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Abstract

Conservation initiatives to protect and restore valued species and communities in human-dominated landscapes face huge
challenges linked to the cost of acquiring habitat. We ask how the sale of forest carbon offsets could reduce land acquisition
costs, and how the alternate goals of maximizing a or b-diversity in focal communities could affect the prioritization land
parcels over a range of conservation targets. Maximizing total carbon storage and carbon sequestration potential reduced
land acquisition costs by up to 48%. Maximizing b rather than a-diversity within forest and savannah bird communities
reduced acquisition costs by up to 15%, and when these solutions included potential carbon credit revenues, acquisition
cost reductions up to 32% were achieved. However, the total cost of conservation networks increased exponentially as area
targets increased in all scenarios. Our results indicate that carbon credit sales have the potential to enhance conservation
outcomes in human-dominated landscapes by reducing the net acquisition costs of land conservation in old and maturing
forests essential for the persistence of old forest plant and animal communities. Maximizing b versus a-diversity may further
reduce costs by reducing the total area required to meet conservation targets and enhancing landscape heterogeneity.
Although the potential value of carbon credit sales declined as a fraction of total acquisition costs, even conservative
scenarios using a carbon credit value of $12.5/T suggest reductions in acquisition cost of up to $235 M, indicating that
carbon credit sales could substantially reduce the costs of conservation.
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Introduction

There is a pressing need to develop mechanisms to promote

biodiversity conservation in the face of climate and land use

change and the competing needs of humans [1–4]. This challenge

is particularly severe in human-dominated landscapes, where

private ownership prevails and the cost of purchasing properties or

compensating land holders for lost opportunity incurred as a result

of conservation can be substantial [5,6]. There are multiple routes

available to land conservation, such as land purchase or private

land conservation initiatives [7–10]. Here we focus on land

purchase rather than conservation agreements on private lands, to

avoid having to estimate the long-term costs of monitoring and

enforcement or the probability that private conservation agree-

ments are challenged in future [7,11,12]. One way of making

conservation via land purchase more affordable is by offsetting

those costs via payments for ecosystem services. The use of carbon

markets to pay for carbon sequestration is an ecosystem service

gaining global attention [13–15], in part because public concerns

about the consequences of climate change have motivated 35

nations and 13 sub-national jurisdictions to put a price on carbon

[16]. To the degree that carbon and biodiversity values overlap,

carbon offsets could therefore be used to protect forests that would

otherwise be logged [17,18] or to restore those still supporting

valued old forest communities [19].

Several outstanding issues arise when considering the role of

carbon markets in forest restoration. One issue is that biodiversity

values may be lower in stands with the highest returns from carbon

sequestration sales because sequestration rates typically peak in

stands of intermediate age [20]. In contrast, older forests act as

carbon sinks and continue to accumulate carbon over time, but at

lower rates on average [21], resulting in high initial returns on the

sale of carbon storage credits, where one carbon credit represents

the offset of greenhouse gas emissions by one tonne of carbon

dioxide equivalent (CO2-e). A second issue is whether to develop

conservation plans that maximize species richness (a-diversity)

within habitats or maximize dissimilarities in community compo-

sition (b-diversity) to accommodate landscape complexity and

species that utilize multiple habitats [22,23]. Under climate

change, it has been suggested that an emphasis on community

dissimilarity (b-diversity) may deliver more robust conservation

plans than those based on species richness [23,24]. Here we

examine the potential value of carbon credit sales to offset land

acquisition costs by developing conservation area designs that

maximize b or a-diversity in native old forest and savannah bird

communities in relation to forest structure and human land use.

Specifically, we ask how protecting forests with high carbon

storage versus high carbon uptake is likely to affect conservation

outcomes.
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Carbon and Biodiversity in the Georgia Basin
The Coastal Douglas Fir (CDF) ecozone of the Georgia Basin

(British Columbia, Canada [25]) is a classic example of an

endangered but extraordinarily diverse region that has been

rapidly converted to exclusive human use ($60%) [26] and thus

retains #0.3% of historic old forests (.250 years) [27] and #10%

of oak woodland and savannah [28], both of which provide habitat

for 117 species at risk of extirpation, which represents the highest

density of species of global and provincial concern to conservation

of any ecozone in BC [26]. Because regional, provincial and

federal authorities own ,20% of the region and only ,9% is

already conserved, cost-efficient routes to conservation are

urgently needed to help reduce the risk of extirpation for those

species and related ecosystems.

Prior to European colonization the CDF occurred as uneven-

aged forest (often .300 years) dissected by shallow and deep-soil

meadow and woodland communities [25,29] maintained in part

by aboriginal land management practices to enhance hunting

opportunities and root and fruit harvests [30–33]. In addition to

recent human-caused disturbances, oak woodland and savannah

community distributions are predicted to shift under future climate

conditions, and only a small fraction of the current protected areas

have the potential to accommodate this shift [34]. The resulting

land use heterogeneity within the region and potential for humans

to directly or indirectly affect native species richness [19,35–37]

make this system ideal for studying trade-offs involved when

attempting to maximize a- versus b-diversity in conservation

plans, while simultaneously maximizing ecosystem service values

represented as total carbon stored or sequestration potential. To

do so, we compared systematic conservation scenarios that

maximized old forest and savannah bird biodiversity (a-diversity)

or their dissimilarity (b-diversity), and then quantified their relative

costs given alternate carbon markets, and in relation to increasing

targets for the total area conserved [38] (Table 1).

Materials and Methods

Ethics Statement
Permits or permission for the use of bird point count locations

were obtained from Parks Canada (locations in National Park

Reserves), private land owners (locations on private land), or did

not require specific permission as they occurred on public right of

ways (e.g., roadsides, regional parks). As private land owners did

not want their information posted publically please contact the

authors for contact details. The field studies did not involve

endangered or protected species. This study did not require

approval from an Animal Care and Use Committee because it was

a non-invasive observational field study, and did not involve the

capture and handling of wild animals.

Biodiversity data
We used trained observers to conduct 1,770 point counts on

mainland BC and 53 islands from 30 Apr–11 Jul, 2005–2011

(Fig.1, 48.7u N, 123.5u W) to record all birds detected in 10 min,

50 m radius counts between 5 AM–12 PM at 713 sample locations

(.100 m apart). Locations were re-visited 1–12 times and geo-

referenced via a GPS (GPS60, Garmin Ltd, Kansas, USA). We

extended the approach of Schuster & Arcese [19] geographically

(from 1560 km2 to 2520 km2) by adding 601 counts to create

predictive distribution models for 47 bird species and 25 covariates

based on remote-sensed data and models incorporating imperfect

detectability [39]. To estimate detectability we used one site

specific (crown closure) and three observation specific (time of

date, Julian date and observer identity) covariates.

We associated bird species indicators with the habitats they were

expected to occupy by using 11 experts to rank the likelihood of

observing 47 species in 10 focal habitat types using photographic

and text descriptions of herbaceous, shrub, woodland, wetland,

four forest types (pole, young, mature and old), and 2 human-

dominated habitats (rural, urban), to create two community

metrics indicating Old Forest (OF, [19]) and Savannah (SAV)

habitats standardized between 0 and 1 by dividing through the

maximum value possible (details in Appendix S1), where:

OF~

{2 �Herb{1 � Shrub{0:5 � Polez0:5 � YForz1 �MForz2 �OFor

7

SAV~
2 �Woodz2 �Herbz1 � Shrub

5

These metrics match our goals given the region’s history and

focus on Old Forest and Savannah community conservation (see

Introduction). Specifically, each species contributed to the

cumulative Old Forest or Savannah community score, weighted

by its expert opinion score for the given sub-type, summed across

species to create community specific association scores from 0 to 1,

and corresponding to none versus all members of the community

expected to be present. The metrics were then projected spatially

as predictive maps of community occurrence over the entire study

area (2520 km2, Fig. 1) as 1 ha hexagonal polygons (Fig. S1–S2 in

Appendix S1,see also [19]).

Table 1. Summary of diversity features, land cost metrics, conservation targets and carbon prices used in 144 Marxan scenarios.

Diversity features (n = 2)
Property cost
metrics (n = 4)

Conservation Targets
[%] (n = 9) Carbon credit value (CC) (n = 3)

a-diversity (maximize Old
Forest + Savannah individually)

Total Land value
(TLV)

10 to 50 (in 5% steps) 9 $/T (lowest price PCT has paid for credits so far)

b-diversity (maximize b-score) TLV – StC - 12.5 $/T (half the cost PCT charges, as well as roughly the average price PCT

is paying for credits)

TLV – SeqC 25 $/T (the price that PCT is charging for credits)

TLV – TotC

PCT = Pacific Carbon Trust; StC = Carbon Storage * CC; SeqC = Carbon.
Sequestration potential * CC; TotC = StC+SeqC.
doi:10.1371/journal.pone.0099292.t001
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Carbon estimates
Forest carbon storage and sequestration rates were estimated for

all forested land in the study area using terrestrial ecosystem

mapping (TEM; [27]) and FORECAST [40]. FORECAST is a

stand-level forest ecosystem simulator that is one of two models

approved by the BC Ministry of Forests for carbon budget

assessments [41], and the only model calibrated for use in the CDF

(Blanco et al. 2007) and linked to TEM [42]. To facilitate carbon

analysis TEM polygons were stratified into homogenous analysis

units based on site series. Net ecosystem carbon storage was

limited to: above and below-ground tree biomass, deadwood

biomass, and dead below-ground biomass. Each analysis unit was

simulated for a period of 300 years with results reported for annual

time steps to create carbon storage curves. FORECAST results

were subsequently assigned to individual TEM polygons by

estimating the age of each polygon subsection based upon the

current assigned structural stage and estimated productivity class

[42]. These age estimates were derived from ranges provided by

Meidinger et al. [43] for regional forest ecosystems. Ages of old

stands (structural stage 7) were set at 200 to be conservative. Age

estimates were verified against a subset of TEM polygons

(Southern Gulf Islands of Southwestern BC) for which direct age

estimates were available (n = 254). For conservation prioritization

analysis we used predicted net ecosystem carbon storage and net

ecosystem carbon sequestration estimates for 20 years from now

due to uncertainty about fire frequency in the future. Further

details on this analysis are provided in Appendix S2.

Cadastral layer and property costs
We incorporated spatial heterogeneity in land values [5,44–46]

in our plans by using cadastral data and 2012 land value

assessments (Integrated Cadastral Information Society of BC,

ICIS). However, because there is no centralized entity curating

cadastral data for British Columbia, we combined data from ICIS,

the BC Assessment agency and the Integrated Cadastral Fabric.

Doing so required processing to remove stacked and overlapping

polygons and slivers. The combined cadastral layer included

193,623 polygons. Current assessments were available for 187,139

Figure 1. Georgia Basin study area including bird point count locations. Dark grey area indicates the extent of the study region and black
dots represent bird point count locations.
doi:10.1371/journal.pone.0099292.g001
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polygons, but missing for 3,281 polygons or reduced relative to

market value due to taxation or administrative reasons unrelated

to our work (e.g farm or managed forest land, 3,203 ploygons). For

these 6,484 polygons we applied an inverse distance weighted

interpolation to estimate land values by splitting cadastral polygons

into 10 groups based on polygon size to accommodate high size

related heterogeneity in assessed cost using R v.2.15.2 [47] and

packages gstat v.1.0-14 [48] and sp v.1.0-1 [49].

We used tax assessment land values to estimate acquisition costs

because they are revised annually in the region, and because more

‘realistic’ strategies would require speculation on how purchase

cost may be affected by location of existing reserves, evolving

zoning plans, the willingness of owners to sell, or other effects. In

particular, there is as yet no consensus on the effect of conservation

agreements on land values [50–52].

Marxan inputs
We used Marxan [53] to prioritize cadastral polygons for

inclusion in conservation area designs by using them as planning

units (n = 193,623). We calculated biodiversity and carbon

estimates for each planning unit using ArcGIS v.10.1 [54] and

area weighted sums in Geospatial Modelling Environment

v.0.7.2.1 [55].

To determine whether maximizing b- versus a- diversity

affected conservation outcomes we created two sets of diversity

features as inputs to Marxan. First we included the diversity

features individually in the analysis and set conservation targets for

Old Forest and Savannah scores as the percentage of total old

forest or savannah habitat existing within the study region. The

second approach we used was to pre-specify a b-diversity metric to

combine biodiversity features with the goal to specifically

maximize highly diverse habitat patches. For this purpose we

created the following metric:

b{score~
2 �OF � SAV

OFzSAV

This represents the Old Forest and Savannah community

dissimilarity, using a scaling factor of 2 to create b-scores between

0 and 1 (Fig. S3 in Appendix S1). In Marxan analyses we set

targets for the b-score, while still including Old Forest and

Savannah metrics (without setting a target) to keep track of

individual community representation. We used a total of four

property cost metrics per diversity scenario: i) Total land value

(TLV) for each property, which is the sum of the assessed property

value and any improvement on that parcel; ii) TLV minus the

current carbon storage (T) times the carbon credit value ($/T).

Here we used $12.5 Canadian per credit, which is half the amount

that Pacific Carbon Trust, a crown corporation established in

2008 to deliver greenhouse gas offsets in the province of British

Columbia (http://pacificcarbontrust.com, date accessed: 2013-12-

10), sells credits for and about the average amount they pay for

credits. iii) TLV minus the amount of potential carbon sequestra-

tion over 20 years times the carbon credit value; iv) TLV minus ii

and iii combined (Table 1).

Marxan scenarios
We used the two diversity scenarios a (Old Forest + Savannah)

and b (b-score) in combination with the four cost scenarios

(Table 1). An important consideration for this study was what level

to set the required conservation target to, in order to ensure the

study system will maintain viable populations of native species and

be resilient to predicted environmental change in the future. As

there is debate about what constitutes appropriate conservation

goals [38] we used a range of conservation targets (10–50%) to

investigate the potential trade-offs of different targets. We

calibrated each diversity scenario to ensure robust analysis by

initially setting the diversity target to 50% (the most costly to

reach) and the number of restarts to 100, as we were not so much

interested in the spatial representation of the reserve design but

rather its cost effectiveness [56]. For the same reason we also

refrained from setting boundary length modifiers. For each

diversity scenario we created Marxan solutions for combinations

of the following species penalty factors (SPF’s): 1–10,15,20 and

number of iterations: 10 k, 50 k, 100 k, 500 k, 1 M, 5 M, 10 M,

25 M, 50 M, 100 M, for a total of 65 calibration analyses per

diversity scenario. We created cumulative distribution functions

using number of solutions on the y-axis, solution cost on the x-axis

for SPF and Marxan score for number of iterations [56]. Based on

the results we used the following values for SPF and number of

iterations respectively: Old Forest + Svannah (3/10 M); b-score

(3/10 M). We also investigated summed solutions to make sure

every restart met its targets, excluding ones that missed the target

by .5%. For ease of computation we created an R function to

batch run Marxan (Appendix S3).

We held the calibrated values constant in subsequent analyses

and ran Marxan scenarios for the two diversity metrics in

combination with the four cost metrics, using the baseline carbon

credit value of $12.5. For each combination we further varied the

conservation target from 10–50%. From each run we recorded the

cost of the total reserve system averaged over the number or restart

(100), while ensuring conservation targets were met. To examine

the amount of remaining Old Forest and Savannah communities

protected by maximizing b-diversity we compiled community

scores as Marxan features in these scenarios without setting

targets, allowing us to keep track of Old Forest and Savannah

representation without affecting the analysis. We used the results

from these analyses to compare the reserve prices within each

diversity scenario as well as across scenarios. In addition we

calculated the potential cost savings between fee simple acquisition

scenarios (TLV only) and ones that utilize the sale of carbon

credits. As market prices of carbon credits are highly variable we

extended our approach to include variation in carbon credit value,

by repeating the entire analysis for two additional carbon credit

values: i) $9 per credit (the lowest rate PCT has ever paid for

credits), and ii) $25 per credit (the price PCT sells credits for). In

total 144 Marxan scenarios were investigated (Table 1). All results

presented here relate to the baseline carbon credit value of $12.5

unless otherwise stated.

Results

Land acquisition cost, diversity and planning goals
Acquisition costs of conservation networks increased from

$180 M to $2.45 B as targets increased from 10 to 50% of

remaining Old Forest and Savannah bird communities when

maximising a-diversity (Fig. 2), but reduced slightly when

maximizing b-diversity ($172 M to $2.16 B, 10–50% target;

Fig. 2), representing savings of 4–15% as compared to equivalent

a-diversity scenarios depending on conservation target (Fig. 3a).

Savings were due in part to a reduction in total area needed to

reach a given target when maximising b versus a-diversity (mean

= 7%, range = 5–11%; Fig. 3b). The amount of standing and

sequestration potential carbon in conserved landscapes also

declined slightly when maximizing b-diversity (mean = 2%,

range = 0.7–5%; Fig. 3c). In contrast, representation of Old Forest

communities slightly increased (1–2.5%) and representation of

Biodiversity, Carbon and Conservation
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Savannah declined (22.0–25.7%) when maximizing b versus a-

diversity (Table 2).

Cost savings given carbon credits
Maximizing total (standing + sequestered) carbon resulted in the

largest cost savings in both a and b-diversity scenarios aimed at

protecting Old Forest and Savannah habitats. Acquisition costs

increased from $133 M to $2.21 B as target increased from 10 to

50% when maximizing a-diversity, which represent potentials

offset of $47 M–235 M, equivalent to a 10–28% cost reduction via

carbon credit sales (Fig.2). In comparison, acquisition costs were

lower for scenarios that maximised b-diversity ($90 M to $1.93 B),

in part because implied carbon credit sales ($82–227 M) contrib-

uted slightly more to cost reduction (e.g., 11–48%; Fig. 2).

Maximising carbon storage and carbon sequestration potential

individually reduced acquisition costs to a smaller extent, but

carbon storage offered superior savings (Fig. 2). Overall, maxi-

mizing total carbon returned networks that were 17.5% cheaper

on average when maximizing b versus a-diversity compared to

12.3% without using carbon storage and sequestration values

(Fig. 3a).

Conservation targets and carbon price
The cost of conservation networks increased exponentially with

increasing targets for all scenarios (Fig. 2). In b-diversity scenarios

the total area that needed to be acquired to reach a conservation

target was 11–5% lower and acquisition costs 32–13% less than

scenarios that maximized a -diversity (Fig. 3). The percent

reduction in total acquisition costs due to carbon value also

declined as conservation targets increased in a and b-diversity

scenarios (Fig. 4a,b). The magnitude by which acquisition costs

were reduced by carbon value was similar across prices considered

but maximized at $25/T in most scenarios (Fig. 4a,b). Relative

Figure 2. Reserve costs using alpha and beta diversity and a
carbon credit value of $12.5 across a range of conservation
targets (term definitions in Table 1).
doi:10.1371/journal.pone.0099292.g002

Figure 3. Comparison of a and b-diversity scenario results.
Presented are the % reductions when using a b-diversity approach for:
a) reserve network cost, b) reserve network area, c) total carbon
included in the reserve networks. Circles represent TLV, squares StC,
diamonds SeqC and triangles TotC (term definitions in Table 1) (c).
doi:10.1371/journal.pone.0099292.g003
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reduction in cost due to carbon was maximized at the 10% target

in all b-diversity scenarios (Fig. 4b).

Discussion

Carbon credit sales have the potential to reduce land acquisition

costs by up to 48% in Coastal Douglas fir forest and woodland

communities of western North America given values already paid

in the region ($12.5/T: [57]; Fig. 4b). The largest benefits were

realized in scenarios that maximized total carbon and b-diversity

in native woodland and old forest bird communities of the region,

because those scenarios achieved their targets by selecting cheaper

and slightly smaller networks than scenarios maximizing a-

diversity in these communities independently. We now develop

these points in light of literature on ecosystem services, land

acquisition and conservation applied to threatened plant and
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Figure 4. Cost savings when using carbon credit sales in
relation to outright acquisition (TLV scenarios). Carbon credit
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animal communities in human-dominated landscapes of the

Georgia Basin of western North America.

Maximizing b versus a diversity
Prioritizing b over a-diversity in Old Forest and Savannah bird

communities reduced acquisition costs by up to 15%, or up to 32%

including carbon values (Fig.3a). One reason for these savings is that

the fraction of Old Forest bird habitat included in conservation

networks was larger in b as compared to a-diversity scenarios

(Table 2), resulting in more carbon stored per unit area conserved

(Fig. 3b,c). However, over-representation of Old Forest relative to

Savannah communities also reduced acquisition costs in scenarios

not including carbon value, indicating that Old Forest habitat was

on average less valuable than Savannah habitat in the region,

perhaps due to high human amenity values (Table 2; e.g., [58]).

Scenarios maximizing b-diversity also met conservation targets by

protecting less total area and up to an 11% cost savings compared to

scenarios maximizing a-diversity (Fig.3b), and this finding was

largely independent of carbon value or conservation target (Fig.3b).

Prior studies of the consequence of emphasizing a- versus b-

diversity in conservation planning have concluded that a focus on b-

diversity is likely to enhance long term persistence in diverse species

assemblages and reserve networks [22,59,60]. Our results broaden

these conclusions by showing that scenarios that maximize b-

diversity may also reduce the cost of conservation by reducing the

area required to meet realistic targets for land acquisition.

Conservation cost and carbon
Our results indicate that carbon credit sales should be considered

as an option to maximize return on conservation investments in

regions where land cost is high and old or growing forests offer

habitat for valued focal communities. Our results therefore

compliment suggestions that carbon credit sales have the potential

to advance conservation and mitigate the impacts of climate change

[13,61,62] but extend those suggestions by providing a spatially

explicit, empirical example applied to a landscape with high

conservation and cultural values [26,58,63]. The largest reductions

in cost due to carbon credit sales were obtained by including carbon

storage and carbon sequestration potential (Fig. 4), indicating that

flexibility in carbon credit sales with respect to forest age can also

increase economic efficiency. Although our results are based on a 20

year time-frame due to uncertainty about fire frequency, versus

more typical 100 year time-frame for such projects [41,61], they

could easily be revised with new data.

Our finding that carbon storage reduced costs more than

sequestered carbon (Fig. 2,4) is partly a consequence of logging

history, given that close to 30% of the region not converted to

exclusive human use is covered by forest $80 years-old. The

predominance of young forest has the potential to reduce adjacency

between older, high-value forest and savannah habitat with rich and

diverse native bird communities. However, young forest patches

may also provide relatively low-cost opportunities to link high-value

patches where acquisition costs can be offset by relatively high

sequestration rate. Nevertheless, most scenarios preferentially

included older stands with more carbon storage, but lower

sequestration rates (Fig. S4,S5 in Appendix S2). Several other

studies have suggested that carbon credits could be used to advance

conservation, particularly on private land to compensate land

owners for forgone opportunity costs [18,64,65]. We extended these

suggestions by providing a particularly detailed example to

demonstrate how land use planners might offset the costs of

conservation area design by acquiring habitats that simultaneously

maximize the diversity of valued vertebrate communities and realize

the economic potential of carbon credit sales.

As an alternative to the sale of carbon credits to reduce

conservation costs, land conservation and protection on private

lands, accomplished through relationship building and alternative

tax plans, could be an option [7,66,67]. But, one of the biggest

challenges to realizing a theoretical approach of implementing

private land conservation agreements on high value biodiversity

landscapes is the need to work with landowners willing to put

conservation agreements on their land [7]. In Canada, and British

Columbia in particular, there are some incentives in place such as

tax credits ([9], e.g. Natural Area Protection Tax Exemption

Program), but none of the currently implemented compensation

schemes would compensate land owners for the lost opportunity

costs of developing their land or using it in other revenue-

generating manners such as via agriculture or forestry, as proposed

elsewhere [68–70]. Currently, a private conservation agreement

approach depends largely on individuals wanting to create a legacy

and see their property protected into the future [71]. It was

beyond the scope of our study to address issues related to a

landowners motivation to participate in conservation [7,72], nor

did we want to speculate on the use of tax structure shifts.

Conservation targets
A key goal of our work was to demonstrate novel routes to

protecting high-value, Old Forest and Savannah bird communities

at landscape scales in western North America. However, the

amount of habitat needed to achieve those goals remains

uncertain. Policy-driven targets for biodiversity conservation place

goals for terrestrial habitat conservation at 17% by 2020 [73], but

recent reviews suggest much higher targets (25–75%; [38]). We

used a range of targets to explore their influence on reserve design,

carbon value and the conservation of Old Forest and Savannah

ecosystems, but we found that carbon contributed proportionally

less to acquisition costs as targets increased in all scenarios (Fig.4)

because higher targets required the acquisition of more expensive

parcels. Thus, although total carbon generally increased linearly

with conservation target, acquisition costs increased exponentially,

causing a decline in relative benefit (Fig.4). However, even for the

largest targets (50%) in a and b-diversity scenarios, carbon values

reduced acquisition cost by 9.6 and 10.5%, respectively ($235,

227 M; Fig. 4) at $12.5 per Ton.

A number of uncertainties in our study also have the potential to

limit its interpretation. First, actual purchase costs may differ from

assessed or predicted values [7,74]. Second, it may not be feasible

to protect the areas offering the highest conservation value and

least cost, particularly if regional representation or the augmen-

tation of existing conservation areas is emphasized [75]. Third,

although our results were robust over a range of carbon values,

carbon markets remain unpredictable. Nevertheless, carbon

markets are of substantial size, the European Union Emissions

Trading System for example included 2.1 billion metric tons in

2011 [76]. In 2013 China, the largest national source of

greenhouse gases (19.1% of total emissions), introduced pilot

emission trading schemes [77,78], joining a growing number of

countries with national emission trading schemes [16]. Voluntary

carbon markets that are currently the biggest market place for

forest carbon offset projects in countries like Canada had a market

volume of $572 M in 2011 [76]. Assuming that carbon markets

develop further, our results demonstrate that carbon value has the

potential to substantially reduce land acquisition costs in human-

dominated landscapes, particularly in the Georgia Basin of

western North America, where diverse Old Forest and Savannah

bird [19] and plant [79] communities still persist in relatively

isolated, mature forest and woodland habitats.
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