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Abstract

Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of
marine microbial populations and developing a better understanding of the interplay between the functional genome
content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering
surface and depth-related environments at 11 sites around the world’s oceans. The complete datasets comprises
approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups
(COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are
associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize
the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light
level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen
concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the
reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the
majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This
increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the
utilization of a broad range of alternate energy sources in the absence of light.
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Introduction

Microbial communities dominate the oceans and seas [1]

and are involved in fundamental processes in the global

ecosystem, synthesizing half of the photosynthetic biomass

and producing significant amounts of oxygen [2]. They also

play pivotal roles in carbon, nitrogen, sulfur and phosphorus

cycles [3,4,5,6]. The diverse capabilities of marine microbes

are the result of selection and adaptation to environments in

which light level, oxygen concentration, nutrient availability,

salinity, temperature and hydrostatic pressure all vary widely

[7,8,9,10,11,12,13,14,15,16,17].

Acquisition and loss of genetic information, and mutational

variation of gene regulatory networks, are known to shape the

lifestyles of microorganisms including those that reside in marine

environments [18,19,20,21,22,23,24,25]. However, some basic

questions regarding these processes in marine environments

remain unresolved. What metabolic and physiological capabilities

enable microbes to thrive in marine habitats? How do biotic and

abiotic factors, including human activities and climate change,

affect their capacity to adapt to a specific environment? Thanks to

recent developments in molecular biology, remote sensing and

deep-sea sampling, these issues can now be addressed [26,27,28].

Metagenomic sampling of marine microbial communities

at various sites has contributed much to our under-

standing of their biochemical and physiological diversity

[7,8,9,10,11,12,13,14,29,30,31]. However, a comprehensive com-

parative analysis of publicly accessible sequences from a wide

range of depth-related locations in oceans, which is necessary for a
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better understanding of the distribution and dynamics of

microorganisms in marine ecosystems, has been lacking. In this

study we report such an analysis, based on 24 metagenomic

datasets from known depths at 11 sites representing a wide range

of marine settings. These comprise all publicly available data from

studies that generated sufficient sequence coverage to permit

broad comparative analysis.

Four of the datasets come from samples collected at different

depths in the Atlantis II Basin in the Central Red Sea (ATII), and

are reported here for the first time. In addition, we included in our

analysis three collections of datasets, each representing four

different depths in the water column, from ALOHA Station in

the North Pacific Subtropical Gyre [32], BATS Station in the

Sargasso Sea [32], and Station 3 off the Northern Chilean coast

near Iquique (Iquique) [31]; four datasets derived from samples

obtained at depths of 1,000 m in the Central Basin of the Sea of

Marmara [8], 4,000 m at ALOHA [9], 6,000 m within the Puerto

Rico Trench (PRT) [11], and 50 m in the Mediterranean off

Alicante in Southeastern Spain (Med.) [10]. We also selected for

inclusion in our global study just four sites from the vast array of

near-surface datasets acquired by the Global Ocean Sampling

(GOS) expedition [7,13]. The entire collection comprises approx-

imately 12.0 million sequences encompassing 5,358 Mb.

As a benchmark for understanding the genomic changes

underlying microbial adaptation to different light and oxygen

regimes, we assembled a core set of reference depth-related photic

and aphotic COGs and defined a group of functional activities

associated with extreme hypoxia, based on functional profiling of

all 24 datasets mentioned above. These were then utilized to

characterize biological activities in two specific oceanographic

settings in which the normal relationships between light, oxygen

and depth are disrupted: the Humboldt Current System (HCS) - a

major upwelling zone - and the salinity-based two-layer flow

system in the Sea of Marmara. Phylogenetic assignment of core

COGs indicated that the same microbial taxa dominated the

photic zone across all the sites considered, while aphotic zones

show greater diversification and differentiation.

Materials and Methods

Sample collection, DNA isolation, and Whole-genome
shotgun pyrosequencing

Water column samples from Atlantis II Basin in the Red Sea

(21u13’ N, 37u58’ E) were obtained during Leg2 of the WHOI/

KAUST/HCMR sampling cruise aboard the R/V Aegeo in April

2010. Permits to collect water samples from all the depths of

Atlantis II basin in the Red Sea were issued by the Ministry of

Defense, Kingdome of Saudi Arabia. All the field studies did not

involve endangered or protected species. Detailed of samples

collection and processing, environmental DNA isolation, whole-

genome shotgun pyrosequencing, and establishing of ATII depth-

related datasets for the four depths are presented in Methods S1.

Nucleotide sequence accession numbers
The ATII 454 metagenome has been deposited in the GenBank

Sequence Read Archive with the following accession numbers:

ATII 50 m: SRS598124; ATII 200 m: SRS598125; ATII 700 m:

SRS598128; and ATII 1500 m: SRS598129.

ATII and publicly available datasets employed in
comparative analysis

In addition to the four ATII depth-related datasets newly

generated for this work, metagenomic datasets from ten other sites

were obtained from public databases (fig. S1 and table S1 in file

S1). Detailed information regarding the publically available

datasets, 454 shotgun read simulation, sub-sampling, functional

assignment using the eggNOG database, and analysis of differen-

tially abundant COGs are presented in Methods S1.

Comparative analysis of datasets based on COG
abundance

Because there were three depth-related metagenomic collections

of datasets that could be used as reference (ALOHA, BATS and

ATII), we elected to first screen for COGs that differ significantly

in abundance among the various depths in each of the three water

columns. This was achieved by means of Fisher’s exact test (p#

0.01, FDR-corrected), using the exact Test function of the R

bioconductor package edgeR [33], in order to identify common

COGs that displayed significant differences in normalized

abundance levels between at least two depths in one of the three

water columns. 176 depth-related COGs were identified at this

step and were employed for hierarchical clustering of all datasets

(table S2 in file S1).

Determination of reference photic/aphotic global-core
depth-related COGs

Datasets were initially classified as photic or aphotic based on

publicly available PAR and oceanographic data. Subsequently the

average normalized abundances of each COG were determined

for the identified photic and aphotic groups of datasets, obtained

by the hierarchical clustering of the 24 datasets based on the

normalized abundances of the 176 depth-related COGs previously

identified (table S3 in file S1).

Then, unequal variance conservative Student’s t-test (Welch’s

test; p#0.05, FDR-corrected) was employed to determine the

COGs that presented statistically significant differences in the

means of the two groups (n = 12 for each group). 82 COGs were

found to vary significantly (p#0.0001, FDR-corrected) in abun-

dance between the photic and aphotic datasets and considered

subsequently as the reference photic/aphotic global-core depth-

related set of COGs. Out of those, 54 COGs were assigned as

photic and 28 COGs were assigned as aphotic based on the means

of the normalized abundance of each COGs between the photic

and aphotic datasets (tables S4A and S4B in file S1).

Comparison of photic to aphotic depth-related COG
abundance ratios in water columns

Using the reference photic/aphotic global-core depth-related set

of COGs, the normalized abundance means of the reference 54

photic and 28 aphotic depth-related COGs were determined for

each dataset. The ratio of photic to aphotic normalized abundance

means of each dataset was then calculated and log2 transformed in

order to be plotted. The average and mean standard deviations of

the log2-transformed ratios were determined for photic and

aphotic datasets from ATII, ALOHA and BATS to establish ratio

ranges indicative of photic or aphotic genomic content.

Assessment of the effect of hypoxic environment on COG
abundance

To evaluate the effect of low oxygen concentration on the

genomic content of microbial communities, COGs that presented

statistically significant changes in normalized abundance levels

between datasets of the Iquique water column were initially

identified following the same procedure performed for the

selection of differentially abundant depth-related COGs in the

three reference columns (ATII, ALOHA, BATS). Such analysis

resulted in a list of 162 COGs from which the 82 global photic/
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aphotic common-core depth-related COGs were subsequently

excluded to avoid influence of sunlight intensity level on the

identification of abundance changes specifically related to

dissolved oxygen concentration (D.O.). Datasets were initially

divided into two groups based on publicly available dissolved

oxygen concentration (D.O.) data for the 24 datasets analyzed.

Iquique datasets from 85 m, 110 m and 200 m depths (D.O.,

20 mmol.kg-1) were considered as the low-oxygen standard (n = 3)

to which all other remaining datasets (n = 21) were compared.

Fisher’s exact test was again employed to determine the COGs

that were statistically different in abundance across the Iquique

water column. COGs whose abundances had been shown to vary

in association with light level were omitted from this analysis.

Wilcoxon’s test was then used to find the COGs whose normalized

abundances varied in association with oxygen concentration. 18

COGs (table S5 in file S1) were found to vary significantly (p#

0.05, FDR-corrected) in abundance between low and high oxygen

datasets.

Taxonomic distribution of photic/aphotic depth-related
COGs among sites.

The taxonomic distribution analysis was performed on selected

datasets representing euphotic and aphotic zones of the different

oceanic sites sampled. Datasets obtained from the shallowest

samples of the reference water columns (ATII, ALOHA and

BATS) plus the four GOS and the Mediterranean ones were used

as representative of the euphotic zone, whilst datasets from the

deepest samples of the reference water columns and those from

Marmara, PRT and ALOHA (4,000 m) corresponded to the

aphotic zone in the analysis. Reads from each dataset mapped to

the photic/aphotic core related COGs were subjected to BLASTX

similarity search against the NCBI nr database using a maximum

e-value threshold of 1e-05 [34]. A taxonoxomic identifier was

assigned to each individual read based on the best BLAST hit

using NCBI taxdump (version of March, 2013). Taxonomic counts

were then summarized at the phylum level per COG for each

analyzed dataset (tables S6A and S6B in file S1) by means of bash/

perl scripts developed in-house. Eukarya or unidentified taxa were

discarded from the analysis. Heatmaps were generated from the

summarized raw counts for the core photic and aphotic depth-

related COGs using the publicly available software environment R

version 2.11.1 (www.r-project.org, RColorBrewer and gplots

libraries).

Results and Discussion

Defining the reference depth-related environments
The metagenomic datasets employed in this work were derived

from samples obtained at different sites in the world’s oceans.

Detailed information on sites and sampling methods is presented

in figure S1, and table S1 in file S1. In order to avoid biases in the

comparison of samples due to different sequencing methods and

coverage, simulated 454 sequences were generated from datasets

made up of assembled contigs (ALOHA 4,000 and GOS datasets)

prior to extraction from all analyzed datasets of random

subsamples of the same size as the smallest complete collection

(BATS 500 m; for details, see Methods S1).

It is important to emphasize that the datasets analyzed here

include all those based on sampling at multiple depths in water

columns at single sites: ALOHA [32], BATS [32], Iquique [31],

and ATII (this work). The Iquique site [31] lies within the

Humboldt Current System (HCS), the most productive marine

ecosystem in the global oceans [35], which dramatically affects

environmental conditions at this location [35]. The HC flows

along the West coast of South America and drives a major

upwelling system that brings cold, nutrient-rich water toward the

surface of the Eastern Tropical South Pacific off Northern Chile.

This promotes the growth of a dense planktonic community and

supports a high level of primary production [35]. Among the most

notable effects is the efficient depletion of dissolved oxygen, from

.200 mmol.kg21 at the surface to 3 to 4 mmol.kg21 at depths

between 110 and 200 m, by aerobic heterotrophs [31,36]. In

addition, due to dense growth of phytoplankton and the presence

of organic particulates, the sunlit zone at the Iquique site is rather

shallow compared to the other sites (fig. 1B). We therefore

considered the water columns at ALOHA, BATS and Atlantis II,

but not that at Iquique, as reference depth-related environments.

Clustering COGs according to depth
To identify known biochemical functions represented in the 24

datasets, we subjected each one to sequence similarity analysis

using the eggNOG v2.0 database [37], and calculated the

normalized abundances of the identified clusters of orthologous

groups of proteins (COGs) [38]. COGs that exhibited statistically

significant differences in abundance within the three reference

water columns were retrieved individually using Fisher’s exact test

(p #0.01, and FDR-corrected; for details see Methods S1). This

resulted in 649, 413, and 463 COGs for ATII, ALOHA and

BATS, respectively. Of these, 176 COGs were present at all three

sites (table S2 in file S1).

We first performed hierarchical clustering on the normalized

abundance data for these 176 COGs in the three reference

columns. The major feature common to the ATII, ALOHA and

BATS profiles is the division of the datasets into two depth-related

groups, representing the surface/near-surface zone, and a deeper

zone (fig. S2, and table S2 in file S1).

Next, we proceeded to a hierarchical clustering of the same 176-

COG set in all 24 datasets. As expected for a generalized depth-

related pattern, members of the set represented in the Sea of

Marmara (1,000 m), ALOHA (4,000 m) and the Puerto Rico

Trench (PRT, 6,000 m) samples clustered with the deeper water

group, while those occurring in the four GOS surface-water and

the 50 m Mediterranean Sea datasets fell into the surface/near-

surface group (fig. 1A, and table S3 in file S1). This depth-related

division reflects metabolic and physiological processes specific to

the microbial communities residing in photic and aphotic zones.

Note that the dividing line coincides with the bottom of the photic

zones in the three columns, as determined by their PAR

(photosynthetically active radiation) values (fig. 1B). Interestingly,

inclusion of the Iquique datasets in the clustering analysis preserves

the depth-related profile division found at the other ten sites.

However, as shown in fig. 1A, all four datasets generated from the

Iquique samples (50 m, 85 m, 110 m and 200 m) clustered with

the aphotic group. Nevertheless, the apparently anomalous

position of the datasets related to the Iquique column in the

profile of the 11 sites (fig. 1A) is entirely compatible with the

environmental conditions at the site [31] which, as mentioned

above, differ quite significantly from those at ALOHA [12], BATS

[39] and ATII sites. The PAR value at Iquique drops below 1% of

its surface value at a depth of less than 50 m [31] (fig. 1B). If one

defines this level as the lower limit of the photic zone, it is not

surprising that all Iquique datasets cluster with the aphotic group.

The photic/aphotic global-core depth-related COGs
In order to identify specific photic/aphotic global-core depth-

related COGs we compared the normalized abundance of the

photic with the aphotic groups of datasets defined in the

dendrogram shown in fig. 1A. Of the 176 COGs used in the

Metagenomic Profiling in Marine Environments
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construction of this profile, a major subset of 82 COGs (19%) were

found to show a statistically significant difference in abundance

between photic and aphotic datasets (p#1e-04 and FDR

corrected; see details in Materials and Methods). Based on the

mean normalized abundance for the whole set, 54 were considered

photic related COGs and 28 were regarded as aphotic related

COGs (fig. 1C, see also tables S4A and S4B in file S1).

Bootstrapping evaluation indicated a high degree of confidence

in the division of the photic and aphotic groups of the datasets

presented in fig. 1A and 1C. This reflects the fact that functional

adaptation to ambient light level is most probably one of the

factors that strongly constrains the genetic variability of microor-

Figure 1. Clustering of the 176 depth-related COGs. (A) Hierarchical clustering of the 176 depth-related COGs in the 24 datasets. Clustering
analysis is based on the normalized abundance profile of the 176 depth-related COGs that were shared by the three reference water columns (ATII,
ALOHA and BATS) and significantly differed in abundance within at least one of them (details in Materials and Methods). The height indicates the
relative distance between datasets. Bootstrap confidence values above 60 for the nodes are shown. The heatmap is shown in fig. S3A. (B) Location of
the boundary between the photic and aphotic zones in each of the four water columns. The arrows indicate the depth at which PAR reaches 1% of
the level at the surface. (C) Hierarchical clustering of the photic/aphotic global-core depth-related COGs. 82 COGs that showed statistically significant
difference (Welch’s test, FDR-corrected, p#1E-04) in their normalized abundance between the photic and the aphotic groups of datasets were
selected to establish a photic/aphotic global-core, depth-related reference set. 54 COGs had significantly higher abundance in the photic datasets
(Group I, table S4A in file S1); contrary to the remaining 28 aphotic related COGs (Group II, table S4B in file S1). Bootstrap confidence values for the
major nodes are shown. Heatmap coloring reflects the Z score of normalized abundances of each COG across all clustered datasets (details in
Materials and Methods).
doi:10.1371/journal.pone.0097338.g001
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ganisms in ocean environments. Thus, COGs related to photo-

synthesis, biosynthesis of light-harvesting pigments, assimilation of

carbon dioxide by photosynthetic bacteria, as well as light-induced

DNA repair and oxidative stress responses, were markedly more

abundant in the photic than the aphotic datasets, as were COGs

related to nitrogen fixation and phosphate metabolism. Converse-

ly, in the aphotic datasets, COGs related to protein and amino

acid catabolism, methane oxidation, sulfate assimilation and

metabolism, selenocysteine metabolism and terpenoid biosynthesis

were overrepresented, mirroring the exploitation of other energy

sources in this zone.

It is important to note that previously detected differences in

microbial gene abundances between the surface zone and the deep

sea have been based on comparisons of limited metagenomic

datasets [9,11,12]. In the present work all sufficiently extensive

depth-related datasets available from different sites around the

world’s oceans (fig. S1, and table S1 in file S1) have been analyzed

in a uniform fashion, allowing us to establish clearly defined sets of

depth-related biological functions for the oceans as a whole. Such

core functions shared between distinct sites around the global

ocean can thus be used as a reliable diagnostic tool to analyze the

distribution of light-related biological activities in sites that present

atypical environmental conditions, as described below.

Abundance ratio of photic to aphotic depth-related
COGs in the major upwelling zone of the Humboldt
Current System and the salinity-based two-layer flow
system in the Sea of Marmara

The environmental differences between the water columns at

ALOHA, BATS and ATII relative to Iquique provide an excellent

opportunity to explore the interplay between environmental

factors - such as nutrient availability, light intensity, oxygen

concentration - and the genomic changes that underlie microbial

adaptation. When we examined the abundance ratio of the photic

to the aphotic related COGs in all four water columns, we found,

as expected, a well-defined correlation with the photic/aphotic

boundary in the cases of ALOHA, BATS and ATII (fig. 2A) – high

ratios of photic to aphotic related COG abundance in the photic

samples and low ratios in aphotic ones. However, in the Iquique

column the aphotic:photic ratio is merely 1.3 for the 50 m sample

and 1.8 for the 85 m sample, whilst the mean ratio for the aphotic

datasets of the reference columns is 3.8 (fig. 2A). The fact that

microbial communities in this zone are genetically equipped for

photosynthesis strongly suggests that the 50 m and 85 m levels are

part of the mixed-water layer at this site.

To investigate this issue further, we inspected the ratios of

photic to aphotic related COGs in all 24 datasets in relation to

light levels. We selected one of the most striking positive functional

associations with sunlight intensity as an example (correlation

coefficient 0.89), the deoxyribodipyrimidine photolyase gene

(COG0415), the product of which repairs DNA damage caused

by exposure to ultraviolet light [40]. Figure 2B shows the

abundance of this gene in each of the 24 datasets. It is

overwhelmingly abundant in microbial communities that reside

at all depth levels that clustered as photic in fig. 1A, whereas the

gene is rarely found in those that reside in aphotic zones. Again,

Iquique is an exception. Here, although the data from all four

depths clustered with the aphotic group of datasets (fig. 1A), the

abundance of the photolyase gene at 50 m and 85 m is

nevertheless relatively high, while in the 110 m and 200 m

datasets this drops to values comparable to those seen in aphotic

zones (fig. 2B). Since the 50 m and 85 m levels at Iquique are most

probably part of the mixed layer, microorganisms are presumably

shuttled to the surface, where they are exposed to sunlight.

Therefore, members of these communities are subjected to

selective pressure to acquire and/or maintain biological functions

that are crucial for survival in a sunlit environment. So, although

its PAR value (fig. 1B) indicates that the 50 m layer at Iquique is

already aphotic, the relative abundance of photic related COGs

(fig. 2A) including photolyase (fig. 2B) argues that it belongs to a

facultatively photic zone.

The data for the Sea of Marmara come from a depth of 1 km,

which is unquestionably within the aphotic zone. The microbial

community at this site was therefore expected to have low levels of

the photolyase gene, comparable to those found in other aphotic

zones. Paradoxically, however, the deep Marmara sample shows a

relatively elevated abundance of this UV-protective gene (fig. 2B).

Moreover, the ratio of aphotic to photic related COG abundances

for the sample from the Sea of Marmara was found to be only 1.5,

similar to that for the 50 m level in the Iquique column and much

lower than the mean value for the aphotic datasets of the reference

columns (fig. 2A). One possible explanation for this observation is

provided by the hydrography and unusual circulation patterns in

the Sea of Marmara [41], which receives an inflow of salty (around

3.9%) water from the Mediterranean Sea through the 65 m deep

Strait of the Dardanelles. Owing to its density, this mainly

euphotic water sinks to the bottom of the Marmara Basin [41].

Therefore, part of the microbial community in the 1-km deep

aphotic Marmara environment is actually derived from the surface

euphotic zone of the Mediterranean, and is continuously

replenished. This would account for the unexpected presence of

significant levels of photic genes at this site.

Effect of oxygen concentration on gene-content in
marine microbial communities

Marine oxygen minimum zones (OMZs) occur naturally as a

result of high oxygen consumption by heterotrophic microorgan-

isms in nutrient-rich zones [35] like the upwelling system of the

Humboldt Current (HC). They may also be induced by human

activities such as fertilizer run-off and have a great environmental

impact by creating zones dominated by microbial communities

adapted to hypoxic conditions [42]. Although OMZs have

important effects on the diversity, metabolism and physiology of

microorganisms [43,44,45], the threshold oxygen concentration at

which these begin to affect the content of microbial genomes in the

ocean is not well defined. In order to clarify this issue, the three

deepest Iquique datasets (85, 110 and 200 m) were chosen as

reference hypoxic datasets because they represent the persistent

OMZ present at this site [36] and comprise the datasets with the

lowest oxygen concentrations among the 24 datasets studied in this

work ([O2] = 11.0, 4.0 and 3.2 mmol.kg21 at 85, 110 and 200 m,

respectively). To avoid interference from any effects related to

sunlight incidence, we removed members of the photic/aphotic

global-core depth-related COGs from the list of 162 differentially

abundant COGs that are statistically significant for the Iquique

column. The normalized abundance medians of the remaining

149 COGs from these hypoxic Iquique samples were then

compared with the corresponding values for the other 21 datasets

(for details see Methods). As shown in fig. 3A (table S5 in file S1),

18 COGs in all were found to be significantly influenced by

extreme oxygen limitation (p, = 0.05, FDR-corrected); 16 of these

clustered in group I, and two in group II. Interestingly,

approximately 43% of the COGs that are significantly more

abundant in extremely hypoxic samples (Group I in fig. 3A) are

related to nitrate metabolism.

Since the oxygen tension in the OMZ at the Iquique site is very

low, the ability to use alternate final electron acceptors for the

Metagenomic Profiling in Marine Environments
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Figure 2. Abundance ratios of photic to aphotic related COGs. (A) Mean abundance ratios of photic to aphotic related COGs for datasets
from the reference water columns, the Iquique water column, and from single-depth datasets. This analysis was initially determined using the 82-COG
global-core, depth-related reference set, as described in Materials and Methods. Applying the ratios for the photic and aphotic datasets from the
reference water columns, ratio ranges (mean6two SD) were established to indicate photic or aphotic functional genomic content enrichment. Mean
abundance ratios for the Iquique water column and the single-depth datasets were calculated to verify their balance between photic and aphotic
related biological functions. The arrows at the top of the diagram indicate the approximate depth of the boundary between photic and aphotic zones
in each water column (fig. 1B). (B) Normalized abundance of the deoxyribodipyrimidine photolyase gene (COG0415; table S4A in file S1) in the 24
datasets obtained from the indicated depths. The average normalized abundance was calculated for the photic and for the aphotic groups of
datasets. The bars represent two SD of the mean.
doi:10.1371/journal.pone.0097338.g002
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replenishment of oxidative potential and energy production

coupling becomes imperative for survival. This probably accounts

for the fact that a number of the COGs overrepresented in this

zone (COG2223, COG5013, COG1140, COG2181, COG2180,

COG3256 and possibly COG3213) are related to nitrate

reduction. The abundance of an enzyme involved in fermentation

and specifically inactivated by oxygen (COG1882) was also

significantly high. In addition, enzymes that are implicated in

methanogenesis (COG1151) and pyruvate metabolism

(COG1014) exhibited increased abundance in these datasets.

Conversely, genes whose products require molecular oxygen for

their activities - such as catalase (COG0376, fig. 3A, table S5 in file

S1) - are poorly represented in this extremely hypoxic environ-

ment.

Analysis of the mean abundances of the COGs in group I as a

function of the oxygen concentration reveals that these COGs are

distinctively and overwhelmingly abundant in microbial commu-

nities from samples in which oxygen concentration was #

11 mmol.kg21 (fig. 3B). It is intriguing to note the gradual increase

in the abundance of these genes in datasets as oxygen concentra-

tion drops from 30 mmol.kg21 to 3.2 mmol.kg21 (inset fig. 3B).

The fact that the relative abundances of genes in group I

increases dramatically at oxygen concentrations of 11 mmol.kg21

or less suggests that this level of oxygen represents the threshold at

which selective effects on genome content in favor of anaerobic

lifestyles set in.

Based on the content of the core sets of photic/aphotic depth-

related COGs from all sites presented in fig. S3A, it appears that

microbial communities living in photic zones share the same

functions, regardless of site location. Thus, with respect to this

zone, we do not see any specific branches clustering together that

can be attributed to environmental conditions that are unique to

any particular geographical location. The aphotic samples (based

on PAR values), however, do display distinct branching profiles of

genomic content that can be correlated with specific environmen-

tal conditions and oxygen concentrations. The three mixed-water

layers, Iquique 50 and 85 m and Marmara 1 km (with

aphotic:photic ratios of between 1.3 to 1.8; refer to fig. 2A), in

which limitation of light and oxygen in these aphotic zones exert

selective pressures, cluster together (fig. S3A, see also fig. S3B

branch I), while the extremely hypoxic samples in the aphotic zone

at Iquique (110 and 200 m) formed a separate cluster on the other

side of the tree (fig. S3A, see also S3B branch II). The abundances

of two COGs, photolyase (COG0415) and nitrate reductase

(Alpha Subunit; COG5013), taken as representative of core photic

and aphotic related COGs that contributed to the functional

branching in these aphotic zone, are presented in fig. S3B. The

results again argue that the concentration of oxygen at which

selective pressure begins detectably to favor the acquisition of

Figure 3. Effect of oxygen concentration on the functional genomic content of microbial communities represented in the 24
datasets. (A) Hierarchical clustering of COGs that significantly influenced by extreme oxygen limitation. Datasets analysis are based on the
abundance profile of 18 COGs which significantly differed in abundance levels between an extremely hypoxic environment (Iquique 85-, 110 and
200 m deep, permanent OMZ) and environments with higher D.O. (Fisher’s exact test, FDR-corrected, p#0.05). Bootstrap confidence values for the
nodes are shown. Heatmap coloring reflects the Z score of normalized abundances of each COG across all clustered datasets. Roman numbers on the
left side of the figure present different groups of COGs as determined by abundance profile across the clustered datasets. (B) Mean abundances of
the COGs in group I (figure 3A) as a function of the oxygen concentration. Inset shows the gradual increase in the abundance of these genes in
datasets from Marmara 1000 m, Iquique 85 m, Iquique 110 m, and Iquique 200 m, as oxygen concentration drops from 30 mmol.kg21 to
3.2 mmol.kg21.
doi:10.1371/journal.pone.0097338.g003
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adaptations for survival under hypoxic conditions lies below that of

the Iquique 85 m sample (11 mmol.kg21), which is assigned to

branch I.

Taxonomical distribution of photic and aphotic depth-
related COGs

The establishment of collections of core photic and core aphotic

depth-related COGs raises the question of how such functions are

disseminated among phylogenetic clades present in the different

environments covered by our analysis. To address this point, we

generated taxonomic assignments, at the phylum level, for each

core photic and aphotic depth-related COG based on the

taxonomic identifiers of the respective reads (for details see

Materials and Methods, and tables S6A and S6B in file S1). The

results show that sequences related to core photic COGs derive

from far fewer taxonomic clades than those of core aphotic ones.

This reflects the predominance of certain taxa in most euphotic

environments and the higher diversity of taxa found in deeper

oceanic environments (fig. 4, and tables S6A and S6B in file S1).

Moreover, the dominant taxon for any given COG is, with few

exceptions, shared among all the sites analyzed.

The taxonomic distribution of the 54 core photic related COGs

at the phylum level (fig. 4A, table S6A in file S1) reveals that the

vast majority (91%) of them are most probably contributed by

Proteobacteria (46%) and Cyanobacteria (45%). The taxonomic

distribution of the 28 core aphotic related COGs at the phylum

level is much more diverse than that observed for the photic

functions. Although Proteobacteria are again predominant (50%),

a total of ten phyla are represented at levels greater than 1%,

compared to only five for the photic set (fig. 4B, table S6B in file

S1).

The increased diversity of microbial communities in aphotic

environments is perhaps the most striking result of the phyloge-

netic analysis of the core COGs. It can be attributed to adaptation

to the wider variety (and lower abundance) of exploitable resources

available in the aphotic zone, which contrasts with overwhelming

importance of photosynthetic energy production in the photic

zone. This interpretation is supported by the biochemical

functions assigned to core photic/aphotic related COGs observed

in our work.

In this study, using metagenomics-based functional profiling

analysis, we have defined core sets of photic and aphotic depth-

related biological activities that are shared by different sites

distributed around the global oceans. These two sets of depth-

related functional biological activities were used to provide insight

into the interplay between light intensity - the most significant

abiotic evolutionary force in the oceans - and the genetic and

ecological differentiation of marine microbial communities. In

addition, in conjunction with a set of functional biological activities

related to extreme hypoxia, we provide a comprehensive picture of

microbial biological activities in oceanographic settings in which

light and oxygen imprint its effect in nominally aphotic zones.

Moreover, our work highlights the importance of developing

reference sets of functional biological activities that can be used as

a tool for the diagnosis of the physiological and biochemical

capabilities, and phylogenetic profiling, of marine microorganisms.

This approach should be particularly helpful for investigations of

the impact of anthropogenically induced environmental changes

on marine ecosystems.

Supporting Information

Figure S1 Locations of the 11 sites and numbers of
sequenced reads in the 24 datasets.
(TIFF)

Figure S2 Hierarchical clustering of datasets from the
three reference water columns (ATII, ALOHA, BATS).
This analysis is based on the normalized abundance profile of 176

selected COGs that significantly differed in abundance within at

least one of column (Fisher’s exact test, FDR-corrected, p # 0.01)

(table S2 in file S1). Heatmap coloring reflects the Z score of

normalized abundances of each COG across clustered datasets.

Roman numbers on the left side of the figure present different

groups of COGs as determined by abundance profile across the

clustered datasets.

(TIFF)

Figure S3 Hierarchical clustering of the 176 depth-
related COGs in the 24 datasets. (A) Heatmap of the datasets

from 11 diverse marine sites (24 datasets). Refer to legend of

figure 1A for details. Roman numbers on the left side of the figure

present different groups of COGs as determined by abundance

profile across the clustered datasets. The dendrogram of this figure

is also presented in fig. 1A. (B) Distinct branching profiles of

genomic content of the aphotic samples. The aphotic branch in

figure S3A is presented together with the level of oxygen in each

site and the normalized abundances of Deoxyribodipyrimidine

photolyase (COG0415), and Nitrate reductase (Alpha Subunit;

COG5013). The values of the normalized abundance of both

COGs were obtained from table S4A and S5 in file S1.

(TIFF)

File S1 Table S1, Sites locations, datasets, sampling
and sequencing methods. Table S2, List of 176 depth-
related COGs shared by the three reference columns,
ATIIC, ALOHA and BATS. Fisher’s exact test (p # 0.01, FDR

corrected) was employed to identify COGs that presented a

statistically significant difference in abundance between at least

two depths of a reference column. COG cluster roman numbers

refers to groups of COGs displaying similar normalized abun-

dance profile. COGs are ordered as in figure S2. Table S3, List
of 176 depth-related COG set in all 24 datasets. Fisher’s

exact test (p # 0.01, FDR corrected) was employed to identify the

176 depth-related COG set (table S2 in file S1) in all 24 datasets.

Among these, the ones that were present in at least one dataset of

each reference column were selected for subsequent comparative

analysis of all datasets. COG cluster roman numbers refers to

groups of COGs displaying similar abundance profile in the

hierarchical clustering of all 24 datasets. COGs are ordered as in

figures 1A and S3A. Table S4, A. List of 54 photic global-

Figure 4. Taxonomical assignments of photic and aphotic depth-related COGs at the phylum level for the selected datasets. Reads
assigned to COGs were compared to the NCBI nr database using BLASTX (E-value cutoff 1e-05) and the taxonomical identifiers of the best matches
were retrieved. Subsequently, tables of relative frequency of taxa per COG per dataset were generated (tables S6A and S6B in file S1) and presented
as heatmaps. The 10 phyla that have the highest average numbers of photic (A) and aphotic (B) COGs per site are presented. The taxa are sorted by
the decreasing of their abundance. Datasets of the shallowest samples of the ALOHA, ATII and BATS water columns and single-depth datasets from
GOS018, GOS023, GOS034, GOS114 and Mediterranean sites were used for the analysis of the photic related COGs, whereas the deepest datasets
from the ALOHA, ATII and BATS water columns, and single-depth datasets from Marmara, PRT and ALOHA (4,000 m), were employed in the case of
the aphotic related COGs. This analysis was based on a total of 36,938 sequences (24919 sequences are photic, and 12019 are aphotic).
doi:10.1371/journal.pone.0097338.g004
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core, depth-related COGs. Welch’s test (p # 1E-04, FDR

corrected) was employed to identify COGs that presented a

statistically significant difference in the mean abundance between

the photic and the aphotic group of datasets (see details in

Methods). Photic related COGs are presented in the same order as

shown in group I Fig. 1C. B. List of 28 aphotic global-core
depth-related COGs. Welch’s test (p # 1E-04, FDR corrected)

was employed to identify COGs that presented a statistically

significant difference in the mean abundance between the photic

and the aphotic group of datasets (see details in Methods). Aphotic

related COGs are presented in the same order as shown in group

II Fig. 1C. Table S5, List of 18 Oxygen Minimum Zone-
related COGs. Wilcoxon test (p # 0.05, FDR corrected) was

employed to identify COGs that significantly differed in

abundance between the highly hypoxic group of datasets (Iquique

85-, 110- and 200-m deep samples) and the group of remaining

datasets with higher oxygen concentration (details in Methods).

COGs are presented in the same order as that in the heatmap

(fig. 3A).Table S6. A. Taxonomic distribution of the photic
COGs at the phylum level. Phylogenetic analysis was

performed based on the NCBI taxonomic identifiers of the best

matches to the nr database. For each COG, the rawcounts of

assigned taxa is presented for eight different photic datasets: the

shallowest samples of the reference columns, and five singledepth

samples (details in Methods). The 10 phyla that have the highest

average numbers of photic COGs per site are presented in fig. 4A.

B. Taxonomic distribution of the aphotic COGs at the
phylum level. Phylogenetic analysis was performed based on the

NCBI taxonomic identifiers of the best matches to the nr database.

For each COG, the rawcounts of assigned taxa is presented for six

different aphotic datasets: the deepest samples of the reference

columns and three single-depth samples. The 10 phyla that have

the highest average numbers of aphotic COGs per site are

presented in Figure 4B.

(XLS)

Methods S1 Sample collection, DNA isolation, pyrose-
quencing, and data processing.

(DOC)
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