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Abstract

Vegetation phenology models are important for examining the impact of climate change on the length of the growing
season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make
accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based
phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models,
compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual
variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the
models’ accuracy. All models showed good performance in cool regions but poor performance in warm regions. On
average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the
Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations
over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models.
Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and
cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest
correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for
some vegetation types. Our study highlights the need for further improvements by integrating the effects of water
availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.
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Introduction

Phenology refers to the timing of recurring biological cycles, and

is considered a sensitive indicator of climate change [1–3]. In

particular, as research interest in global change increases,

determining the beginning of the growing season (BGS) of land

vegetation has become an important research subject [4]. Previous

studies revealed that plant activity is more sensitive to climatic

changes in spring than other seasons; and changes in the BGS

would strongly impact the seasonal energy balance and net carbon

dioxide (CO2) flux of terrestrial ecosystems [5,6].

Large uncertainties, however, in present phenology models

make accurate assessment of BGS a challenge. Two classes of

process-based models have been developed for simulating the

spring phenological phases. Models belonging to the first class, the

‘one-phase’ models, are the simplest and have been used in

agronomy since the 18th century [7]. This kind of model implicitly

assumes that bud dormancy is fully released after a fixed sum of

accumulated temperatures has been reached. The second class of

models, the ‘two-phase’ models, considers the breaking of two

dormancy phases [8]. The first phase is a period when buds

remain dormant due to plant endogenous factors, and the second

phase is a period when buds remain dormant due to unfavorable

environmental factors [9]. Many studies have described the

breaking of the first phase and overcoming the second phase in

terms of chill accumulation to break the first phase followed by a

period of forcing temperature to overcome the second phase

[10,11]. The two-phase models are of more recent development,

and are conceptually based on experimental studies which

highlighted that chilling was the major factor responsible for

dormancy release [12–15].

Many phenology observations have focused on cultivated rather

than natural plants [16,17]. Geographically, most of the observa-

tions were conducted in North America and Europe [18–20]. Due

to the limited availability of phenological observation data on a

large scale, most phenology models are calibrated at local scales

[21] and thus are unlikely to accurately predict BGS across

different vegetation types. These phenology models might

underestimate or overestimate the BGS when applied to a regional

or global scale [22]. For example, a comparison of phenology

models in 14 terrestrial biosphere models indicated that almost all

models failed to track the phenology, and most predicted an earlier

BGS, overestimating the gross ecosystem photosynthesis by 20%

[23].
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Remote sensing data from satellites provide broad coverage of

useful information on vegetation phenology for diverse ecosystems

at various scales, and help to calibrate the phenology models [24–

28]. For example, Yang et al. [22] parameterized three budburst

models in New England using 11 years of remotely sensed

phenology and climate data. Nowadays, remote sensing-based

phenology has been significantly improved with the Moderate

Resolution Imaging Spectroradiometer (MODIS) on board the

Terra and Aqua satellites [29]. Since 2009, the latest version of the

MODIS Land Cover Dynamics Product (MCD12Q2) has been

available [30], which provides valuable phenology data for the

present study.

Based on the global satellite-based phenological observations,

the primary objectives of this study are to (1) calibrate four

phenology models; (2) compare the relative strengths of four

phenology models; and (3) assess the spatial pattern and

interannual variability of BGS in the Northern Hemisphere.

Data and Methods

1. Satellite and meteorological data
The V005 MODIS Land Cover Dynamics (MCD12Q2)

product (informally called the MODIS Global Vegetation

Phenology product) was used to estimate the vegetation phenology

of the study area. It identifies the vegetation growth, maturity, and

senescence that mark seasonal cycles at global scales with a 500

6500 m spatial resolution and is available from 2001 to 2010 [30].

This product is produced each year from the 8-day vegetation

index EVI (Enhanced Vegetation Index) calculated from the

NBAR reflectance (Nadir Bidirectional Reflectance Distribution

Function-Adjusted Reflectance). More complete details regarding

algorithm implementation are provided in Zhang et al. [29] and

Ganguly et al. [30].

The V005 MODIS Land Cover Type Product (MCD12Q1)

was used to identify land cover properties. It provides data

characterizing five global land cover classification systems at

annual time steps and 500 6500 m spatial resolution for 2001-

present. In this study, we chose the International Geosphere

Biosphere Programme (IGBP) classification scheme, which

includes 11 natural vegetation classes, three developed and

mosaicked land classes, and three non-vegetated land classes.

We excluded the evergreen broadleaf forest from our analysis as it

has little or no leaf seasonal cycle. We also excluded croplands and

crop/natural vegetation mosaics because human management

practices strongly impact their phenology (e.g. irrigation, fertiliza-

tion). In the classification of IGBP, a single vegetation type may

exist in both subtropical and boreal regions (e.g. woody savannah

in Figure 1). As plants in different regions require markedly

different quantities of heat, it is necessary to subdivide vegetation

types according to the climatic conditions in order to get the

optimal model parameters. Therefore, we subdivided four

vegetation types which are distributed across a wide range of

latitudes, based on the climate criteria of Botta et al. [31]. Three

meteorological variables were used to identify the vegetation types,

Figure l. Vegetation distribution map of the Northern Hemisphere retrieved from the V005 MODIS Land Cover Type Product
(MCD12Q1). Grey areas are either excluded vegetation types like croplands, or areas with no seasonal cycle detectable by satellite.
doi:10.1371/journal.pone.0109544.g001

Table 1. Climate criteria used to subdivide the four vegetation types which are distributed across a wide range of latitudes.

Vegetation type Subdivision Climate criteria

Mixed forest Cool mixed forest TC,0uC

Warm mixed forest TC$0uC

Closed shrub Cool closed shrub TC,0uC

Warm closed shrub TC$0uC

Open shrub Cool open shrub gT.20uC or TC,5uC

Warm open shrub gT#20uC and TC$5uC

Woody savanna Cool woody savanna TC,0uC

Warm woody savanna TC$0uC

The climate criteria is gained from Botta et al. [31]. TC and DT are respectively the minimum daily temperature of the year (TC) and the difference between annual
maximum (TW) and minimum daily temperatures (DT = TW–TC).
doi:10.1371/journal.pone.0109544.t001
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including the annual mean of daily temperature (Tmean), the

minimum daily temperature of the year (Tc) and the difference

between annual maximum (Tw) and minimum daily temperatures

(DT = Tw– Tc) (Table 1).

Daily meteorological data, including temperature and precip-

itation, were derived from the MERRA (Modern Era Retrospec-

tive-Analysis for Research and Applications) archive for 2001–

2010. MERRA is a NASA reanalysis for the satellite era using a

major new version of the Goddard Earth Observing System Data

Assimilation System Version 5 (GEOS-5) [32]. MERRA uses data

from all available surface weather observations globally every

3 hours. The GEOS-5 is used to interpolate and grid these point

data on a short time sequence, and produces an estimate of

climatic conditions for the world at 10 m above the land surface

(i.e., approximating canopy height conditions). The resolution is

0.5u latitude by 0.67u longitude. The MERRA reanalysis dataset

has been validated carefully at the global scale using surface

meteorological data sets to evaluate the uncertainty of various

meteorological factors (i.e. temperature, radiation, humidity,

precipitation and energy balance). Detailed information on the

MERRA dataset is available at the website (http://gmao.gsfc.

nasa.gov/research/merra).

2. Phenology Models
In this study, we compared three one-phase phenological

models for the beginning of growing season (BGS) including the

Growing Degree Day model (GDD), the Biome-BGC phenology

model (BBGC) and the Number of Growing Days model (NGD),

and a two-phase phenological model (the Number of Chilling

Days-Growing Degree Day model (NCD-GDD)) over the

Northern Hemisphere (Figure 1). We did not include the Southern

Hemisphere and tropical regions because of the poor performance

of the V005 MODIS Land Cover Dynamics (MCD12Q2) product

over these regions [25].

The GDD model is a classical one-phase phenological model,

and has been used to predict the timing of BGS in spring by a

function of accumulated temperature [33,34]. After a starting date

t0 (usually January 1st), mean air temperature above a degree-day

base temperature (Tth_GDD) is accumulated until a critical value

(GDDc) is exceeded; at that time (t1) the prescribed growing season

starts. The model can be described as follows:

GDD(t)~
Xt1

t~t0

Max(T{Tth GDD,0) ð1Þ

GDD(t1)§GDDC ð2Þ

The BBGC model is integrated into the Biome-BGC (BioGeo-

chemical Cycles) terrestrial ecosystem process model, described in

White et al. [21]. The BBGC model divides vegetation phenology

into two types: woody plants (i.e. trees and brush) and grasses [35].

For deciduous woody plants, the growing season begins when the

running sum of the daily average soil temperatures (when the

average soil temperature is above a degree-day base soil

temperature (Tth_BBGC)) is above a critical value defined by:

Figure 2. The correlations between MODIS BGS and simulated BGS. (a) and (b) show BGS simulations derived from GDD models with the
original parameter values in IBIS model and calibrated parameters respectively; (c) and (d) show BGS simulations of deciduous forest and grassland
derived from BBGC models with the original parameter values in Biome-BGC model and calibrated parameters respectively; (e) and (f) show BGS
simulations of deciduous needle leaf forest derived from NGD models with the original parameter values in ORCHIDEE model and calibrated
parameters respectively; (g) and (h) show BGS simulations of deciduous broadleaf forest derived from NCD-GDD models with the original parameter
values in ORCHIDEE model and calibrated parameters respectively. The solid line is the 1:1 line and the short dashed lines are regression lines.
doi:10.1371/journal.pone.0109544.g002
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TcritSumwoody~eazb|Tavg ð3Þ

where Tavg is the mean daily average temperature; a and b are

empirical coefficients. Moreover, the model specifies that the day

length must be longer than 39300 seconds for leaf out to occur.

For grasses, the BGS is controlled by both temperature and

water availability. When both of the accumulated soil tempera-

tures and the accumulated precipitation values are larger than or

equal to the critical values, the growing season begins. The critical

accumulated soil temperature value (TcritSumgrass) and the critical

accumulated precipitation value (PrcpCritSumgrass) for grasses are

defined as:

TcritSumgrass~c|½e
32:9|(Tavg-d){1

e32:9|(Tavg-d)z1
�z900 ð4Þ

Figure 3. Spatial pattern of mean dates for the beginning of growing season (BGS) in the Northern Hemisphere during 2001–2010.
(a) The start dates derived from the MODIS product; (b)–(e) indicate the simulated start dates of the four phenology models.
doi:10.1371/journal.pone.0109544.g003
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PrcpCritSumgrass~AvgAnnPrcp|k ð5Þ

where AvgAnnPrcp is the annual mean precipitation; c is an

empirical coefficient; d is an underdetermined soil temperature

threshold which determines warm grasslands or cool grasslands; k

is a proportion of the average annual precipitation. The actual leaf

onset day is 15 days prior to this calculated date to estimate the

start of the growing season. Soil temperature is assumed to be the

11 day running average of daily average temperature [36].

Detailed information on the BBGC model is available at the

website (http://www.ntsg.umt.edu/project/biome-bgc).

The NGD model, proposed by Botta et al. [31], determines the

BGS when the NGD, defined as the number of days with

temperature above a base temperature (Tth_NGD), exceeds a

critical number of growing days (NGDc).

The NCD-GDD model is a two-phase model. Numerous

experiments have confirmed that some plant species need to

experience low temperatures to break physiological dormancy

[37]. The NCD-GDD model defines the chilling days as the days

with daily mean air temperature below a chill day base

temperature threshold (Tth_NCD). More chilling days can reduce

the demand of plants for accumulated temperature [38]. The

NCD-GDD model initiates bud burst if a certain relationship

between the number of chilling days (NCD) since the leaves are

Figure 4. Spatial pattern of the mean absolute error (RA) of the BGS simulations from four phenology models in the Northern
Hemisphere. The mean absolute error (RA) values are derived from the comparison of the MODIS vegetation product results with those of the
parameterized models.
doi:10.1371/journal.pone.0109544.g004
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lost, and the growing degree-days (GDD) since midwinter, is

fulfilled, using the following empirical negative exponential law:

GDD(t)~
Xt1

t~t0

Max(T{Tth NCD{GDD,0) ð6Þ

GDD(t1)§gzh|e(w|NCDNov(t)) ð7Þ

where Tth_NCD-GDD is the degree-day base temperature; g, h

and w are empirical coefficients. We used the method of Murray

et al. [12], starting summation from fixed dates: November 1st for

the number of chilling days (NCDNov) to cover the major part of

the dormant period, and January 1st for GDD [31].

3. Parameter Inversion
In each vegetation type, we randomly selected one half of the

pixels to calibrate model parameters, and validated the models at

the other half pixels. The nonlinear regression procedure (Proc

NLIN) in the Statistical Analysis System (SAS, SAS Institute Inc.,

Cary, NC, USA) was applied to optimize the parameter values of

the four phenology models. We used the Newton method to train

the data and got the optimal model parameters when the error

sum of squares was minimized. The other options were set as the

default. The details of the calibrated parameter values of the four

phenology models are found in Table 2.

Figure 5. Spatial pattern of the root mean square error (RMSE) of the BGS simulations from four phenology models in the Northern
Hemisphere. The RMSE values are derived from the comparison of the MODIS vegetation product results with those of the parameterized models.
doi:10.1371/journal.pone.0109544.g005
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4. Model comparison
We made two comparisons in this study. First, we compared the

original and calibrated models based on the start dates of

phenology derived from the MODIS product for various of

biomes. Second, we compared the start dates of phenology from

calibrated models and the MODIS product over the northern

hemisphere biomes. The performance of the parameterized and

original phenology models is assessed by comparison with the

results of the MODIS Land Cover Dynamics dataset. For the

phenological data, all dates were transformed to days of the year

(DOY) for convenience of data analysis.

Results

Model parameterization significantly improved performance of

the four models. We calibrated and examined the four phenology

models used in the global dynamic vegetation models based on

satellite phenology observations over the Northern Hemisphere.

The performance of the calibrated phenology models was better

than that of the original models. For example, in the Integrated

Biosphere Simulator (IBIS) model, the GDD phenology model is

used to estimate the BGS for winter-deciduous forest, grassland

and shrub [39]. For winter-deciduous forest, the original

parameters values of Tth_GDD and GDDC were set as 0uC and

100 degree-days, respectively. For grassland and shrub, the

Figure 6. Coefficient of determination (R2) and root mean square error (RMSE) for four phenology models at various vegetation
types over the Northern Hemisphere. The R2 and RMSE values are derived from the comparison of the MODIS vegetation product results with
those of the parameterized models.
doi:10.1371/journal.pone.0109544.g006
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original parameters values of Tth_GDD and GDDC were set as 5uC
and 150 degree-days, respectively. The results of the calibrated

simulation more accurately predicted the BGS, giving higher R2

(Figure 2a and b). Similar results were also found in the respective

phenology modules of the Biome-BGC and the Organising

Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE)

models (Figure 2). In the ORCHIDEE model, the NGD model

and the NCD-GDD model are used in the deciduous needle leaf

forest and deciduous broadleaf forest, respectively. Therefore, we

compared the BGS simulations at these two vegetation types with

the original parameter values and calibrated parameters in the

ORCHIDEE model, respectively.

All of the four calibrated phenology models simulated similar

spatial patterns of the BGS, which agreed very well with those of

the MODIS BGS (Figure 3). A late BGS was found in the boreal

and cool regions, intermediate BGS at temperate regions and early

BGS in warm regions. In terms of the spatial patterns of the mean

absolute error (RA) and the root mean square error (RMSE), the

four models showed good performance in most vegetation types

(Figure 4 and Figure 5). The results showed low RMSE and RA of

the BBGC simulations in most boreal and cool regions. The

average RMSE value in the whole study area was 16615days

(mean61SD). The GDD, NGD and NCD-GDD models showed

higher RMSE, with average values of 20619 days (mean61SD),

19618 days (mean61SD) and 22620 days (mean61SD),

respectively (Figure 5). In contrast, all of the four models showed

poor performance at the four warm vegetation types (i.e. warm

mixed forest, warm closed shrub, warm open shrub and warm

woody savanna). The coefficient of determination (R2) in warm

mixed forest, warm closed shrub, warm open shrub and warm

woody savanna regions were close to zero, and the average RMSE

was in the range of 17–31 days (Figure 5 and Figure 6). In

addition, all of the four phenology models predicted a later BGS in

the grassland areas of the Qinghai–Tibet Plateau.

The results showed large differences in simulated BGS among

the four phenology models (Figure 6). On average, they explained

about 67% (GDD), 79% (BBGC), 73% (NGD) and 68% (NCD-

GDD) of the BGS variations over the Northern Hemisphere

(Figure 6). According to the average R2 and RMSE, the BBGC

model showed the best performance with the highest R2 (0.50–

0.87) for the 9 vegetation types and lowest RMSE (5–11 days)

(Figure 6b). The GDD and NGD models showed relatively similar

performance in almost all vegetation types. In contrast, the NCD-

GDD model showed a slightly lower R2 (0.35–0.82) compared

with the other models in most vegetation types, with RMSE

ranging from 6 to16 days (Figure 6d). The cumulated frequencies

of absolute difference between simulations and the MODIS BGS

further demonstrated different simulation accuracy (Figure 7). On

the whole, the best estimate was the BBGC model, which

reproduced the timing of BGS for 73.2% of the pixels in the study

areas within 10 days of the MODIS BGS, and for 84.3% within 15

days (Figure 7). Similarly, the NGD model reproduced the timing

of BGS for 63.5% of the pixels within 10 days of the MODIS

BGS, and for 77.6% within 15 days. The GDD and NCD-GDD

models performed slightly worse and reproduced the timing of

BGS for 58.2 and 55.3% within 10 days of the MODIS BGS, and

for 73.5 and 71.4% within 15 days, respectively.

The magnitude and long-term change trends of the date of BGS

differed significantly among the four phenology models (Figure 8).

The Pearson’s correlation coefficient (r) was used to quantify the

performance of the four models in different vegetation types

(Figure 8). The BBGC model had the highest r for almost all

vegetation types, with the average value of 0.75. The GDD and

NGD models showed relatively similar performance of r between

simulations and the MODIS BGS, with the average values of 0.69

and 0.67, respectively. The NCD-GDD model had the lowest r,

with an average value of 0.64.

Discussion

Vegetation phenology plays an important role in the functioning

of the earth system as it steers the exchanges of carbon, water and

energy between vegetation and the atmosphere [40,41]. The

changes of phenology periods may significantly impact the

ecosystem and climate system [42,43]. For example, an advanced

Figure 7. Cumulative percentage of absolute differences between MODIS BGS and simulated BGS from four models.
doi:10.1371/journal.pone.0109544.g007
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spring may enhance carbon sequestration and affect species

interactions, and then alter the structure and function of

ecosystems [44,45]. Therefore, the phenology module is one of

the most important components of dynamic vegetation models and

earth system models [46,47].

This study examined four phenology models, which have been

widely integrated into various global dynamic vegetation models

[39,48–50]. The major parameters of the original phenology

models have not been carefully estimated or only calibrated over

local scales [21,22,51]. For example, White et al. [21] used satellite

data to calibrate a phenology model which was integrated into the

Biome-BGC model, but this was only conducted at the North

American not the global scale. Therefore, large biases in

predicting the BGS exist among phenology modules, resulting in

poor performance of these dynamic vegetation models [23]. This

study calibrated and examined the four phenology models used in

the global dynamic vegetation models based on satellite phenology

observations over the Northern Hemisphere. When the parame-

ters were calibrated, the performance of the calibrated phenology

models was better than that of the original models.

The four temperature-driven phenology models showed poor

performance for vegetation in low latitude areas (i.e. warm mixed

forest, warm closed shrub, warm open shrub and warm woody

savanna). Experimental evidence indicates that plant growth may

be largely controlled by precipitation and drought stress for these

plant species [52]. For instance, Bernal et al. [53] studied the

phenology of a Mediterranean shrub, Erica multiflora, and found

that its growth was mainly driven by precipitation. Moreover,

other studies also indicated that the plant phenology in low

latitude areas was responsive to rainfall and water availability (e.g.

Figure 8. Interannual variability of the start dates of growing season from MODIS product and four phenology models from 2001
to 2010. The inset panels show the correlation coefficient (r) between BGS simulations of the four phenology models with MODIS BGS.
doi:10.1371/journal.pone.0109544.g008
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Peñuelas et al. [54]). However, many phenological models for the

low-latitude plant species are found to be solely driven by

temperature [21,39,50,55]. Thus, it is important to integrate

water availability in plant phenology models when simulating the

BGS of low latitudes.

Overall, the BBGC model showed better model performance

than the other one-phase models (GDD and NGD). To account

for this, we attributed two reasons. First, the BBGC model uses the

mean annual temperature to determine the threshold of growing

degree-days [21]. Under the local environmental conditions,

vegetation phenology is the optimization of the plant activity and

reproduction resulting from natural selection [56]. Plant species

have adapted their temperature requirements to their local

environment [10,57,58]. The BBGC model is essential in order

to integrate the physiological adaptation of plants to the local

temperature into the models and improve model performance at

the global scale. Second, the BBGC model added the precipitation

component to the start of the growing season calculation for grass

biomes.

Moreover, the two-phase phenology model (NCD-GDD) did

not perform better than the one-phase models in most vegetation

types. Although it could simulate the interannual variations well

for some vegetation types, it showed larger biases in the whole

North Hemisphere. This result is consistent with other studies

[11,59]. For example, Yuan et al. [11] analyzed the phenological

characteristics of two dominant grass species for one-phase and

two-phase models and also found better performance of the one-

phase model. Leinonen and Kramer [33] also found that chilling

was not important for good performance of models and proposed

two explanations: first, with a boreal climate, winter temperatures

are so low that the chilling requirement will always be fulfilled;

second, the chilling requirement is observed to be lower for

northern tree species and provenances compared to southern ones,

i.e. relatively short exposure to low temperature is sufficient to

break bud dormancy.

Our study was based on the MODIS Land Cover Dynamics

(MCD12Q2) product, and the uncertainties from this product

have a certain impact on the simulated results of phenology

models. For example, a previous study compared the BGS derived

from MODIS product with field measurements of forest canopy

phenology at Harvard Forest for 2001–2006 and found differences

of 1–17 days in each of the six years [30]. In addition, the MODIS

BGS showed large uncertainties in the tropics [25]. Overall,

ongoing efforts focusing on improving the precision of the

phenology product are needed to improve phenology models.

Summary

In the present study, we calibrated four temperature-driven

phenology models and compared their performances in the

Northern Hemisphere. Although all of the four models indicated

similar spatial patterns of the BGS, there were substantial

differences among the models. The four models explained 67–

79% of the variability in BGS. The BBGC model showed better

performance than the other models. Conversely, the NCD-GDD

model showed larger biases compared with the other three models

in the whole North Hemisphere, although it could simulate the

interannual variations well for some vegetation types. Moreover,

all models showed good performance for most types in cool regions

but poor performance in warm regions. Our study showed that it

is necessary to integrate the effects of water availability into

phenology models, especially for plants growing in low latitudes.

Moreover, the thresholds used in phenology models to determine

the BGS should be location dependent rather than a constant, as

plants growing in different places show different physiological

adaptabilities to environments (such as cold tolerance and drought

tolerance).
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