the U.S. Geological Survey’s National

Wetlands Research Center in Lafayette, Louisiana.

In the laboratory, the February and May samples were

processed in a slightly different fashion since the May samples

were collected explicitly for the development of leaf area and leaf

biomass allometric equations. Individuals collected in February

were dried to a constant mass at 60uC to determine total

aboveground biomass (i.e., leaves were not separated from stems

and branches prior to drying and weighing). In contrast, the May

samples were separated into leaves and non-leaves (i.e., stem+
branch) prior to drying, and the area of fresh leaves was

determined using a Li-3000C (Licor, Inc., Lincoln, NE, USA).

The separated leaf and non-leaf samples were then dried to a

constant mass at 60uC to determine leaf biomass, stem+branch

biomass, and total aboveground biomass. The data for this study

can be found in Dataset S1.

Data Analyses
Linear regression models were developed for the following

response variables: (1) total aboveground biomass; (2) leaf biomass;

(3) stem plus branch biomass; and (4) leaf area. The independent

variables (i.e., crown area, height, volume, and basal diameter)

were evaluated alone and in combination via simple and multiple

regression analyses. Response and independent variables were

natural log transformed prior to analysis. For each equation, we

calculated a correction factor (CF) sensu Sprugel [65], where

CF = exp (SEE2/2) and where SEE is the Standard Error of the

Estimate. These correction factors are to be applied to the back-

transformed estimates of the response variables in order to correct

for a small underestimation associated with using log transformed

data in the regression analyses [50,66]. For example, for an

allometric equation of the form ln (y) = a+b * ln (x), y should be

calculated as follows: y = CF * (exp [a+b * ln (x)]). Data analyses

were conducted in SAS Version 9.3 (SAS Institute, Cary, NC,

USA) and Sigma Plot Version 12.5 (Systat Software, Inc., San

Jose, CA, USA).

Results

We measured A. germinans individuals within a height range of

31–157 cm, a crown diameter range of 4–180 cm, and an

aboveground biomass range of 1–2,452 g (Table 1). For the

smallest plants, the measurements of crown diameter were

essentially the lengths of two pairs of leaves on a single un-

Figure 2. Map highlighting the mangrove-marsh ecotone where this study was conducted (Port Fourchon, Louisiana [USA]).
doi:10.1371/journal.pone.0099604.g002
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branched stem. In contrast, the largest plants contained multiple

stems and branches extending to almost 1 m from a central base

(Figure 1). We developed and compared multiple allometric

equations using various combinations of predictor and response

variables resulting in the selection of those shown in Table 2 and

Table S1. The range limits presented in Table 1 identify

boundaries for the application of the developed equations and

should be used to avoid unwarranted extrapolation. Plant volume

was selected as the best predictor of all of the response variables

(i.e., leaf area, leaf biomass, stem plus branch biomass, and total

above ground biomass) (Table 2, Figure 3, Table S1). Additional

models based upon other combinations of measurements were also

significant (Table S1). These additional models may be useful for

researchers that want to determine biomass using alternative

combinations of variables.

Discussion

In this study, our primary objective was to develop aboveground

allometric equations for freeze-affected A. germinans individuals

near and within the poleward mangrove-marsh ecotone in the

southeastern United States. Allometric equations enable scientists

to estimate plant community structural attributes via easily-

obtained and non-destructive measurements. Although above-

ground allometric models have been developed for mangrove

species in different abiotic settings [42], most of these models are

for trees growing in tropical wet climates. At the poleward range

limit of mangrove forests, extreme winter temperature events

affect the morphology of mangrove plants and result in plants that

sometimes resemble shrubs (i.e., short, wide, and multi-stemmed

individuals) rather than trees. To our knowledge, our study is the

first to develop allometric models for freeze-affected and shrub-like

A. germinans individuals at their northern range limit.

Mangrove shrub or dwarf morphologies can result from various

abiotic conditions, including drought stress, freeze stress, salinity

stress, nutrient limitation, and hydrologic isolation [44,67–71].

Shrub-based aboveground allometric models have been developed

for some mangroves in some of these abiotic conditions. In New

Zealand, near the southern latitudinal limit of mangroves and in

an area with shrubby mangroves less than 1 m tall, Woodroffe

[54] developed allometric equations that predict A. marina biomass

using mean canopy width measurements. In an arid high-latitude

mangrove forest in Iran, Parvaresh et al. [57] developed allometric

equations that predict A. marina biomass from measurements of

crown diameter. In a south Florida (USA) dwarf mangrove forest

located in an irregularly-inundated basin setting, Ross et al. [55]

developed allometric equations that predict A. germinans, Rhizophora

mangle, and Laguncularia racemosa biomass from measurements of

stem basal diameter and crown volume. In another south Florida

dwarf mangrove forest, Coronado-Molina et al. [56] developed

allometric equations that predict Rhizophora mangle biomass from

measurements of height, crown diameter, and the number of prop

roots. Collectively, these four studies along with our results show

that crown area-focused measurements, sometimes in combination

with other measurements (e.g., plant height, number of prop

roots), can be used to develop allometric equations for estimating

aboveground biomass of mangrove individuals with dwarf or

shrub morphologies.

Figure 3. Aboveground allometric relationships for freeze-affected black mangrove (Avicennia germinans) individuals. The short and
long dashed lines show the 95% confidence and prediction bands, respectively. Note the natural log scale on both axes.
doi:10.1371/journal.pone.0099604.g003

Aboveground Allometric Models for Freeze-Affected Black Mangroves

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e99604



How do we envision that these equations will be used? In

response to future changing winter temperature regimes and

accelerated sea level rise, black mangroves are expected to migrate

both poleward [10] and landward [72] along the northern Gulf of

Mexico coast, in many cases at the expense of salt marshes, tidal

freshwater systems, and/or upland forests. At many of these

ecotones, ecologists will be challenged to characterize and monitor

the structural changes that are already occurring or are expected

to occur in the future. To the north and south of these ecotones

(i.e., in salt marshes and large mangrove forests, respectively),

methods for characterizing aboveground biomass and vegetation

structure are well-established. Vegetation methods used in salt

marshes are quite different than those used in mangrove forests.

For example, whereas ground-layer measurements and vegetation

samples (e.g., biomass clip plots and stem measurements from

plants less than 2 m in height) are typically taken in small plots

(,1-m2) within marshes, tree-focused measurements (e.g., dbh

and/or tree heights) are typically taken in large plots (,100-m2)

within tropical mangrove forests. Vegetation measurements in the

freeze-affected and structurally-complex mangrove-marsh ecotone

require a hybrid sampling approach that includes measurements

tailored for the stunted morphology of freeze-affected mangroves

(e.g., crown area and plant height measurements) as well as the

multiple other vegetation strata that could be present ranging from

graminoid and succulent marsh plants to large (i.e., 2–10 m tall)

mangrove forest trees. See Osland et al. [36] for an example of the

multiple plot sizes and stratum-specific measurements required to

sample marshes and mangroves within a single study design.

Sampling designs within mangrove-marsh ecotones often need to

be customized to fit the range of plant species and morphologies

present. Where conditions allow multi-stemmed shrubby man-

groves to grow into large multi-stemmed trees, traditional tree-

focused metrics can be applied to each individual stem contained

within a tree [43].

Our findings and allometric equations provide a foundation for

characterizing aboveground structural changes of freeze-affected

black mangroves within mangrove-marsh ecotones. In combina-

tion with a robust sampling design, these equations can be used to

quantify the temporal and spatial changes in plant community

structure in response to the presence or lack of extreme climatic

events including freeze events, drought, and hurricanes, as well as

slower abiotic changes associated with sea level rise. Plant

community structural information can be used to investigate the

effects of ecosystem transformations and ecotone migration upon

important ecosystem functions and services (e.g., sediment

trapping, soil elevation change, nutrient cycling, fish and wildlife

abundances, wave attenuation, carbon storage). When paired with

carbon concentration data and information regarding below-

ground processes and soil carbon accumulation, our equations can

provide a foundation for quantifying the aboveground carbon

present in freeze-affected black mangrove forests which is

information that can contribute to estimates of carbon sequestra-

tion and inform best practices for carbon management and climate

change mitigation [35,37]. The biomass equations can also be

used to evaluate plant community development and functional

equivalency after wetland restoration and/or management. The

leaf area equations may be incorporated into ecophysiological

and/or biogeochemical models, for example [60,73].

In summary, we developed aboveground allometric equations

for freeze-affected black mangroves (A. germinans) which can be

used to quantify the following: (1) total aboveground biomass; (2)

leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant

Table 1. Sample size and measurement range of the variables used to develop allometric models for freeze-affected black
mangroves (Avicennia germinans).

Variable Sample Size Minimum Maximum

Height (cm) 56 31 157

Basal Diameter at 30 cm (mm) 56 1 31

Crown Diameter (cm) 56 4 180

Crown Area (cm2) 56 19 23,629

Volume (cm3) 56 641 2,811,792

Total Aboveground Biomass (g) 56 1 2,452

Leaf Biomass (g) 16 0.3 881

Stem and Branch Biomass (g) 16 2 1,556

Leaf Area (cm2) 16 19 40,941

doi:10.1371/journal.pone.0099604.t001

Table 2. Selected allometric equations for freeze-affected black mangrove (Avicennia germinans) individuals.

Response (y) Predictor (x) a (SE) b (SE) Adj-R2 RMSE CF d.f.

Total Aboveground Biomass Volume 24.8045 (0.2250) 0.8157 (0.0204) 0.97 0.39 1.0781 56

Leaf Biomass Volume 26.2219 (0.3834) 0.8468 (0.0348) 0.98 0.36 1.0654 16

Stem plus Branch Biomass Volume 24.5075 (0.2971) 0.7682 (0.0269) 0.98 0.28 1.0388 16

Leaf Area Volume 21.8036 (0.3681) 0.7981 (0.0334) 0.97 0.34 1.0602 16

Leaf Area Leaf Biomass 4.0626 (0.0437) 0.9418 (0.0121) 0.99 0.11 1.0057 16

These are all equations of the following form: ln(y) = a+b*ln(x). CF is the correction factor sensu Sprugel [65]. Additional equations can be found in Table S1.
doi:10.1371/journal.pone.0099604.t002
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volume (i.e., a combination of crown area and plant height), was

selected as the optimal predictor of these response variables.

Coastal wetland scientists in the southeastern United States can

use these equations to better quantify and monitor ecological

changes within the dynamic and climate sensitive mangrove-

marsh ecotone.

Supporting Information

Table S1 Additional allometric regression equations for
freeze-affected black mangrove (Avicennia germinans)
individuals.
(DOC)

Dataset S1 The data used to develop allometric equa-
tions for freeze-affected black mangrove (Avicennia
germinans) individuals. An excel file that has two spread-

sheets: (1) a data spreadsheet (spreadsheet entitled ‘‘data’’); and (2)

a spreadsheet that includes a description of column names and

units contained within the data spreadsheet (spreadsheet entitled

‘‘legend’’).

(XLSX)
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