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Abstract

Background: Measuring similarity between diseases plays an important role in disease-related molecular function research.
Functional associations between disease-related genes and semantic associations between diseases are often used to
identify pairs of similar diseases from different perspectives. Currently, it is still a challenge to exploit both of them to
calculate disease similarity. Therefore, a new method (SemFunSim) that integrates semantic and functional association is
proposed to address the issue.

Methods: SemFunSim is designed as follows. First of all, FunSim (Functional similarity) is proposed to calculate disease
similarity using disease-related gene sets in a weighted network of human gene function. Next, SemSim (Semantic
Similarity) is devised to calculate disease similarity using the relationship between two diseases from Disease Ontology.
Finally, FunSim and SemSim are integrated to measure disease similarity.

Results: The high average AUC (area under the receiver operating characteristic curve) (96.37%) shows that SemFunSim
achieves a high true positive rate and a low false positive rate. 79 of the top 100 pairs of similar diseases identified by
SemFunSim are annotated in the Comparative Toxicogenomics Database (CTD) as being targeted by the same therapeutic
compounds, while other methods we compared could identify 35 or less such pairs among the top 100. Moreover, when
using our method on diseases without annotated compounds in CTD, we could confirm many of our predicted candidate
compounds from literature. This indicates that SemFunSim is an effective method for drug repositioning.
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Background

The quantitative measurement of similarity between diseases

based on qualitative association [1–5] raises more and more

attention, because it plays an important role in predicting disease-

causing genes [6,7], inferring microRNA function associations [8],

and identifying novel drug indications [9]. Currently, there is a

critical need to design methods to measure disease similarity.

Methods for calculating disease similarity can be broadly

classified as semantic-based [8,10] and function-based [11–13].

Semantic-based methods are widely used for measuring similarity

between terms of Gene Ontology (GO) [14,15] and human

phenotype ontology (HPO) [16] in the biomedical and bioinfor-

matics domain. Few of them are used for calculating similarity

between terms of disease-related ontologies. For computing the

similarity of GO terms, Resnik’s method [17] has a better

performance evaluation result [18] than union-intersection (UI),

longest shared path (LP), JC [19] and Lin [20]. Resnik’s method

has also been used to calculate the similarity between terms of

Disease Ontology (DO) [10,21], measuring disease similarity based

on the information content (IC) (Figure S1 and File S1) of the most

informative common ancestor (MICA) (Figure S1 and File S1)

between two terms. In addition, Wang et al.’s method [22]

calculates similarity between terms considering multiple common

ancestors. It performs very well for computing the semantic

similarity between GO terms [22], and has been successfully used

for measuring disease similarity between medical subject headings

(MeSH) [23] terms and inferring microRNA function network [8].

Function-based methods calculate disease similarity by com-

paring disease-related gene sets [11–13]. Mathur and Dinakar-

pandian [11] designed the similarity method based on overlapping

gene sets (BOG) between diseases of DO. In comparison to

semantic-based methods, the BOG method defines disease

similarity from a new perspective. Therefore, it is possible to find

unknown relationships [11]. However, it ignores the functional

associations between disease-related genes which contribute to

disease similarity. In another method, Mathur et al. [13] presented
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a process-similarity based (PSB) method by involving the

associations based on GO [14] terms. PSB outshines BOG, and

its performance is better than Resnik [17], Lin [20], LC [24] and

JC’s [19] methods [13]. Functional associations between genes

involve multiple aspects, such as co-expression [25], protein-

protein interaction [26], GO terms [27], etc. However, the PSB

method only exploits the associations from GO terms. Therefore,

the performance would likely be better if multiple associations

were considered for calculating disease similarity.

There are many disease-related vocabularies, some of which

describe semantic associations between diseases by ‘IS_A’

relationship (Figure 1), such as MeSH, DO, etc. Among them,

DO is an ontology to organize vocabularies around diseases

themselves [21]. And it integrates disease and medical vocabular-

ies through extensive cross mapping [21]. Other vocabularies

often include not only diseases themselves, but also terms of

pathology, anatomical, etc. For example, MeSH is a more

comprehensive ontology that has been classified as 16 categories.

In these categories, only categories C and F03 define terms around

disease. However, not all the terms in these categories are named

for diseases themselves, such as pain (D010146). Furthermore, DO

has been validated to be suitable for calculating disease similarity

[11,13,28]. Therefore, we choose DO as disease terminology to

describe disease terms for calculating disease similarity.

Function-based methods calculate disease similarity according

to functional associations between genes. Semantic-based methods

exploit associations from ontologies and the number of disease-

related genes to compute disease similarity. Obviously, not all

associations between diseases are represented by the ontology, a

part of them are reflected through functional associations among

disease-related genes and vice versa. In this paper, a new method

(SemFunSim) is proposed, which integrates semantic and gene

functional association for measuring similarity between diseases.

Materials and Methods

Disease Ontology
DO [21] (Table 1) contains 8,632 disease terms and 7,232

‘IS_A’ relationships among diseases. The directed acyclic graph

(DAG) of DO represents terms linked by ‘IS_A’ relationship, of

which a node represents a DO term and an edge represents an

‘IS_A’ relationship between diseases. Figure 1 shows a sub-graph

of the DAG starting from the specific DO term ‘Cutaneous lupus

erythematosus (DOID:0050169)’ and ending at the root term of

DO.

HumanNet and disease-related gene set
We accessed functional interactions of genes from HumanNet

[29], which is an extended gene functional interaction network for

Homo sapiens. Multiple distinct lines of evidence, spanning

human mRNA co-expression, protein-protein interaction, protein

complex, and comparative genomics data sets, in combination

with similar lines of evidence from orthologs in yeast, fly and worm

are comprehensively analyzed for the network using a probabilistic

method [29]. This function network contains 476,399 interactions

among 16,243 genes (Table 1).

Disease-related gene sets are from SIDD [30], which integrates

five disease-related gene databases: GeneRIF [31], Online

Mendelian Inheritance in Man (OMIM) [32], comparative

toxicogenomics database (CTD) [33], genetic association database

(GAD) [34], and SpliceDisease [35]. In total, 2,817 diseases,

12,063 genes and 117,190 associations between them are involved

(Dataset S1). The data sources were downloaded from the web in

Jul 2013, and the detailed information is listed in Table 1. Gene

names in these sources have been converted to HUGO Gene

Nomenclature Committee (HGNC) approved gene symbols [36].

Disease similarity
Figure 2 gives an overview of SemFunSim. In the figure, d1 and

d2 are two diseases from DO, and dMICA is the MICA of d1 and

d2. G1, G2 and GMICA are gene sets related to d1, d2 and dMICA,

respectively. First, a weighted network of human gene function

association is used for calculating FunSim (functional similarity)

between G1 and G2. Then, semantic associations from DO are

used to calculate semantic similarity (SemSim) between diseases.

Finally, FunSim and SemSim are integrated into SemFunSim.

Functional similarity between disease-related gene

sets. Gene function networks are widely used to understand

disease [29,37–43]. We accessed the interactions of genes from

HumanNet [29], which has been used to understand associations

across three GO categories [44]. Each interaction of HumanNet

has an associated log likelihood score (LLS) that measures the

probability of a functional linkage between genes [29]. We

normalized the associated LLS with equation 1.

LLSN (gi,gj)~
LLS(gi,gj){LLSmin

LLSmax{LLSmin

ð1Þ

where gi and gj indicate the ith and jth gene, respectively.

LLSN (gi,gj) represents LLS between gi and gj after normaliza-

tion. LLS(gi,gj) represents LLS between gi and gj . LLSmin and

LLSmax are the minimum LLS and the maximum LLS of

HumanNet, respectively.

The functional similarity score between a pair of genes is

defined as FunSim(gi,gj):

FunSim(gi,gj)~

1 i~j

LLSN (gi, gj) i=j and e(i,j) [ E(HumanNet)

0 i=j and e(i,j) 6[ E(HumanNet)

8><
>:

ð2Þ

In equation 2, e(i,j) represents the interaction edge between

gene pair gi and gj . E(HumanNet) is a set which includes all the

edges of HumanNet.

Then, we define the functional association between a gene g

and a gene set G~ g1,g2, � � � ,gkf g as FG(g), which is described in

equation 3.

FG(g)~ max
1ƒiƒk

(FunSim(g,gi)), gi[G ð3Þ

where k indicates the number of genes in G, gi is the ith gene of G.

Let a pair of gene sets G1~ g11,g12, � � � ,g1mf g and

G2~ g21,g22, � � � ,g2nf g be related to diseases d1 and d2, respective-

ly. m is the number of genes in G1, and n is the number of genes in

G2. We define FunSim of d1 and d2 in equation 4 as follows.

FunSim(G1,G2)~

P
1ƒiƒm

FG2
(g1i)z

P
1ƒjƒn

FG1
(g2j)

mzn
,

g1i[G1, g2j[G2

ð4Þ

Semantic similarity based on Disease Ontology. We

define semantic similarity between disease pair d1 and d2 in

equation 5.

(2)
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SemSim(d1,d2)~
DG1D

DGMICAD
: DG2D
DGMICAD

ð5Þ

where G1 and G2 are gene sets related to d1 and d2, respectively.

GMICA is gene set related to dMICA, which represents the MICA of

d1 and d2 in the DAG of DO. DG1D, DG2D, and DGMICAD represent the

number of genes in G1, G2 and GMICA, respectively.

Similarity between disease pair by SemFunSim. The

similarity between disease pair d1 and d2 is defined in equation 6.

Sim(d1,d2)~FunSim(G1,G2):SemSim(d1,d2) ð6Þ

where d1 and d2 are two diseases of DO. G1 and G2 are gene sets

related to d1 and d2, respectively.

A threshold for significant similarity of the 916 diseases with

potential therapeutic chemicals (PTCs) in CTD is defined based

on randomized data as follows. First, the 916 disease names in the

DAG of DO were randomly shuffled, and the hierarchical

structure remained the same as the original DO. Next, gene

names in HumanNet were randomly shuffled, and the network

topology remained the same as the original HumanNet. Then, the

similarity scores for pairs of these 916 diseases were computed by

SemFunSim based on the randomized data. The experiment was

iterated 1000 times. Finally, we calculate the false discovery rate

(FDR) over all pairs according to equation 7.

Figure 1. A sub-graph of the DAG for DO term ‘Cutaneous lupus erythematosus (DOID:0050169)’. The arrow symbol represents an ‘IS_A’
link of DO. For example, ‘‘Cutaneous lupus erythematosus (DOID:0050169)’’ is linked to ‘‘Skin disease (DOID:37)’’ by an ‘IS_A’ relationship.
doi:10.1371/journal.pone.0099415.g001

Table 1. Data sources used for measuring disease similarity.

Data source Web site (Date of download)

DO https://diseaseontology.svn.sourceforge.net/svnroot/diseaseontology/trunk/ (Apr 2013)

SIDD http://mlg.hit.edu.cn/SIDD (Jul 2013)

CTD http://ctdbase.org/downloads/;jsessionid = 71BC29A1A48AD67BADA2E2C4FC9625F3 (Apr 2013)

HumanNet http://www.functionalnet.org/humannet/download.html (Jul 2013)

GO http://www.geneontology.org/GO.downloads.ontology.shtml (Jul 2013)

GOA http://www.geneontology.org/GO.downloads.annotations.shtml (Jul 2013)

MimMiner http://www.cmbi.ru.nl/MimMiner/suppl.html (Feb 2014)

doi:10.1371/journal.pone.0099415.t001

A New Method for Measuring Disease Similarity

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e99415

https://diseaseontology.svn.sourceforge.net/svnroot/diseaseontology/trunk/
http://mlg.hit.edu.cn/SIDD
http://ctdbase.org/downloads/;jsessionid=71BC29A1A48AD67BADA2E2C4FC9625F3
http://www.functionalnet.org/humannet/download.html
http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org/GO.downloads.annotations.shtml
http://www.cmbi.ru.nl/MimMiner/suppl.html


FDR(SimT )~

P1000

i~1

Ni

1000:NT

ð7Þ

where SimT represents a similarity score, Ni indicates the number

of hits in the ith permutation with the similarity score . SimT ,

and NT is the number of hits in the real case with the similarity

score $ SimT .

Results and Discussion

Validation of disease similarity methods on benchmark
set

We calculated similarities of disease pairs on a benchmark set

and another 100 random sets. The performance of SemFunSim

was accessed by drawing a receiver operating characteristic (ROC)

[45] curve. In Figure 3A, two types of disease pair sets are

introduced as input in the validation process. On one hand, two

manually checked datasets [12,13,46] of disease pairs with high

similarity were integrated into a benchmark set. One dataset was

obtained from diseases analyzed in the study by Suthram et al

[12]. Disease pairs of the dataset were marked as similar after

validation from literature by Mathur et al [13]. The other dataset

was derived from the judgment of medical residents for semantic

similarity, and pairs of similar diseases were extracted by

Pakhomov et al [46]. In total, 47 diseases and 70 pairs of these

two disease pair datasets were merged as the benchmark set

(Dataset S2). On the other hand, each random set contains 700

disease pairs randomly selected from DO.

In order to further test the performance of the proposed

method, SemFunSim was compared with disease similarity

methods including Resnik [17], Wang [22], BOG [11], and PSB

Figure 2. Overview of SemFunSim. d1, d2 are two diseases, and dMICA is the MICA of d1 and d2. G1, G2 and GMICA represent gene sets related to d1,
d2 and dMICA, respectively.
doi:10.1371/journal.pone.0099415.g002
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[13]. During the experiment, the parameters of these methods are

selected according to the original paper.

Similarities of disease pairs of the benchmark set and a random

set were calculated by SemFunSim. We examined whether

similarities of disease pairs of benchmark set could be prioritized

in the top to produce an ROC curve. In Figure 4A, the area under

the ROC curve (AUC) of each method is listed as follows, Resnik

(63.14%), Wang (68.04%), BOG (78.10%), PSB (89.52%), and

SemFunSim (96.36%). FunSim is part of SemFunSim, and has an

AUC of 94.37%. The AUC shows that Wang et al.’s method is a

little better than Resnik’s method. The BOG method has the worst

performance among function-based methods. When linking genes

based on the GO biological process category [14] by the PSB

method, the result has been improved significantly. Although the

PSB method shows a very high AUC, FunSim still improves the

results of the PSB method by about 5%. After integrating gene

functional and semantic association, the SemFunSim method

improves the performance further to nearly 100%. This experi-

ment was iterated 100 times by calculating similarities of 100

random sets and the benchmark set. In Figure 4B, the average

AUC of the 100 permutations is 0.6345, 0.6784, 0.7657, 0.8984,

0.9415, and 0.9637 for Resnik, Wang, BOG, PSB, FunSim, and

SemFunSim, respectively. The result is consistent with Figure 4A.

Currently, functionally relevant gene associations can be

defined in multiple ways (e.g. annotations for co-expression [25],

protein-protein interaction [26], etc.). However, only one or two

types of gene functional associations have been used to calculate

the similarity by BOG and PSB [11,13]. FunSim was designed for

calculating disease similarity based on a comprehensive weighted

gene functional association network. In Figure 4, the AUC of

Figure 3. The process of validation. A. The similarities of disease pairs from the benchmark set and 100 random sets were calculated by
SemFunSim, FunSim, Resnik, Wang, BOG, and PSB. B. The similarities of all the disease pairs between 916 diseases with PTCs in CTD were measured by
SemFunSim, FunSim, Resnik, Wang, BOG, and PSB. In addition, the similarities of all the disease pairs between these 916 diseases with PTCs and 44
diseases without PTCs in CTD were computed by SemFunSim.
doi:10.1371/journal.pone.0099415.g003
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FunSim is higher than BOG and PSB. The results show that

comprehensive gene functional association is suitable for calculat-

ing disease similarity.

Among the five methods, Resnik’s method used the IC of the

MICA to calculate similarity between diseases. A few disease pairs

of the benchmark set have only one common ancestor node,

consequently the similarities of these diseases are zero according to

Resnik (File S1). For example, the similarity between disease pair

‘diabetes mellitus (DOID:9351)’ and ‘Alzheimer’s Disease

(DOID:10652)’ is zero (File S1), because the MICA of these two

diseases is the root node of DO (Figure S1), and the IC of the root

node is zero. To avoid this problem for pairs of similar diseases

with only one common ancestor, the IC is not used for measuring

disease similarity in SemSim. The ROC curves in Figure 4A show

clearly that SemFunSim has the highest AUC, which validates that

the integrated semantic association helps to enhance the true

positive rate and reduce the false positive rate.

Assessment of disease similarity by means of common
therapeutic compounds

CTD (Table 1) [33] was introduced to compare PTCs for

diseases (Figure 3B). CTD not only documents disease-related

genes, but also documents disease-related markers and potential

therapeutic compounds for diseases. Only potential therapeutic

compounds for diseases were extracted as PTCs. In a previous

study, disease terms of CTD were integrated with DO [30]. After

extracting PTCs for diseases from CTD, 916 diseases, 3,522

chemicals and 11,134 associations were retained (Dataset S3). In

addition, 44 diseases without PTCs in CTD were also kept.

In order to illustrate the point that similar diseases can often be

treated with similar drugs [9,47–49], PTCs for the top 100 pairs of

similar diseases (T100-PSDs) and top 100 pairs of dissimilar

diseases (T100-PDDs) (Dataset S4) identified using SemFunSim

were compared. We counted the number of pairs with common

PTCs and used a hypergeometric test to calculate the P-value for

common PTCs for each pair of diseases. The P-value was adjusted

by FDR [50]. There are 419,070 pairs between these 916 diseases.

1,251 pairs of them can be linked to each other by an ‘IS_A’

relationship of DO, which were not compared for avoiding

diseases with common PTCs caused by the inclusion relationship.

The results of the comparison are shown in Figure 5. 79 pairs of

the T100-PSDs can be treated with common PTCs and 43 pairs

have an adjusted P-value ,0.05. In comparison, only 1 pair of the

T100-PDDs can be treated with common PTCs and no pair has

an adjusted P-value ,0.05. The results show that the higher the

similarity of a pair of diseases, the more likely they can be treated

with common PTCs. Therefore, SemFunSim confirms the

assumption that similar diseases can often be treated with similar

drugs [9,47–49].

We further compared the PTCs for the T100-PSDs identified

by the five methods (Dataset S5). The results are shown in Figure 6.

2, 15, 29, 31, 35, 79 pairs of the T100-PSDs identified by BOG,

PSB, Resnik, FunSim, Wang and SemFunSim respectively can be

treated with common PTCs, and 0, 4, 19, 17, 10, 43 pairs of the

T100-PSDs identified by BOG, PSB, Resnik, FunSim, Wang and

SemFunSim respectively have an adjusted P-value ,0.05. FunSim

is part of SemFunSim and is designed by considering compre-

hensive gene functional association. It identifies a higher number

of pairs of diseases with common PTCs than BOG and PSB. It

shows that disease similarity calculated by comprehensive gene

function association is appropriate for taking advantage of the fact

that similar diseases can often be treated with similar drugs [9,47–

49]. The SemFunSim method identifies more than twice the

number of pairs with common PTCs than the other methods. This

confirms that SemFunSim is very suitable for the task.

The same test was applied to the top 500 pairs of similar

diseases (T500-PSDs) and the top 1000 pairs of similar diseases

Figure 4. AUC analysis of the benchmark set and random sets. A. ROC curves for the experimental results on the benchmark set and a
random set. It shows 1-specificity versus sensitivity of each method for calculating the similarities of disease pairs. B. Average of AUC for 100
permutations.
doi:10.1371/journal.pone.0099415.g004
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(T1000-PSDs) identified by the five methods (Dataset S5). The

results are shown in Table S1. In the table, 57, 247, 281, 308, 457,

and 556 pairs of the T1000-PSDs identified by BOG, Resnik,

Wang, PSB, FunSim, and SemFunSim respectively can be treated

with common PTCs. And 9, 99, 90, 104, 170, and 237 pairs of the

T1000-PSDs identified by BOG, Resnik, Wang, PSB, FunSim,

and SemFunSim respectively have an adjusted P-value ,0.05.

The performance of Resnik, FunSim and Wang appears to be

roughly the same in the T100-PSDs. After comparing more pairs

of similar diseases (T500-PSDs and T1000-PSDs), FunSim

performs better than Resnik and Wang (Table S1). The

experimental results in Table S1 show that SemFunSim has an

advantage over other compared methods.

Using random permutations of the functional gene network and

the 916 diseases with PTCs in CTD, as described in the Methods

section, we defined thresholds for significant similarity. We found

that 448 pairs of diseases have a similarity score above 0.06060 at

an FDR less than 0.05, and 6,981 pairs of diseases have a

similarity score above 0.00111 at an FDR less than 0.10. The

FDRs for pairs of diseases with the similarity score above 0.00111

are listed in Dataset S6. The threshold can be defined as 0.06060

(FDR ,0.05). In addition, researchers can also adjust the

threshold to validate more disease pairs, such as 0.00111 (FDR

,0.10).

In an early study, van Driel et al. [51] developed a tool

(MimMiner), which was extensively used to calculate similarity

between phenotype terms from OMIM [52]. We obtained the

similarity score between 5,080 OMIM phenotype records from

MimMiner (Table 1). As mentioned before, CTD includes 916

diseases with PTCs. 127 common diseases between the 5,080

OMIM phenotype records and these 916 diseases (Dataset S7)

were found through DO’s extensive cross mapping [21]. Then,

SemFunSim and MimMiner were compared on the basis of these

127 diseases.

The result of the comparison is shown in Figure 7. 39, 129, and

218 pairs of the T100-PSDs, T500-PSDs, and T1000-PSDs

identified by MimMiner respectively can be treated with common

PTCs. And 17, 52, and 79 pairs of the T100-PSDs, T500-PSDs,

and T1000-PSDs respectively have an adjusted P-value ,0.05. In

comparison, 74, 271, and 441 pairs of the T100-PSDs, T500-

PSDs, and T1000-PSDs identified by SemFunSim respectively can

be treated with common PTCs. And 43, 100, and 130 pairs of the

T100-PSDs, T500-PSDs, and T1000-PSDs respectively have an

adjusted P-value ,0.05. Result shows that similar diseases

identified using SemFunSim are very likely to be treated with

common drugs.

We further compared MimMiner and SemFunSim based on

their thresholds. 53 pairs of the 127 common diseases identified by

MimMiner have a similarity .0.4 (threshold of MimMiner)

(Dataset S7). 23 (43.4%—23/53) of them can be treated with

common PTCs, and 9 (17.0%—9/53) have an adjusted P-value ,

0.05. In comparison, 107 pairs of the 127 diseases identified by

SemFunSim have a similarity .0.00111 (threshold of SemFun-

Sim) (Dataset S7). 78 (72.9%—78/107) of them can be treated

with common PTCs, and 44 (41.1%—44/107) have an adjusted

P-value ,0.05. The experiment results based on these 127 diseases

show that SemFunSim’s performance in measuring disease

similarity is better than MimMiner’s.

Prediction of novel therapeutic applications of known
compounds

SemFunSim was used to find PTCs for 44 diseases without

PTCs in CTD. First, as shown in Figure 3B, we calculated

similarities of 40,304 pairs between these 44 diseases and 916

diseases with PTCs in CTD (Dataset S8). In order to avoid

Figure 5. The number of pairs of diseases identified using SemFunSim with common PTCs. A. The number of pairs of the T100-PDDs with
common PTCs. B. The number of pairs of the T100-PSDs with common PTCs. The yellow area represents the number of pairs without common PTCs.
The pink area indicates the number of pairs with common PTCs and adjusted P-value $0.05. The light blue area represents the number of pairs with
common PTCs and adjusted P-value ,0.05.
doi:10.1371/journal.pone.0099415.g005
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Figure 6. The number of pairs of similar diseases identified using the five methods with common PTCs. Blue bar indicates the number
of pairs with common PTCs. Red bar represents the number of pairs with common PTCs and adjusted P-value ,0.05.
doi:10.1371/journal.pone.0099415.g006

Figure 7. The number of pairs of similar diseases identified using MimMiner and SemFunSim with common PTCs. A. The number of
pairs of the top pairs of similar diseases with common PTCs. The red bar represents the number of pairs with common PTCs measured by
SemFunSim. The blue bar indicates the number of pairs with common PTCs measured by MimMiner. B. The number of pairs of the top pairs of similar
diseases with common PTCs and adjusted P-value ,0.05. The red bar represents the number of pairs with common PTCs and adjusted P-value ,0.05
measured by SemFunSim. The blue bar indicates the number of pairs with common PTCs and adjusted P-value ,0.05 measured by MimMiner.
doi:10.1371/journal.pone.0099415.g007
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diseases with common PTCs caused by the inclusion relation-

ship, 64 of the 40,304 pairs which can be linked with each other

by an ‘IS_A’ relationship of DO were not included. Each pair of

the 40,240 pairs includes one disease without PTCs in CTD and

one disease with PTCs in CTD. The top 20 pairs of similar

diseases (T20-PSDs) (Table 2) contain 12 diseases without PTCs

in CTD. Then, we searched PubMed to find PTCs for these 12

diseases. According to the idea that similar diseases can often be

treated with similar drugs, the PTCs for one disease in pair of

similar diseases can be used as a reference for the other without

PTCs. For example, ‘systemic scleroderma’ is similar with

‘polymyalgia rheumatica’, 11 PTCs for the former are docu-

Table 2. Top 20 pairs of similar diseases.

Order Diseases with PTCs in CTD Diseases without PTCs in CTD Similarities

1 Liver Cirrhosis Hepatopulmonary syndrome 0.03460

2 agranulocytosis lymphopenia 0.01665

3 neutropenia lymphopenia 0.01566

4 macroglobulinemia alpha 1-antitrypsin deficiency 0.01424

5 hepatitis hepatopulmonary syndrome 0.00887

6 wilson disease hemochromatosis 0.00862

7 systemic scleroderma polymyalgia rheumatica 0.00717

8 drug-induced hepatitis hepatopulmonary syndrome 0.00710

9 myasthenia gravis lambert-eaton myasthenic syndrome 0.00644

10 dilated cardiomyopathy restrictive cardiomyopathy 0.00643

11 sarcoidosis cryoglobulinemia 0.00607

12 berylliosis asbestosis 0.00600

13 berylliosis extrinsic allergic alveolitis 0.00575

14 intestinal disease hepatopulmonary syndrome 0.00564

15 placenta disease bacterial vaginosis 0.00499

16 hyperthyroidism congenital hypothyroidism 0.00461

17 biliary tract disease hepatopulmonary syndrome 0.00454

18 bile duct disease hepatopulmonary syndrome 0.00452

19 inflammatory bowel disease hepatopulmonary syndrome 0.00447

20 primary biliary cirrhosis hepatopulmonary syndrome 0.00421

The first column is the descending order number of similarity between diseases. The second column represents diseases with PTCs in CTD. The third column indicates
diseases without PTCs in CTD. The fourth column represents the similarities between pairs of diseases in the second and third columns.
doi:10.1371/journal.pone.0099415.t002

Table 3. Associations between PTCs and diseases retrieved from PubMed.

Order PTCs Diseases with PTC in CTD Diseases without PTC in CTD Similarities PMIDs

1 Pentoxifylline Liver Cirrhosis Hepatopulmonary syndrome 0.03460 23002364 [57]

5 Acetylcysteine hepatitis hepatopulmonary syndrome 0.00887 18341514 [58]

7 Azathioprine systemic scleroderma polymyalgia rheumatica 0.00717 2750226 [53]

7 Methylprednisolone systemic scleroderma polymyalgia rheumatica 0.00717 1768166 [54]

7 Prednisolone systemic scleroderma polymyalgia rheumatica 0.00717 8523341 [55]

7 Prednisone systemic scleroderma polymyalgia rheumatica 0.00717 15466766 [56]

8 Pentoxifylline drug-induced hepatitis hepatopulmonary syndrome 0.00710 23002364 [57]

9 Prednisolone myasthenia gravis lambert-eaton myasthenic
syndrome

0.00644 10555101 [59]

11 Methylprednisolone sarcoidosis cryoglobulinemia 0.00607 6851261 [60]

13 Prednisone berylliosis extrinsic allergic alveolitis 0.00575 9489437 [61]

16 Methimazole hyperthyroidism congenital hypothyroidism 0.00461 22672871 [62]

19 Acetylcysteine inflammatory bowel disease hepatopulmonary syndrome 0.00447 18341514 [58]

The first column is the descending order number of similarity between diseases. PTCs (in the second column) for diseases (in the third column) are documented in CTD.
The fourth column represents diseases without PTCs in CTD. The fifth column indicates the similarities between pairs of diseases in the third and fourth column. The
sixth column is the PubMed IDs that record the associations between PTCs (in the second column) and diseases (in the fourth column).
doi:10.1371/journal.pone.0099415.t003
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mented in CTD. We searched from PubMed for finding

associations between these 11 PTCs and ‘polymyalgia rheuma-

tica’. And we found that four of them were also PTCs for

‘polymyalgia rheumatica’, such as azathioprine [53], Methyl-

prednisolone [54], Prednisolone [55] and Prednisone [56].

Finally, 6 of these 12 diseases from the T20-PSDs can be treated

with PTCs confirmed by literature. The detailed results are

listed in Table 3, which indicate that SemFunSim is an effective

method to find PTCs for diseases.

Conclusions

In this article, we devise an algorithm (SemFunSim) to measure

disease similarity by integrating FunSim and SemSim effectively.

Experimental evaluation was performed on the benchmark set and

100 random sets from DO. The high average AUC (96.37%)

shows that SemFunSim achieves a high true positive rate and a

low false positive rate.

SemFunSim is in agreement with the notion that similar

diseases can often be treated with similar drugs [9,47–49].

SemFunSim not only helps to understand associations between

diseases, but also provides an effective way to predict PTCs for

diseases. We found associations between diseases and PTCs that

were not documented in CTD using SemFunSim (Table 3).
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