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Abstract

Likely changes in precipitation (P) and potential evapotranspiration (PET) resulting from policy-driven expansion of
bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water
stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using
the same atmospheric forcing data over the period 1979–2004 using the Weather Research Forecast (WRF) model coupled
to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of
the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a
forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow
volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual
baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction
in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop
production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to
determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated
changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly
dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are
likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider
the impacts of feedstock production on water scarcity.
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Introduction

As demand for renewable fuels grows, biofuels from lignocel-

lulosic feedstock are considered a promising alternative to corn-

based ethanol [1–2]. Cellulosic biofuels are expected to be both

environmentally and energetically superior to grain-based biofuels

[3–6]. The mandate set by the Renewable Fuel Standard [7] to

use 16 billion gallons of cellulosic biofuel per year by 2022 is

projected to have significant impact on agricultural land use in the

U.S. as lands are converted for the production of bioenergy crops

[8]. Prior studies [6,9] have investigated yields, land use,

economics and greenhouse gas emissions of bioenergy crops, but

one key factor often overlooked is the hydrologic balance

associated with bioenergy crop production.

There is strong coupling between the land surface and

atmosphere that is heavily influenced by the vegetative land cover

[10–13]. Change in land cover thus has the potential to impact

local and regional climate through alteration of the energy and

moisture balances of the land surface [14–18]. The longer growing

season and greener vegetative cover of biofuel crops result in

higher water loss to the atmosphere through evapotranspiration

(ET), decline in soil water depth [17,19] and reduced surface

runoff [20] relative to annual cropping systems. Changes in soil

moisture and runoff determine streamflow, groundwater recharge

and influence water quality.

Bioenergy crops, e.g., switchgrass and miscanthus, can transpire

as much as 38% more than corn over a growing season [20].

Replacing traditional annual cropping systems with switchgrass in

the Midwest and High Plains may cause additional stress to water

resources because the agricultural crop production in large

portions of these areas (e.g., Kansas and Nebraska) is dependent

upon irrigation water from already stressed local resources [21].

Streamflow volume (Q) is responsive to changes in both climate

and land cover [22–23], and changes in Q have important

biological and socioeconomic implications [24–26]. Anthropogen-

ic alteration of Q has been shown to impair aquatic communities

and ecosystems, and the likelihood of impairment rises rapidly

with increasing severity of reduced Q [25].

Water may be a significant limiting factor for biofuel crop

production in many agricultural regions. It is important that we

develop projections of future water use for agricultural crop

production under climate change induced by land use change and

to account for the impact of that water use on critical water

resources. Prior studies have examined the potential for biofuel

crops to affect regional climate [15]. The climate feedback of

biofuel crops examined in these studies, however, is based on

hypothetical scenarios that do not account for the socio-economic
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responses of land managers and thus do not represent plausible

land use patterns that might result from current biofuel policies.

To our knowledge, no prior studies have explored the changes in

streamflow volume in response to climate change induced by land

use/land cover (LULC) change; certainly none have examined this

under the constraints of enacted legislation. Future projections of

climate and climate-driven streamflow under plausible landscape

scenarios will aid state and federal agencies in assessing the local

cost of adaptation, increase public awareness, and guide the

development of new mitigation programs related to water

resources.

In this study, we examine changes in hydrologic processes

including precipitation (P), ET, PET, runoff and Q that result

from modification of local/regional climate driven by switchgrass

cropping systems predicted to replace current cropping systems in

the High Plains (hereafter referred to as the ‘‘biofuel scenario’’). A

regional climate model coupled to a land surface model is used to

capture feedback between changes in the vegetation canopy due to

switchgrass planting and regional climate processes. The change in

Q to climate change under the biofuel scenario compared to the

current cropping system scenario (hereafter referred to as the

‘‘baseline scenario’’) is estimated based on widely used non-

parametric approaches [22–23,27]. These non-parametric ap-

proaches utilize the concept of elasticity of Q that is usually

derived using the historic relationship between Q, P and PET.

Following the similar approach, we first derived the elasticity of Q

to climate, and later used it in combination with projected changes

in P and PET to derive changes in Q under the biofuel scenario

relative to baseline across the conterminous U.S.

Materials and Methods

Regional climate modeling framework
The Weather Research Forecast (WRF) model version 3.1.1

[28–29] and NOAH land surface model (NOAH LSM) are used

for regional climate simulations. The simulation domain covers the

continental U.S. at a resolution of 0.25 degree (i.e., 24 km). The

NOAH LSM coupled to the WRF model is used to represent the

interaction of soil and vegetation with the atmosphere [30].

Regional climate simulations were produced for the period of

1979–2004 under the two land use scenarios. The choice of the

simulation period is constrained by 1) availability of data

describing the baseline scenario; 2) the accuracy of extrapolating

land use categories derived from 1991–1995 satellite data further

into the future; and 3) the large computational burden associated

with longer simulations. The baseline scenario represents land use

categories and monthly phenology based on satellite derived data

from 1991–1995, and the biofuel scenario represents projected

alternative (i.e., switchgrass) land use categories (Figure 1) with

identical atmospheric forcing data. Following the recent studies

[16,31–32] that have used 2-years as a minimum length for spin-

up, we discarded the first two years (i.e., 1979 and 1980) of each

simulation to allow for adjustment of the land surface with the

atmosphere. Details of the model configuration are provided in the

Anderson et al [19], and thus are not described here.

Land use scenarios
The baseline scenario uses the NOAH LSM default settings of

land use and vegetation parameters, including 24 vegetation

classes, a vegetation parameter table and satellite-based (1991–

1995) monthly vegetation fraction from which leaf area index

(LAI) and albedo are derived (Table S1). The projection of LULC

change produced by the Policy Analysis System (POLYSYS)

model [33–34] in support of the DOE study report ‘‘U.S. Billion-

Ton Update’’ [7] is used to create the biofuel land use scenario.

The Billion Ton Update study examines the feasibility of attaining

annual production of one billion dry tons of biomass feedstock by

2030 based on projections of future biomass demand, inventory,

production capacity, availability, and technology. In the 2011

update, the greatest conversion of traditional cropping system to

switchgrass occurs in the Great Plains, with 20–30% in Kansas

and 30–45% in northern and northwest Oklahoma [35]. The

POLYSYS simulation contained county level switchgrass and crop

production for 2022, the first year Renewable Fuel Standard (RFS)

goals reach maximum levels, at a $60/dry ton farm gate

switchgrass price with the Billion-Ton Study baseline assumptions,

including an extension of the USDA 10-year yield forecast for

major food and forage crops to 2022. An area weighted method

was used to resample county-level POLYSIS estimates of

switchgrass conversion to the WRF grid [19]. The NOAH LSM

uses a single vegetation category for each grid cell, and vegetation

parameters are homogenous within each grid cell. Thus, a grid cell

that contains a mixture of vegetation types does not explicitly

account for each type, but represents an average of vegetation

parameters over all vegetation types present in the grid cell.

For the biofuel scenario, four new vegetation classes, their

related vegetation parameters and monthly vegetation fraction are

introduced in the WRF model based on default land use categories

(Figure 1A). The new vegetation classes are modified to represent

a mixture of the default land use categories and switchgrass

(Figure 1B). This reflects that a mixture of biofuel and conven-

tional crops are expected in regions where biofuel crops are

adopted rather than complete replacement of conventional crops

with switchgrass. Two of the new classes (Switchgrass/Grassland

Mosaic and Switchgrass/Cropland Mosaic) are used for grid cells

in which the switchgrass fraction exceeds 30%, and two

(Grassland/Switchgrass Mosaic and Cropland/Switchgrass Mo-

saic) are used for grid cells in which the switchgrass fraction is

below 30% [36] (Figures 1B and 1C). We prevented land use

change to switchgrass in regions beyond that projected by the

Billion ton update by only changing the parameters based on

latitude/latitude. For example, land cover changes were mostly in

Oklahoma and Kansas (Figure 1B); we did not change parameters

in California.

As the new land use categories under the biofuel scenario reflect

a mixture of switchgrass and conventional crops rather than

complete replacement of switchgrass, the phenology for new land

use categories is characterized in our simulations by adjusting the

satellite-based monthly vegetation fraction based on discussion

with scientists working on field trials of switchgrass. The monthly

greenness fraction is the basis for LAI and albedo calculations in

NOAH LSM, and both LAI and albedo increase with vegetation

fraction. During the growing season, spectrally weighted albedo

(which is required in WRF) increases as a crop is greening up. To

represent change in phenology consistent with managed plots of

switchgrass stands, vegetation fraction is increased during Febru-

ary–October to simulate earlier greening, denser foliage at peak

LAI, and later senesce of switchgrass (a perennial grass) compared

to annual crops and rangeland. Increase of vegetation fraction

ranges 10–20%, except north central Oklahoma where it is

increased by 90% to offset low LAI due to winter wheat harvest

[19].

The maximum and minimum values of LAI and albedo are

adjusted to reflect changes in vegetation under the biofuel scenario

(Table S1). And, the same monthly phenology is imposed for each

simulated year. When the vegetation fraction is at its peak, the LAI

and albedo are as well. Maximum LAI is based upon observations

of field stands of managed perennial grass that grows a denser
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canopy than prairie grass. Although LAI.6 as measured in field

trials of managed switchgrass is used in simulations of switchgrass

production [37–38], maximum LAI,6 is set to reflect a regional

vegetation mixture. This approach is consistent in simulations with

Van Loocke et al [17].

Climate elasticity of streamflow and changes in
streamflow

In this version of WRF model, surface runoff is computed as the

excess of precipitation that does not infiltrate into the soil [39].

Although NOAH-LSM describes the canopy and root zone in

detail, the interactions between groundwater, the root zone, and

surface water were not yet included at the time our project was

undertaken and completed. This version parameterizes surface

runoff with a simple infiltration-excess scheme rather than terrain

slope channel routing, and it treats baseflow as a linear function of

bottom soil-layer drainage [40]. Thus, runoff estimates from WRF

are not representative of the changes in streamflow. For the

purpose, we used non-parametric approaches that are demon-

strated as or more robust than complex and detailed hydrologic

models for evaluating the sensitivity of streamflow to climate

[22,27,41]. These non-parametric approaches use the concept of

climate elasticity of streamflow (ex), computed based on historic P,

PET and Q data.The climate elasticity of streamflow is defined by

the proportional change in Q to the change in a climate variable

(x), such as P or PET [42]. It is an index commonly used to

quantify the sensitivity of Q to changes in climate. Often this index

(i.e., ex) is derived from the historic climate and hydrologic data

(i.e., P, PET and Q ) [23,42]. Streamflow in unimpaired

watersheds (i.e., watersheds in which streamflow are not subject

to regulation or diversion, and defined as reference watershed in

this study) can be modeled as a function of P and PET [23]. The

changes in Q due to changes in P and PET can be approximated

as:

DQ=Q~epDP=Pzepet DPET=PET ð1Þ

In equation 1, DQ , DP and DPET are changes in Q , P and

PET, respectively; ep and epet are the elasticities of streamflow with

respect to P and PET. Prior studies [23,27,43] have proposed non-

parametric approaches to estimate ex from observed climatic data.

Of the various approaches (Table S2, Figure S2) found in the

literature, we have no reason to favor one over the others, and thus

use the average of ep estimated from all available non-parametric

approaches to predict average changes in Q under the alternative

LULC scenario. Details about the non-parametric approaches

used in this study and hydro-climatology of the conterminous U.S

are discussed in Figure S3.

To compute elasticity estimates, we used historical annual

streamflow, precipitation and PET information for 1,845 reference

watersheds across the conterminous United States (see Figure S1).

Figure 1. Default land use categories in the WRF model (A); new land use categories defined for the biofuel scenario (B); and
fraction of land use that is switchgrass in the biofuel scenario (C).
doi:10.1371/journal.pone.0109129.g001
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To compute ex estimates from the historic climate record, we used

PET instead of ET similar to prior studies [22–23] due to data

limitations associated with the estimation of actual ET from 1950–

2009. Further, as epet was computed using historic PET estimates,

we used PET instead of ET from the regional climate model

simulations to estimate changes in Q to maintain consistency in

the methodology. These climate elasticity values were combined

with the differences in mean annual P and PET between the

biofuel and baseline scenarios, expressed as a percentage of the

baseline, to compute the relative change in Q across the nation

under the biofuel scenario (equation 1).

Sensitivity of streamflow change
Uncertainty in the estimated change in Q under the biofuel

scenario is evaluated based on: 1) difference in elasticity estimates

computed from various non-parametric approaches (discussed in

the supporting material), and 2) year to year changes in simulated

P and PET for the period 1981–2004. To evaluate the sensitivity

of changes in streamflow to changes in both climate and elasticity

estimates, we calculated the standard deviation (std) of percent

annual change in P and PET between the biofuel and baseline

scenarios, and the std of elasticity estimates from the seven

different non-parametric methods as shown in equations 2 and 3.

DQ~ P+std Pð Þ|epz PET+std PETð Þ|epet ð2Þ

DQ~P|(ep+std ep)zPET|(epet+std epet) ð3Þ

DQ~ P+std Pð Þ|epzPET|epet ð4Þ

In equations 2, 3 and 4, P and PET indicate the percent change

in precipitation and evapotranspiration under the biofuel scenario

relative to the baseline. ep and epet indicate the mean values of ep

and epet from the seven empirical methods.

The sensitivity of estimated change in Q is evaluated by varying

the percent change in mean annual P and PET under the biofuel

scenario (equation 2; Figure S6A and S6B), and the mean

estimates of epet and ep (equation 3; Figures S6C and S6D) by 6

Figure 2. Hydro-climatology of the conterminous US; (A) Precipitation elasticity of streamflow (ep) and (B) Evapotranspiration
elasticity of streamflow (epet).
doi:10.1371/journal.pone.0109129.g002
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their standard deviation. We estimated the sensitivity of predicted

change in Q by varying the percent change in mean annual P and

PET simultaneously because P observed in many regions including

High Plains are correlated with PET [44] and ET [45]. Sensitivity

measures are also computed varying only P (equation 4; Figure S7)

because the impacts of varying P and PET simultaneously will

tend to cancel each other in the regions where impacts are

inversely correlated, thus not reflecting the full contribution of P or

PET to Q (equation 4).

Results

Climate elasticity of streamflow
Precipitation elasticity of streamflow is estimated in the range of

1–3.6 with a mean of 2.2 for watersheds across the U.S., implying

that a 1% change in P will result in more than a 1% change in Q.

The relationship between P and Q is generally non-linear, and this

non-linearity is influenced by catchment properties including

storage processes, ET and vegetation properties, and these factors

are implicitly factored into elasticity estimates. Approximately

46% of all watersheds examined have ep higher than 2, and these

watersheds are clustered in the Southwest, Midwest and South-

eastern parts of the nation (Figure 2A) where PET usually exceeds

P. Only a few basins in the Northwest have ep less than 1.5.

Evapotranspiration elasticity of streamflow for watersheds

across the U.S. is estimated to be in the range of negative 3.6 to

negative 1, with a mean of negative 1.9, indicating that a 1%

reduction in PET would result in about a 1.9% increase in Q. The

geographical distribution of epet (Figure 2B) in the conterminous

U.S. is similar to the distribution of ep with lower values epet in the

arid and semiarid regions of the Southwest and Midwest.

Variability in climate elasticity of streamflow
The variability in elasticity estimates computed using seven

different non-parametric approaches (expressed as a standard

deviation) is high in the arid and semi-arid regions of the Midwest

and Southwest, and lower in the humid and semi-humid regions

(Figures S4A and S4B). Also, the standard deviation of epet

estimates is higher than the standard deviation of ep estimates.

This is due to differences among the seven different approaches;

five of seven approaches [46–51] depend upon aridity index

(PET/P) to estimate elasticity estimates, while the other two

depend on Q and P or PET [23,27] (see Table S2 for details).

Projected climate change under biofuel scenario
Change in annual precipitation and evapotranspira-

tion. Under the biofuel scenario, the mean annual change in

P relative to the baseline is projected to be in the range of negative

10% to positive 10% (Figure 3A). About 84% of the conterminous

U.S. is predicted to experience changes in P in the range of

negative 5% to positive 5% under the biofuel scenario; and a

general decrease in P is predicted over 52% of the area. The

magnitude of projected change in mean annual P in the main

biofuel crop producing region (i.e., Kansas and Oklahoma) is

between 2.5% to 5% relative to the baseline scenario. Under the

biofuel scenario, western Kansas and Oklahoma show 5 to 15 mm

higher annual P than under the baseline scenario.

The projected change in mean annual PET under the biofuel

scenario is estimated to be in the range of negative 6% to positive

16% relative to the baseline (Figure 3C). Higher PET in the

switchgrass planted region is consistent with lower mean

temperatures due to earlier green-up and the higher LAI of

switchgrass compared to current vegetation, and higher net

radiation under the biofuel scenario.

In addition to the observed changes in climate in switchgrass

planted region, we observed changes in climate patterns in areas

away from the switchgrass concentrated area. Under the biofuel

scenario, southern regions including parts of Arizona, New Mexico

and Texas, the High Plains including western Kansas and

Oklahoma, the Midwest including eastern part of Nebraska and

Iowa, and a large region of the eastern states show an increase in

annual P of between 2.5% to 10% relative to the baseline scenario.

A large decline in annual P (i.e., between 2.5% to 10% relative to

the baseline) is predicted across much of the northern (i.e.,

northern Minnesota, South Dakota, Wisconsin), Midwestern (i.e.,

Wyoming, Idaho, northern Colorado) and the High Plains (i.e.,

Missouri) regions. Due to the internal non-linear climate

dynamics, a single simulation is insufficient to conclude that they

are systematically caused by land use change in the Great Plaines.

They could, in fact, be an artifact of the initial atmospheric

conditions.

PET is usually a good representation of actual ET when there is

no plant water stress, and is thus commonly used in precipitation-

runoff modeling applications [41]. We observed similar trends in

PET and ET in the switchgrass perturbed region (Figures 4B and

4C) although they differed in magnitude. Increases in ET increase

low-level humidity and the potential for more P [19]. Change in

mean annual P, PET, ET and runoff when examined by land use

(i.e., switchgrass altered and unaltered) categories in the High

Plains, suggests that the difference in ET, PET and runoff

represent a change induced by land cover perturbation (Figures 4

and S5).

Differences in climate between the baseline and biofuel

projections vary annually in both magnitude and direction

between 1981 and 2004. The magnitude of mean annual change

in PET and ET is higher than the year to year changes in PET and

ET in switchgrass planted regions under the biofuel scenario. Also,

the mean annual runoff in the switchgrass dominated region is

lower than other regions in Kansas and Oklahoma. Compared to

land cover with a lower fraction of switchgrass (i.e., cropland/

switchgrass and grassland/switchgrass), the land cover with a large

fraction (i.e., .30%) of switchgrass (i.e., switchgrass/grassland and

switchgrass/cropland) demonstrated a higher magnitude of

change in PET, ET and runoff in the biofuel scenario (Figure 4).

This indicates that the observed changes in PET, ET and runoff

associated with biofuel feedstock production are large and

significant. Decrease in runoff results from lower soil moisture

levels due to higher evapotranspiration of switchgrass during the

growing season [19]. Conversely, the inter-annual variability of

change in P is as large as or larger than the magnitude of mean

annual change in P (Figure 4). Thus it is hard to conclude that P is

changed under the biofuel scenario.

Streamflow response to projected climate change. Mean

annual change in Q in response to changes in P and PET under

the biofuel scenario is shown in Figure 5. Across the conterminous

U.S., the change in mean Q under the biofuel scenario is

estimated to be in the range of negative 56% to positive 20%

relative to the baseline scenario. An increase in Q with magnitude

greater than 5% is predicted over 12% of the area. Lower PET but

higher P in New Mexico and Arizona are estimated to increase Q

under the biofuel scenario. However, a decrease in Q with

magnitude greater than 5% is predicted over 30% of the area. The

increase in P is smaller than the increase in PET under the biofuel

scenario, and this causes a net decline in Q in the High Plains. In

the High Plains, Q is predicted to be about 20% lower than the

baseline. Streamflow in the biofuel crop region within the High

Plains is 18% lower relative to the baseline (Figure 5). The

switchgrass areas in the biofuel crop region show decreases in

Biofuel and Its Impact on Streamflow
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streamflow that are twice as large as the decrease in the

unperturbed area.

Sensitivity of streamflow. The change in Q under the

biofuel scenario is observed to be highly sensitive to mean annual

P and PET for large parts of the conterminous U.S., however, it is

less sensitive in the switchgrass planted region where change in

PET is larger than P (Figure S6). As parameters associated with

precipitation and evapotranspiration are very likely to be

correlated with each other, PET and P were changed indepen-

dently in the sensitivity test to examine the relative significance of

changes in P and PET on streamflow estimates (see the section

‘Materials and Method’ for details). Under these sensitivity

analyses, Q always decreases under the biofuel scenario, even in

the case when PET is held constant and P is increased by one

standard deviation (Figure S7). Sensitivity analysis also showed

that predicted changes in streamflow are robust to differences in ep

and epet stimation approaches. Change in Q across the range of ep

and epet estimation approach (Figure S6C and S6D) is less than the

change in Q resulting from changes in P and PET equal to their

inter-annual variability (Figure S6A and S6B).

Discussion

Climate change is a likely result of a policy that encourages

expansion of energy crop production in the High Plains and

Midwest U.S [19]. This climate change is caused by alteration of

the surface energy and moisture balances induced by changes in

land cover when current cropping systems are replaced by energy

crops. Notable changes include lower temperature, higher PET,

lower runoff and a decline in Q in the region where switchgrass is

predicted to replace current vegetation. Our analyses show

changes in the mean annual PET, ET and streamflow to be a

stronger climate change impact of biofuel crop production than

changes in mean annual P.

The main goal of this study is to use a simple and robust model

to communicate to policy makers and analysts the potential

implications of biofuels policy-induced climate change on stream-

flow to inform the search for a sustainable renewable fuel

production system. While adopting the simple but robust model

for estimating streamflow changes, we made several assumptions,

and these assumptions are likely to introduce uncertainties in our

streamflow estimates. Despite some of the limitations (as discussed

below), our conclusion that increase cellulosic feedstock produc-

tion are likely to reduce water yield is found to be in agreement

with other studies conducted [52,20] in other parts of the nation.

Weather conditions simulated with regional and global climate

models over short periods are sensitive to their initial conditions. A

change in the vegetation type at the initial condition will result in a

different sequence of weather conditions. Thus, differences

Figure 3. Change in mean annual precipitation and potential evapotranspiration for 1981–2004 expressed in A) percentage change
in mean annual precipitation; B) change in mean annual precipitation (millimeters); C) percentage change in mean annual PET; and
D) change in PET (millimeters) under the biofuel scenario. Percent change under the biofuel scenario relative to the baseline scenario for a

given location is estimated as the mean of:
Baselinexi{Biofuelxi

Baselinexi

|100 where x is either P or PET and i is year between 1981 and 2004.
doi:10.1371/journal.pone.0109129.g003
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between simulations may be a combination of a transient response

from unpredictable nonlinear dynamics acting upon a different

initial state as well as a systematic response from a structural

change in forcing of local climate, in this case land use change

[53–54]. The average change for a transient response is expected

to be zero given either a long data record or multiple simulations

Figure 4. Percent difference in (A) annual precipitation; (B) PET averaged by land use categories in switchgrass altered regions in
Kansas and Oklahoma as shown in Figure 1. Box top and bottom edges are the interquartile range of percent difference for each year, and
whiskers are maximum and minimum annual values. X-axis labels are land use categories: No Change (NC), Switchgrass/Grassland (S/G), Switchgrass/
Cropland (S/C), Grassland/Switchgrass (G/S), Cropland/Switchgrass (C/S), and average over all categories (Avg).
doi:10.1371/journal.pone.0109129.g004

Figure 5. Percent change in mean annual streamflow as a function of change in annual precipitation and potential
evapotranspiration under the biofuel scenario.
doi:10.1371/journal.pone.0109129.g005
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from alternative initial conditions. Changes in Q estimated in this

study thus include uncertainties inherent in P and PET estimated

over a relatively short time series (in this case 24 years). Anderson

et al [19], using one-way ANOVA analysis, found statistically

significant change of monthly values for ET and P. However, the

small change in annual ET resulted from offsetting statistically

significant monthly changes. To examine further whether the ET

and P responses were possibly transient, they performed a second

simulation of a single year of the control design beginning from a

different initial condition. The difference of ET in the two control

simulations was much smaller than the difference between the

control and LULC scenario. Precipitation, however, showed

substantial sensitivity to the initial condition. This sensitivity of P

to initial conditions indicates a larger number of simulations would

be needed to identify a forced response in P, if one exists at all.

Therefore, we are unable to state that a forced change in P exists

anywhere in our simulation domain. Since P, ET and PET are

correlated, we conclude that outside of the switchgrass planted

region, change in PET and Q should not be considered a forced

response. Within the switchgrass planted region, however, change

of PET and Q is a forced response. Another source of uncertainty

in our estimates can be driven by the use of temperature based

approach to estimate PET instead of approach like Penman-

Monteith (see the supporting material). As temperature-based PET

estimates are likely to overestimate the impacts of changes in

temperature, our streamflow estimates might have been overesti-

mated to some extent.

Another possible area of limitation includes elasticity estimates.

In the study, we interpolated the elasticity estimates based on

reference watershed for the conterminous US. This means, our

elasticity estimates may not accurately reflect the connection of

climate to Q in non-reference watersheds where streamflow is

heavily influenced by land use practices and ground water

pumping. Predicted change in Q in non-reference watersheds

thus might be over or under estimated in the biofuel scenario.

Despite this limitation, this study is useful in providing the

direction of change in streamflow under the biofuel scenario

without requiring the use of detailed hydrologic models that are

computationally complex and often provide ambiguous results

when compared [27].In the study we show a potential change in

annual streamflow volume as an outcome of a landscape

influenced climatic system. Our analyses also suggest that under

the biofuel scenario, there is a change in seasonal P and ET. In the

growing seasons (i.e., April–June), P decreases and ET increases.

Evapotranspiration increases until soil moisture nears wilting

point, eliminating transpiration and inhibiting further decline in

soil moisture [19]. Decrease in P and increase in ET suggests the

possibility for a higher magnitude of change in Q seasonally than

annually, and we recommend that this possibility should be

explored further with detailed hydrologic models.

This study examines landscape induced climate change and

ignores projected climate change due to atmospheric concentra-

tion of greenhouse gases (GHGs). There is a strong coupling

among landscape processes, atmospheric GHGs and climate, since

landscape acts as a sink or source to GHGs like CO2 which affect

the distribution of heat over land and in the atmosphere and

feedback to the climate [55]. However, these processes are often

uncoupled when we make future projections, and this is likely to

introduce biases in the projection of future changes in climate.

Thus, we recommend the direct coupling of landscape and other

climate forcing factors (e.g., GHGs) to better predict the range of

future climate change and its impacts on environmental resources

[19]. In this study, we examine landscape induced climate change

and its impact on Q on an annual basis. Changing landscape and

climate alter not only Q, but also stream quality due to changes in

the nutrient and sediment content of runoff, particularly from

agricultural fields. Evaluation of stream quality under landscape

driven climate change is thus recommended as a topic for future

research.

In this study, we find interaction between land use change and

climate change in Q that is not considered in previous studies.

Although processes related to landscape characteristics, such as soil

moisture, infiltration, and surface roughness could affect Q, but

are not considered in estimation in Q in this study, we assume that

the effect on streamflow of changing climate is larger than that

resulting from change in landscape characteristics [56–58]. For

example, Tu [56] examined change in streamflow in eastern

Massachusetts under three different climate change scenarios

under IPCC and land use scenarios relative to current conditions,

individually and in combination. Tu [56] found that the change in

streamflow under both climate and land use scenarios is similar to

the streamflow changes examined under a climate change scenario

only. Although the process-based hydrologic models (e.g., Soil and

Water Assessment Tool (SWAT) and the Variable Infiltration

Capacity (VIC)) have the ability to integrate the effects of land use

change and climate change on Q and streamflow quality, they are

computationally expensive given that they operate at the field- or

sub-field scale and need to be calibrated with large amounts of

empirical data. Using the method developed here, areas of

concern can be identified and then detailed hydrologic models can

be used to examine in more detail the specific trade-offs between

land use and management options and streamflow.

The results here suggest that changes induced in the climate

system by biofuel crop production may increase stress on the water

resources of the High Plains. Under the biofuel scenario, increased

ET reduces soil moisture [19], and lower soil moisture during the

growing season can cause plant water stress and reduce crop yield.

Irrigation can reduce water stress but additional irrigation will

increase pressure on already strained water resources in arid

agricultural regions such as the High Plains. The predicted 20%

decline in Q in the biofuel crop producing region under the biofuel

scenario would exacerbate on-going conflicts over water allocation

between agriculture and other uses. As we develop and implement

policies to pursue more sustainable cellulosic biofuel production,

we should carefully consider potential water limitations and other

impacts to the hydrologic cycle.

Supporting Information

Figure S1 Location of stream gauges used in this study and

major water resource regions in the U.S.

(TIF)

Figure S2 Relationship between climate elasticity of streamflow

and aridity index in the U.S. watersheds. Precipitation elasticity of

streamflow versus aridity index (left); Evapotranspiration elasticity

of streamflow versus aridity index (right).

(TIF)

Figure S3 Hydro-climatology of the conterminous US; (A)

Aridity Index (Ø); (B) Runoff Coefficient; (C) Correlation

coefficient between precipitation and streamflow; and (D)

Dominant land cover of the watersheds in year 2006.

(TIF)

Figure S4 Standard deviation of (A) ep; (B) epet; (C) mean annual

change (%) in precipitation; and (D) mean annual change (%) in

PET under the biofuel scenario relative to baseline scenarios.

Standard deviation of elasticity estimates here reflects the

variability in elasticity estimates among seven non-parametric
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approaches from their mean estimate, computed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N{1

PN
i~1

xi{�xxð Þ2
s

where N = 7, xi is epet(i) or ep(i) where i

represents a non-parametric approach and x is the mean of epet (i)

or ep (i) from seven non-parametric approaches for a given

location. Standard deviation of precipitation and PET change

under the biofuel scenario here reflects the inter-annual variability

in changes in P or PET, and is computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N{1

PN
i~1

xi{�xxð Þ2
s

where N = 24, the number of years between 1981 and 2004, xi is
Baselinexi

{Biofuelxi

Baselinexi

|100 where Baselinexi and Biofuelxi rep-

resent P or PET in a year i in a given location under the baseline

and biofuel scenarios, respectively, and �xx is the mean of xi.

(TIF)

Figure S5 Change in mean annual runoff over 1981–2004

expressed in A) percentage change; B) absolute change (millime-

ters).

(TIF)

Figure S6 Change in streamflow volume when mean annual P

and PET are varied by (A) adding and (B) subtracting a standard

deviation of P and PET; (C) adding a standard deviation of

elasticity (ep and epet) estimates; and (D) subtracting a standard

deviation of elasticity estimates among seven non-parametric

approaches.

(TIF)

Figure S7 Streamflow prediction when mean annual P and PET

are varied by (A) adding, and (B) subtracting a standard deviation

of P holding PET constant at its mean annual value.

(TIF)

Table S1 Values of land use parameters in the NOAH land

surface model as coupled within the WRF regional climate model.

Text in bold face are the new land use categories and the

associated parameterization of these categories used in the

switchgrass scenario. Meanings of the parameters are listed below

the table (from Anderson et al. [s19]).

(DOCX)

Table S2 Mathematical expression of f( ) and f ’( ) across the

studies.

(DOCX)

Text S1 Climate Elasticity of Streamflow.

(DOCX)
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´
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