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Abstract

The 2013 Boston marathon was disrupted by two bombs placed near the finish line. The bombs resulted in three deaths and
several hundred injuries. Of lesser concern, in the immediate aftermath, was the fact that nearly 6,000 runners failed to finish
the race. We were approached by the marathon’s organizers, the Boston Athletic Association (BAA), and asked to
recommend a procedure for projecting finish times for the runners who could not complete the race. With assistance from
the BAA, we created a dataset consisting of all the runners in the 2013 race who reached the halfway point but failed to
finish, as well as all runners from the 2010 and 2011 Boston marathons. The data consist of split times from each of the 5 km
sections of the course, as well as the final 2.2 km (from 40 km to the finish). The statistical objective is to predict the missing
split times for the runners who failed to finish in 2013. We set this problem in the context of the matrix completion problem,
examples of which include imputing missing data in DNA microarray experiments, and the Netflix prize problem. We
propose five prediction methods and create a validation dataset to measure their performance by mean squared error and
other measures. The best method used local regression based on a K-nearest-neighbors algorithm (KNN method), though
several other methods produced results of similar quality. We show how the results were used to create projected times for
the 2013 runners and discuss potential for future application of the same methodology. We present the whole project as an
example of reproducible research, in that we are able to make the full data and all the algorithms we have used publicly
available, which may facilitate future research extending the methods or proposing completely different approaches.
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Introduction

The increasing prevalence of ‘‘big data’’ in all areas of science

has led to a focus on statistical prediction algorithms that are

appropriate for large systems in many different contexts. Examples

include genomics (e.g. trying to decide which genes may be

responsible for a disease), high-energy physics (e.g. deciding when

irregularities from an experiment such as the Large Hadron

Collider may be indicative of a new elementary particle such as the

Higgs boson) or climate change (e.g. trying to predict future

temperatures, precipitations, hurricane counts, etc., by combining

many sources of both observational and climate model data).

However, all of these areas require a good deal of scientific

expertise to even make sense of the data. Another difficulty is that

access to original data sources is often restricted, hindering

reproducibility of the resulting research. There has been a trend

towards identifying problems for which the data sources and

algorithms are freely available, the problem is easily stated in

language that does not require advanced scientific expertise, and is

sufficiently generic so that a variety of different algorithmic

approaches may be applied on the same dataset. The best-known

example is the Netflix prize dataset [1], which used nearly

100,000,000 ratings by around 480,000 subscribers of nearly

18,000 movies. Despite the large number of ratings, they only

represent about 1.2% of the possible subscriber/movie combina-

tions, and the prize competition was essentially to find an

algorithm for estimating all the ratings which subscribers would

have given to movies they had not seen. The problem discussed in

this paper is for a much smaller dataset but has a number of

similar features, such as the data are easily made public and the

problem is easy to describe, but it is sufficiently complicated

allowing for a number of different statistical/algorithmic ap-

proaches. The Boston marathon is a running race at the standard

marathon distance (42.2 km) which has been run each year since

1897, and which in recent years has had over 20,000 participants;

Figure 1 displays the elevation profile of the course. It is the only

race, among major marathons, which requires qualifying times of

most of its entrants. The race on April 15, 2013, was disrupted by

two bombs placed near the finish line, which resulted in three

deaths and several hundred injuries. Of lesser concern, in the

immediate aftermath, was the fact that nearly 6,000 runners failed

to finish the race, the majority of whom would presumably have

done so had the race not had to be stopped. It therefore became a

priority for the race organizers and the running community to find
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some way to recognize the achievements of these runners. Shortly

after the event, one of the authors (RS) was approached by the

Boston Athletic Association (BAA), organizers of the Boston

marathon, and invited to propose a procedure for imputing the

finish times of all the runners who did not complete the race. The

available data consist of ‘‘split times’’ for each of the 5 km sections

of the course. The imputation exercise was confined to runners

who reached at least the halfway point of the race but did not

finish, and for about 80% of those runners, complete split times

are available up to 40 km. In other words, the objective is then to

predict the runner’s split time from 40–42.2 km based on her

times for 0–5 km, 5–10 km and so on up to 35–40 km. However,

the other 20% of the runners whose times have to be imputed had

to drop out at earlier points of the course, and we seek an

approach that would also predict those runners’ finishing times as

accurately as possible. Just as the Netflix prize competition, this

may be formulated as an example of what is known as the matrix

completion problem [2,3], which is concerned with finding all the

missing entries in a large matrix (for which only a fraction of the

entries are available). As an example of statistical approaches to

matrix completion [4], proposed a regularized singular value

decomposition (SVD) approach. SVD is a standard linear algebra

algorithm for representing the entries of a matrix as a linear

combination of certain singular vectors with weights derived from a

sequence of numbers called the singular values. The regularization

algorithm of [4] implements SVD iteratively with down-weighting

of the singular values by soft thresholding (replacing each singular

value d by (d{l)z for some constant l) through an algorithm that

they call SOFT-IMPUTE. This improves on the SVD-IMPUTE

algorithm of [5], which was developed in the context of imputing

missing values in a DNA microarray experiment. The latter paper

also considered a number of other algorithms, including an

algorithm based on finding some number K of ‘‘nearest

neighbors’’ to the gene for which a prediction is being made,

which led to an algorithm which they called KNNimpute. In this

paper, we consider some variations of these algorithms, as well as

simple linear regression and some others that are more tailored to

the specific context of the Boston marathon data, with the intent of

comparing their abilities in predicting a validation dataset derived

from the results of the Boston marathon in 2010 and 2011. We

then use several methods to predict finish times for the runners in

the 2013 race and compare the resulting predictions. In addition,

because the BAA posted predicted times on their website at http://

www.baa.org/races/boston-marathon/participant-information/2013-

boston-marathon-news.aspx along with a description of the

method they employed, we compare our proposed methods to

it. In a separate website http://www.stat.unc.edu/faculty/rs/

Bostonwebpage/readme.html, we have deposited all the raw data

used in the study, the algorithms used in the analysis, and our

predicted finish times for 5,524 of the non-finishing runners from

the 2013 race.

Data

The data provided to us by the BAA consisted of ‘‘split times’’

for the runners at each of the 5 km intervals on the course (5 km,

10 km, ... , 40 km) as well as finish times for the 17,584 runners who

successfully completed the race (three co-authors of this report,

FD, DH, and GP are proudly part of this group). In all, there were

5,756 runners who unfortunately did not finish (DNF). In order to

provide a comparison dataset for evaluating the quality of our

prediction formulas, we asked the BAA for the 2010 and 2011

Boston marathon results (2012 was not considered because that

year was unusually hot, and runners slow down much more in hot

weather than they do in cool conditions). Therefore, we have the

complete results (including split times) for all finishers in those two

years, 22,670 in 2010 and 23,913 in 2011. In all, the database for

all three years contained 69,923 runners. We did not differentiate

runners who may have participated more than once during those

three years. The majority of DNF runners were prevented from

finishing the race because of the bombs. However, the split times

Figure 1. Elevation profile of the Boston Marathon course.
doi:10.1371/journal.pone.0093800.g001

Figure 2. 2010, 2011, and 2013 Boston marathon split profile summaries. The point-wise (a) mean and (b) variance for the 2010 and 2011
Boston marathon finishers with finishing times that were slower than 4 hours, and 2013 Boston Marathon racers who made it to the 40 km mark and
either (i) did not finish or (ii) had a finishing time slower than 4 hours. These summaries for the marathons are very similar, and the variability
increases later in the race.
doi:10.1371/journal.pone.0093800.g002

Boston Marathon
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data allowed us to identify some runners who most likely quit the

race before the two explosions. The third and last wave of the

marathon start was at 10:40am, with the last runner crossing the

start line at 10:53am. The two explosions occurred at 2:49pm;

based on the latest recorded start time, anyone running faster than

3 h. 56 m. would have finished the race. Therefore we restricted

our analysis to runners projected to finish the race in greater than

4 hours, for whom the pattern of split times is typically different

from those of runners at the front of the field. More specifically, we

excluded runners who finished the race faster than 4 hours in any

of the three years and, runners who in 2013 did not finish because

they quit before the half-way point (at the 20 km point or earlier).

With these reductions, the total dataset for all the three years

(2010, 2011, 2013) consisted of 21,930 runners, including 5,628

(25.7%) who were DNFs in 2013. Among those 5,628 DNFs, 93

(1.7%) quit between the 20 km and the 25 km point, 39 (0.7%)

between 25 km and 30 km, 459 (8.2%) between 30 km and

35 km, and 533 (9.5%) between 35 km and 40 km. The remaining

4,505 DNF runners (80.0% of all DNFs) passed the 40 km point

and therefore had essentially complete splits up to that point. For

the few cases in which a runner was not recorded in one split time,

presumably due to technical problems, but did show up at a later

split, we have interpolated the missing split times. During our

initial discussions, members of our group proposed a number of

different statistical approaches (described later) for predicting the

finishing times, that is, for filling in the missing split times values,

including the all-important split from 40 km to the finish. It

became clear that we needed an objective method for comparing

the quality of predictions of the different approaches. To do this,

we created an independent validation dataset, as follows. For the

validation dataset, we first excluded the 5,628 DNFs in 2013 from

the file of 21,930 runners. Then, we randomly assigned a fraction

of 25.7% of the runners in the validation dataset to be DNFs, and

set their final time aside so that members of our group would not

use it in coming up with their formulas. Moreover, among those

runners, we assumed they quit at various points of the course in

the same proportion as the true DNFs (1.7% between 20 km and

25 km, 0.7% between 25 km and 30 km, etc.). This therefore

created a validation dataset of 17,302 runners that had approx-

imately the same DNF characteristics as the original dataset. We

trained the various prediction approaches on the approximately

75% of data with complete time information, and then applied all

the proposed statistical approaches to predict the finishing times

for the DNF runners in the validation dataset. Lastly, we

compared our projected finish times with the true finish times of

these runners. In this way, we were able to assess the statistical

approaches. Since data from the 2010 and 2011 Boston

Marathons will be used to predict the finishing times of the

2013 racers who DNF, it is helpful to see how their results

compare to the 2013 Boston Marathon results. Figure 2 displays

the point-wise mean and variance for the 2010 and 2011 finishers

with times slower than 4 hours and the 2013 runners who made it

to the 40 km split and either did not finish or finished with a time

slower than 4 hours. We exclude the 2013 runners who did not

make it to the 40 km split in order to include more splits in the

figure (recall that 80.0% of all DNFs passed the 40 km mark). The

mean split profiles for each race are nearly identical, and the

corresponding variances are similar as well. The upward trend in

the variance plot indicates the increased variability in split times

later in the race. The similarity in these figures suggest that use of

marathon results from previous years (barring extreme weather

conditions in 2012) is reasonable for the prediction of 2013 DNFs.

What is not visible in the summary statistics shown in Figure 2,

and what makes predicting results for individual runners

challenging, is the wide variety of split profiles. For example,

there are runners who maintain a steady pace for the entire race,

and runners who slow down later in the race. Figure 3 displays the

running profiles of two finishers from the 2010 Boston Marathon

who illustrate different race patterns. Through split 6 (30 km), the

two runners maintain a steady pace, but by the 35 km mark,

Runner 1 slows down while Runner 2 speeds up. There are other

possible patterns of split profiles, and the desire is for the statistical

methodology to capture these different populations of runners and

use it for prediction.

Methods

In this section, we describe the five statistical approaches that

were used in our analysis. Some other methods were also explored,

but are not included among the main results because we

concluded they are not competitive. We also describe the method

the BAA selected to use as the projected finishing times and the

method proposed by Raymond Britt (http://www.runtri.com/

2013/05/unfinished-business-in-boston.html).

Linear regression
Linear regression is arguably one of the most popular statistical

methods (see [6] for a comprehensive introduction). In a broad

sense, regression analysis aims to describe the dependence of a

quantity of interest on so-called predictor variables. It exists in

many variants including linear, nonlinear, simple, multiple,

parametric, nonparametric regression among others. The regres-

sion variant used in this analysis is multiple linear regression,

where multiple refers to the number of predictors and linear to the

fact that the regression model is linear in the parameters. The goal

is to find the best linear combination of available split times to

predict each runner’s finish time. In its simplest form, the model

used can be written as

yi~
XJ

j~1

xijbjz i, ð1Þ

where yi is the sum of the missing split times for runner i, J is the

number of available split times, xij is the available split time for

section j for runner i, bj is the coefficient corresponding to split

time xij , and i is a random error term assumed to be of mean 0,

uncorrelated and with a common variance. We ran regression

analyses corresponding to the various possible drop-out points,

and then used the analysis to estimate the finish times for the DNF

Figure 3. 2010 Split profile comparisons. Comparison of split
profiles of two runners from the 2010 Boston Marathon along with the
2010 mean from Figure 2.
doi:10.1371/journal.pone.0093800.g003
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runners in the validation dataset. We also tried a variant of this

approach in which age and gender, in addition to split times, were

used as predictors of the finish time, which led to only marginal

improvements. One interesting finding was that the first two 5 km

split times, i.e. the sections covering the first 10 kilometers, had

negative coefficients. This implies that on average runners who

start out slower have comparatively faster finishing times. To start

out slow is advice commonly given to new marathon runners,

which seems to be supported by this analysis! A disadvantage of

this method is that it doesn’t distinguish between different patterns

of split times, i.e. the regression coefficients are the same for

runners who maintain more or less constant pace across the whole

race and for those who slow down a lot during the later stages.

Nearest neighbor (KNN)
This approach looks at each of the runners who did not

complete the race (DNF), and finds a set of comparison runners

who finished the race in previous years, whose split times were

similar to the DNF runner up to the point where he or she left the

race. These runners are called ‘‘nearest neighbors.’’ To turn this

idea into more precise estimates we needed to make three basic

choices: (1) a method of comparing runners based on split points

up to a given stage of the race, (2) deciding how many nearest

neighbors to examine, and (3) coming up with a single prediction

for the DNF runner based on the different finishing times of the

nearest neighbors. For (1), we constructed neighborhoods based on

the entire set of splits, by calculating a one-number distance that

quantifies how similar the list of splits of the DNF runner is to the

splits of a large set of finishers from previous years. For (2) we

chose the K~200 nearest runners – we also tried K = 100 and

300, which only changed results slightly and did not make them

better (50 did not work well and 500 was computationally

inefficient). For (3), the chosen method used a ‘‘local linear

regression’’ restricted to the nearest neighbors. In more mathe-

matical detail, the neighborhoods are defined based on the

Euclidean distance between the split vectors, and a kd-tree

algorithm is used to find the nearest neighbors. As a first step, the

kd-tree algorithm places all the runners in the reference database

in partitions based on their split times. The partition correspond-

ing to the runner with the missing split times is then identified and

the search is limited to that partition and neighboring partitions

that could contain runners within the nearest neighborhood. This

approach has the advantage that a large percentage of the runners

in the database, those with very different split profiles, can be

quickly eliminated and the search is conducted over a limited set

and hence computationally more efficient than an exhaustive

search over all runners in the database. This search algorithm is

best suited for applications where the number of database entries is

potentially very large, but the dimension of the data is

comparatively low, which is the case here. The dimension of the

data (the number of split times) is rather small, but the number of

runners in the database, especially if more years were included,

can be very large. Once the K nearest neighbors are found, local

linear regression is used to estimate the sum of the missing splits

based on the available splits. Local linear regression is chosen to

account for cases that have an offset from the profiles in the

database. The existence of such cases is somewhat of an artifact as

we had limited the database to runners with finishing times over

4 hours. When using a comprehensive database, as would be done

for future live marathon time predictions, other methods such as

kernel regression or standardizing the nearest neighbor profiles

might be preferable based on simplicity and computational speed.

ANOVA method
The analysis of variance or ANOVA method is an adaptation of

the well-known statistical technique of the same name [7] to

predict runners’ finish times in a context where some results are

missing. It has been used for a number of years by one of the

authors (RS) for determining handicap times in a handicap race, in

a context where runners’ performances over a number of races are

known but with missing data because not every runner runs the

same races. In the present context, suppose yij is the logarithm of

the split time for runner i on section j of the course. The simplest

two-way ANOVA model represents

yij~mzaizbjz ij ð2Þ

where m is an overall mean, ai is a parameter due to runner i, bj is

a parameter due to section j, and ij is a random error term

(usually assumed to be of mean 0, uncorrelated and with a

common variance). A constraint such as
P

i ai~
P

j bj~0 is

usually added to make the model (2) identifiable. The reason for

taking logarithms is that running times are most naturally modeled

multiplicatively: a runner’s time on a particular section of the

course is the product of one quantity measuring the runner’s

overall skill and another measuring the length or difficulty of that

section. Taking logarithms, and adding a random error, leads to a

model of the form (2). The idea is to fit model (2) by the standard

method of ordinary least squares, and then apply the resulting

estimates of m, ai and bj to estimate any missing values. The model

(2) assumes homogeneity of the pattern of running times over

different sections of the course, which is not appropriate when

there are different subgroups of runners with very different

profiles. To improve on this, we first break up the runners into

different subgroups and apply model (2) separately within each

subgroup. The subgroups were defined using two variables: (a) the

half-marathon time for each runner, (b) the 20 km to 40 km total

time rescaled by dividing by the half-marathon time. The second

variable may be thought of as a scaled measure of how much the

runner is slowing down. The variable (a) was divided into eight

equally sized categories and the variable (b) was divided into four

equally sized categories to create 32 subgroups. A number of

variants were tried on a precise definitions of the variables (a) and

(b) and on the number of subgroups, without substantially affecting

the quality of the results.

Table 1. Multiplicative constants used in the Split-ratio approach, estimated from 2010 and 2011 data on finishers over four hours.

Last 5 km segment completed

Gender 15 km–20 km 20 km–25 km 25 km–30 km 30 km–35 km 35 km–40 km

Male 5.0648 3.8765 2.5761 1.4333 0.4207

Female 4.8354 3.6965 2.4876 1.4055 0.4230

doi:10.1371/journal.pone.0093800.t001
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SVD approach
Singular Value Decomposition (SVD) finds a set of mutually

orthogonal patterns present in a matrix ranked according to

strength. These patterns can be linearly combined to approximate

missing values in a matrix. It has been used to estimate missing

values before, such as in gene expression arrays [5]. Suppose that

yij is the split time of runner i on section j of the course. Using

SVD, this runner by section matrix of split times can be factored

into

yij~
XD

d~1

aid
:sd
:bjd

where aid are the left singular vectors, sd are the singular values,

and bjd are the right singular vectors. This model separates the

effect on the split time of the runners and the course sections. In

this model, each row vector ai represents runner i, and each row

vector bj represents course section j. In essence, this model

assumes that each split time is the weighted dot product of the

runner vector and the course section vector. For example, in the

simplest case where D~1, a runner is represented by one number,

and a section is also represented by one number. The split time is

calculated by multiplying the two numbers and scaling by the first

singular value. Faster runners have lower numbers (so the split

time is smaller), and harder course sections have larger numbers

(so the split time is larger). Once the optimal D~1 numbers are

found, the residuals (the difference between the actual split times

and our estimate of the split times) can be calculated. Fitting the

residuals in the same manner gives the D~2 numbers, and so on

until any remaining patterns are obscured by noise. A central

question in this model is how large D should be. Too small and the

accuracy of estimates will suffer, too large and estimates will

contain noise. Given the split time data available, different values

for D were explored using cross validation, and the value D~9
was chosen because it gave the best results. To find missing split

times using this model requires three steps. First, the largest

possible runner by section matrix is constructed, with the

constraint that there are no missing values. This constraint is

necessary because SVD requires that matrices have no missing

values. The SVD algorithm is run on this matrix, generating

estimates of the sd and bjd parameters. Second, we estimate each

runner vector ai for runners who have missing split times by

building a set of linear equations using the known split times for

that runner, and the singular values and course section vectors

from the first step. These equations are under-constrained, but a

minimum norm solution can be found using the Moore-Penrose

pseudo-inverse. Finally the estimated runner vectors, together with

the estimates from the first step, can be used to calculate the

missing split times. The SVD algorithm is central to this method. It

is used in the first step to estimate global values for the singular

values and the course section vectors. It is used again, implicitly, in

the second step to estimate each runner vector since a key step in

forming the pseudo-inverse uses the SVD algorithm. This method

was implemented in Python 2.7 using the NumPy and Pandas

Table 2. All DNF in validation set.

All(n = 4154) mae mse 1 min 2 min 3 min 4 min 5 min 10 min

ANOVA 1.93 18.05 0.528 0.771 0.853 0.896 0.924 0.971

SVD 1.75 14.30 0.577 0.791 0.866 0.901 0.926 0.975

Split-ratio 1.75 14.94 0.584 0.790 0.868 0.903 0.926 0.976

LM 1.64 12.05 0.591 0.804 0.875 0.908 0.931 0.980

KNN 1.57 11.50 0.604 0.801 0.879 0.916 0.941 0.981

Constant Pace 3.25 43.08 0.384 0.625 0.744 0.800 0.840 0.920

doi:10.1371/journal.pone.0093800.t002

Table 3. Results by gender.

Gender Method mae mse 1 min 2 min 3 min 4 min 5 min 10 min

ANOVA 1.61 10.97 0.581 0.811 0.882 0.918 0.940 0.983

SVD 1.50 9.93 0.629 0.827 0.888 0.920 0.938 0.982

Split-ratio 1.46 10.20 0.641 0.830 0.894 0.923 0.940 0.985

F

LM 1.39 8.45 0.653 0.841 0.901 0.928 0.947 0.986

KNN 1.35 7.69 0.651 0.841 0.901 0.928 0.952 0.986

Constant Pace 2.60 27.26 0.462 0.707 0.796 0.838 0.868 0.939

ANOVA 2.31 26.30 0.467 0.725 0.820 0.871 0.905 0.957

SVD 2.04 19.38 0.517 0.748 0.841 0.880 0.911 0.968

Split-ratio 2.07 20.47 0.517 0.744 0.838 0.881 0.909 0.966

M

LM 1.94 16.25 0.518 0.761 0.846 0.885 0.912 0.972

KNN 1.82 15.94 0.549 0.754 0.853 0.901 0.929 0.974

Constant Pace 4.01 61.49 0.293 0.530 0.685 0.756 0.808 0.899

doi:10.1371/journal.pone.0093800.t003

Boston Marathon
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packages. NumPy is used for numerical computing and Pandas is

used for data analysis.

Split-ratio approach
The split-ratio approach is based on estimates of multiplicative

constants relating each 5 km segment time to the previous 5 km

segment time. We achieve this by taking the mean ratio of each

pair of consecutive segment times by gender. These multiplicative

constants are then used to predict the remaining time it would

have taken a runner to reach the finish line by multiplying the last

observed 5 km segment time by the corresponding constant. This

proposed method was motivated by the basic extrapolation

method proposed by Raymond Britt on http://www.runtri.com/

2013/05/unfinished-business-in-boston.html. His rule is very

simple: (a) for runners who reached the 40 km split point, multiply

their 40 km overall split time by 1.06; (b) for runners who reached

the 35 km but not the 40 km split point, multiply their 35 km

overall split time by 1.23. Britt did not propose a solution for

runners who failed to reach the 35 km point. The split-ratio

method is similar to this, except that we use the last observed 5 km

segment to predict the remaining running time, whereas Britt uses

the last observed split time to predict the full marathon finishing

time. By only relying on the last observed 5 km segment, we are

able to leverage the most up-to-date information on the runner’s

last known pace. The multiplicative constants are provided in

Table 1. We will now illustrate the differences between an

approach that assumes constant pace, the Britt method, and the

split-ratio approach. Suppose Mary’s last observed split time was

32 minutes for the 30–35 km segment, with an overall split of

3:25:00. She is missing two segment times, the 35–40 km and the

40 km-finish. Under an approach that assumes constant pace, the

cumulative race time is multiplied by a constant,

42:195=35~1:2056, that reflects the assumption that the Mary

has and will continue to run a constant pace. Her predicted finish

time under a constant pace is 205 times 1.2056 minutes, which

translates to 4:07:09. Contrast this with the Britt method, that uses

a constant of 1.23, we get a prediction of 4:12:09 for Mary’s

finishing time. Note how the Britt method accounts for the slowing

of the runner through the use of a larger constant, 1.23 versus

1.2056 under a constant pace. Instead of directly predicting the

Table 4. Results by age.

Age Method mae mse 1 min 2 min 3 min 4 min 5 min 10 min

ANOVA 1.88 15.84 0.519 0.775 0.860 0.907 0.933 0.974

SVD 1.73 14.13 0.571 0.794 0.871 0.903 0.927 0.977

Split-ratio 1.73 15.58 0.592 0.793 0.872 0.905 0.932 0.974

#45

LM 1.63 11.69 0.589 0.808 0.878 0.911 0.935 0.980

KNN 1.53 9.55 0.606 0.808 0.882 0.918 0.943 0.982

Constant Pace 3.02 38.36 0.411 0.663 0.773 0.821 0.853 0.926

ANOVA 1.98 20.27 0.537 0.767 0.846 0.885 0.915 0.968

SVD 1.76 14.47 0.583 0.787 0.862 0.900 0.924 0.973

Split-ratio 1.76 14.30 0.576 0.788 0.864 0.902 0.920 0.978

.45

LM 1.66 12.42 0.592 0.800 0.873 0.905 0.927 0.979

KNN 1.60 13.46 0.601 0.793 0.876 0.914 0.939 0.979

Constant Pace 3.48 47.80 0.357 0.588 0.716 0.779 0.827 0.914

doi:10.1371/journal.pone.0093800.t004

Table 5. Results by finishing time.

Finish Time
(mins) Method mae mse 1 min 2 min 3 min 4 min 5 min 10 min

ANOVA 1.55 8.42 0.570 0.804 0.881 0.918 0.942 0.983

SVD 1.49 8.56 0.615 0.810 0.882 0.914 0.936 0.984

Split-ratio 1.45 7.77 0.619 0.814 0.891 0.923 0.944 0.984

#265

LM 1.43 7.06 0.622 0.820 0.887 0.914 0.939 0.988

KNN 1.29 5.18 0.645 0.823 0.895 0.928 0.953 0.990

Constant Pace 2.80 28.03 0.417 0.653 0.769 0.821 0.856 0.937

ANOVA 2.39 29.51 0.478 0.732 0.820 0.870 0.903 0.957

SVD 2.06 21.12 0.532 0.768 0.847 0.886 0.914 0.964

Split-ratio 2.10 23.47 0.542 0.762 0.840 0.879 0.905 0.967

.265

LM 1.89 17.99 0.554 0.784 0.861 0.900 0.921 0.969

KNN 1.90 19.02 0.555 0.774 0.860 0.901 0.926 0.969

Constant Pace 3.78 60.98 0.345 0.593 0.715 0.775 0.821 0.901

doi:10.1371/journal.pone.0093800.t005
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finish time, the split-ratio approach predicts the cumulative time

that it would have taken Mary to run these final two segments by

multiplying her last observed 5 km split time by the value given in

Table 1 (1.4055). This gives us a prediction of 44:58 for her

remaining time to finish the course, and an overall time of 4:09:59.

In this example, the split-ratio method predicts a finishing time

that is between the Britt method and the method that assumes

constant pace; however, this will not always be the case. The Britt

method will always predict a slower finish than assuming constant

pace, but the split-ratio approach can predict a faster or slower

finish depending on the pace at the last observed 5 km segment.

Other Methods
In addition to the five main methods described above, we also

tried three others which were discarded because they did not

perform well in our initial exploratory studies. One method was

the SOFT-IMPUTE algorithm of [4], which is implemented in an

R package (http://cran.r-project.org/web/packages/softImpute/

index.html), and which should in principle be superior to the older

SVD approach of [5]. However, it did not perform so well under

our cross-validation comparisons. The other methods both had a

Bayesian flavor, and consisted of a two-stage regression: (a) for

each individual runner, regress split times against either distance

or some transformation of distance (polynomial or spline basis

functions) to obtain regression coefficients specific to that runner,

then (b) the regression coefficients from the first stage are treated as

random variables in a second-stage regression which may include

additional covariates, such as age and gender. It is not clear why

these methods did not perform well, but one possible explanation

is that all the standard models for the second stage, part (b) of the

model, assume normal distributions of the coefficients, but in this

analysis, there are many outliers. It is possible that a different

approach, such as nonparametric Bayes in the second stage, could

lead to much better results, but in the course of preparing our

report for the Boston Marathon, we did not have time to develop

this idea.

Table 6. Results by last recorded split.

Last Split Method mae mse 1 min 2 min 3 min 4 min 5 min 10 min

ANOVA 14.66 401.10 0.016 0.129 0.161 0.226 0.274 0.435

SVD 9.74 161.35 0.048 0.097 0.194 0.258 0.290 0.613

Split-ratio 8.41 144.24 0.065 0.097 0.258 0.403 0.435 0.742

20 km

LM 7.89 124.41 0.065 0.258 0.339 0.387 0.435 0.790

KNN 8.95 198.78 0.081 0.161 0.242 0.290 0.355 0.758

Constant Pace 20.83 652.38 0.000 0.000 0.032 0.048 0.097 0.226

ANOVA 9.90 173.13 0.069 0.172 0.172 0.207 0.310 0.655

SVD 8.33 121.20 0.103 0.138 0.276 0.276 0.379 0.655

Split-ratio 7.41 107.66 0.034 0.138 0.310 0.517 0.552 0.793

25 km

LM 6.84 97.14 0.172 0.276 0.310 0.310 0.414 0.862

KNN 7.60 108.27 0.138 0.172 0.310 0.414 0.483 0.724

Constant Pace 18.54 473.51 0.000 0.000 0.000 0.034 0.069 0.172

ANOVA 5.60 78.76 0.143 0.296 0.411 0.538 0.631 0.857

SVD 5.77 82.22 0.131 0.255 0.395 0.513 0.599 0.866

Split-ratio 5.60 81.32 0.162 0.309 0.436 0.529 0.627 0.860

30 km

LM 5.37 66.98 0.140 0.258 0.401 0.519 0.608 0.873

KNN 4.58 54.11 0.191 0.331 0.494 0.599 0.707 0.901

Constant Pace 12.20 248.16 0.035 0.076 0.140 0.172 0.226 0.490

ANOVA 3.40 25.47 0.244 0.451 0.602 0.713 0.809 0.954

SVD 3.27 25.15 0.262 0.453 0.634 0.747 0.830 0.954

Split-ratio 3.26 28.70 0.306 0.494 0.660 0.747 0.809 0.945

35 km

LM 3.11 22.85 0.287 0.501 0.657 0.754 0.834 0.949

KNN 2.76 17.60 0.294 0.529 0.687 0.802 0.874 0.959

Britt 4.19 34.89 0.189 0.347 0.497 0.609 0.710 0.920

Constant Pace 6.46 69.59 0.099 0.172 0.264 0.366 0.467 0.811

ANOVA 1.08 2.80 0.616 0.875 0.947 0.973 0.985 0.997

SVD 0.96 2.75 0.675 0.904 0.959 0.976 0.986 0.998

Split-ratio 1.01 3.61 0.675 0.893 0.952 0.972 0.982 0.997

40 km

LM 0.94 2.59 0.687 0.910 0.964 0.980 0.988 0.998

KNN 0.94 2.32 0.697 0.899 0.957 0.977 0.987 0.998

Britt 1.28 3.55 0.524 0.825 0.929 0.969 0.981 0.996

Constant Pace 1.52 5.00 0.465 0.754 0.884 0.937 0.968 0.995

doi:10.1371/journal.pone.0093800.t006
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Britt method
While investigating the methods discussed above, we also

evaluated a basic extrapolation method proposed by Raymond

Britt on http://www.runtri.com/2013/05/unfinished-business-in-

boston.html. His method is explained above with the Split-ratio

approach.

Constant Pace method
As a final comparison, we also include the approach that was

used by the BAA to compute ‘‘Projected Finish Time’’ for each

runner when it was eventually posted on the BAA website. This

simply took the runner’s pace per mile at the last recorded time,

and projected that the same pace would continue for the full

distance. For example, one runner’s final split time was 3:01:32 at

the 25 km mark, equivalent to 11 minutes, 42 seconds per mile.

Projecting that pace to the full distance (42.195 km or 26.219

miles) leads to a finish time of 5:06:24.

Results

Each approach introduced above was applied to the DNF

runners in the validation dataset. They were then compared with

the true finish times of the runners. The following measures were

used to compare the approaches:

1. Mean absolute error (mae). We computed the difference

between the predicted and actual finish time for each runner,

and averaged this difference across all runners. This is the

simplest measure of the overall accuracy of a prediction. This

average error is reported in minutes.

2. Mean squared error (mse). We computed the absolute

difference between the predicted and actual finish time,

squared it, and then averaged the squared values. This is

similar to computing the variance. This error measure is

reported in minutes squared.

3. Proportion of runners for whom the prediction was accurate

within 1 minute (1 min).

4. Proportion of runners for whom the prediction was accurate

within 2 minutes (2 min).

5. Proportion of runners for whom the prediction was accurate

within 3 minutes (3 min).

6. Proportion of runners for whom the prediction was accurate

within 4 minutes (4 min).

7. Proportion of runners for whom the prediction was accurate

within 5 minutes (5 min).

8. Proportion of runners for whom the prediction was accurate

within 10 minutes (10 min).

Figure 4. Prediction error box plots. Boxplots of prediction errors in the validation dataset: the ‘box’ in the middle includes 50% of runners. Red
marks are individual very large errors.
doi:10.1371/journal.pone.0093800.g004

Figure 5. Restriction prediction error box plots. Boxplots of
prediction errors in the validation dataset, restricted to runners for
whom the prediction error was less than 10 minutes.
doi:10.1371/journal.pone.0093800.g005
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Results of the Comparisons in the Validation Data Set
The results of our comparisons of methods are presented in the

following sequence of tables. First, we computed each of the above

measures of agreement for each of the proposed statistical

approaches for the full set of 4,154 DNF runners in the validation

dataset. Then, we subdivided the comparisons by gender (M/F),

by age (up to or greater than 45), by finish time (up to or greater

than 4 hours, 25 minutes), and by the last recorded split (20 km,

25 km, 30 km, 35 km, 40 km). The reasons for the subdivisions by

gender, age and finish time was that we had strong prior intuition,

which the results confirmed, that the pattern of split times would

vary among these subgroups. Tables 2, 3, 4, 5 and 6 display the

results, respectively. Note that the Britt method results are only

found in the 35 km and 40 km sections of Table 6 because the

method only applies to runners who made it to the 35 km split.

The prediction errors in the validation dataset for each of the

five main methods are also displayed in Figure 4. It emphasizes the

challenges of predicting the time of these over-four-hour runners.

While the majority of errors are tightly packed around zero, there

remain runners who slow down, or pick the pace back up in ways

that are challenging to infer based on their prior pattern of splits.

For the nearest neighbor approach, there remain examples of

runners who were one hour slower than we predicted, and also 25

or so minutes faster. Most of those correspond to runners who had

to drop out early in the race and are therefore very hard to predict

accurately. As can be seen from the tables of results, around 98%

of all runners are predicted with an error of less than 10 minutes.

To more clearly compare methods, we redrew the box plots in

Figure 4 to show only the 98% or so of runners with an error of

less than 10 minutes (see Figure 5). Judging by the width of the

central box, the ANOVA method has the widest variability (and

thus the largest errors) among these five but the other four are

hard to distinguish (as noted earlier, we also considered and

rejected some methods that had substantially larger prediction

errors).

Analysis of the predictions for 2013
From the individual runner’s perspective, an interesting

question is whether using different prediction methods makes a

practical difference in the predicted finishing times. By comparing

the predicted finishing times for the 2013 Boston marathon, the

answer is that for many runners it does not matter which

prediction method is used – for over 80% of the runners the

differences among methods are less than 5 minutes and only 5% of

the runners have differences larger than 20 minutes. Adhering to

the mantra of the passionate runner that every minute counts,

however, it is worth investigating under which circumstances the

methods differ and if these differences are systematic. Figure 6

shows the differences between the KNN predictions and those

from the other methods grouped by available split times for the

2013 race. As expected, the differences are larger for predictions

based on fewer splits: the width of the blue boxes encompassing

the middle 50% of the differences are wider when fewer splits are

available, and the overall range of the differences are considerably

larger. A feature visible in both plots is that the predicted times

using the Constant Pace method are overall systematically lower

than the predictions for the other methods. This is not surprising

since the Constant Pace method makes no allowance for the fact

that most runners slow down in the later stages of the race, though

it should be pointed out that especially after the 35 km point (after

Heartbreak Hill) some runners do speed up and this explains why

Figure 6. 2013 prediction error box plots. Boxplots of differences in predicted finishing times between the KNN method and other methods for
participants in the 2013 Boston marathon, who passed the half-marathon mark, but did not complete the course. Predictions are based on (a) splits
available up to 30 km or less (n = 515) and (b) splits available up to 35 km or 40 km (n = 5009). Note the scale difference between the two plots.
doi:10.1371/journal.pone.0093800.g006

Table 7. Correlations between predictions of different
methods.

ANOVA SVD Split-ratio LM KNN
Constant
Pace Britt

ANOVA 1.00 0.84 0.80 0.83 0.84 0.77 0.77

SVD 0.84 1.00 0.98 0.97 0.94 0.75 0.75

Split-ratio 0.80 0.98 1.00 0.97 0.93 0.63 0.63

LM 0.83 0.97 0.97 1.00 0.92 0.68 0.69

KNN 0.84 0.94 0.93 0.92 1.00 0.69 0.68

Constant
Pace

0.77 0.75 0.63 0.68 0.69 1.00 1.00

Britt 0.77 0.75 0.63 0.69 0.68 1.00 1.00

doi:10.1371/journal.pone.0093800.t007
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the projections of the Constant Pace method are not uniformly

faster than the others. Considering the Constant Pace and Britt

methods, Figure 6 suggests the variability in predictions are

similar, but the Constant Pace method appears to have a

downward bias (i.e. the Constant Pace method generally predicts

faster finishing times). Given this observation, if one were to resort

to a comparatively simple method, using a method along the lines

of the Britt method would be the better route rather than using the

assumption of constant pace. Even though the Britt method

doesn’t account for an individual runner’s split profile and only

uses a simple multiplication factor, that factor is slightly higher

than if it were only based on the distance (i.e. the Britt

multiplicative factor incorporates the Boston course profile and

the slow down of most runners over the later stages of a marathon

better than a Constant Pace assumption). On the other hand, the

Split-ratio method is only based on the latest available split time.

The consequence of using only the latest split is that it can lead to

sporadic predictions for runners who significantly change their

pace. In Figure 6, the Split-ratio method has more extreme

predictions in the high-end indicating that the predictions are

higher than those from the other methods (i.e. the Split-ratio

method generally predicts slower finishing times). This lack of

symmetry is intuitively consistent with the fact that only few

runners speed up in the later stages of a marathon, and then only

by a comparatively small amount, while more runners slow down

(some of them by a significant amount). Hence a method that is

solely based on the last split can result in some very high predicted

finishing times even though it performs well for the typical runner.

To try to understand better the relations between the different

methods, we also computed correlations among the projected

times, as follows:

Figure 7. 2013 Prediction comparisons. Plots of the predicted 40 km to finish times for the runners who had to stop the race before the 40 km
mark. Each plot corresponds to the predicted times for the methods listed in the same row and the same column as the plot. For example, the
scatterplot in row 2 and column 1 has the ANOVA method’s predicted 40 km to finish times on the horizontal axis and the SVD method’s predicted
40 km to finish times on the vertical axis.
doi:10.1371/journal.pone.0093800.g007
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1. For each of j = 4, 5, 6, 7, 8:

(a) For each runner whose last recorded split was at the (5|j)-
km point, estimate the projected time from that point until

the end of the race by each of the prediction methods,

(b) Compute the correlation matrix, call it Cj , among those

projected times.

2. Compute the overall correlation matrix C�~
P8

j~4 njCj=

C�~
P8

j~4 njCj

P8
j~4 nj :

P8
j~4 nj , where nj is the number of

runners whose last recorded split was at the (5|j)-km point.

3. For correlations between the Britt method and any of the

others, the same calculation is made but restricted to j~7 and

8.

This calculation produces the correlation matrix shown in

Table 7. Based on this table, we conclude:

1. The correlation between the Britt method and Constant Pace is

1 (which it should be, because for each of j~7, 8, one method

is a constant multiple of the other).

2. All four of the SVD, Split-ratio, LM and KNN methods are

very highly correlated with each other (correlation above.92).

3. The correlations between the ANOVA method and any of the

others, or between any of the SVD, Split-ratio, LM and KNN

methods and either of the Britt or Constant Pace methods, are

substantially lower (though all the correlations are still positive

– above 0.6 – and highly statistically significant).

Thus, it appears that the prediction methods are essentially in

three groups, one consisting of the ANOVA method, a second

consisting of the SVD, Split-ratio, LM and KNN methods, and a

third consisting of the Britt and Constant Pace methods. Since the

second group of methods appears best under the various statistical

measures we have used to evaluate them, this reinforces that any of

the four methods may be used roughly interchangeably. In

particular, since this group includes the Split-ratio method, which

uses only the last recorded split time before the runner stopped, this

suggests that most of the information useful for prediction is

contained in that last split time. Figure 7 provides a way to

visualize the connections between the seven methods. The subplots

of the figure display the predicted times for the corresponding

methods listed along the diagonal of the scatterplot matrix. For

example, the scatterplot in row 2 and column 1 has the ANOVA

method’s predicted 40 km to finish times on the horizontal axis

and the SVD method’s predicted 40 km to finish times on the

vertical axis. Methods that had similar prediction times will have

points in the plot very close to a line (e.g. the plot in row 7 and

Figure 8. Illustration of Rescaled KNN Method. The figure shows how the method is to predict the pace during the remainder of the race for a
runner sampled at the 25 km, 30 km, 35 km or 40 km intermediate time points. The black dot represents distance and net pace of a particular runner
at the sampling time. For that runner, we locate the K = 100 nearest neighbors among the full population of runners, using all the split times up to the
sampling point. These neighbors are rescaled by multiplying/dividing by a constant so that the net pace at the sampling time is the same as the
runner being predicted. The 100 runner profiles are then shown for the remainder of the course. The think black line is the median through all the
neighbor runners and therefore provides a prediction for the runner of interest. The lower and upper blue lines represent the 5th and 95th
percentiles of the distribution — these therefore provide the bounds of a 90% prediction interval for the future pace of the runner of interest. The
horizontal green line is the Constant Pace projection. All results are presented as net overall pace (minutes/mile) to facilitate comparisons over the
length of the course.
doi:10.1371/journal.pone.0093800.g008
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column 6 displaying the predicted times for the constant Pace and

Britt methods); plots with more scatter along a line suggest more

variability between the methods (e.g. the plot in row 6 and column

7 displaying the predicted times for the KNN and constant Pace

methods). Two methods would have identical predictions if the

points were exactly on the 45 degree line. As indicated above,

these plot suggest three groupings of methods: (i) the ANOVA

method, (ii) SVD, Split-ratio, LM, and KNN methods, and (iii)

Constant Pace and Britt methods. The ANOVA method stands

alone when looking across row 1 and down column 1 - there is a

lot of scatter along a line suggesting that the ANOVA method’s

prediction are not similar to the others. The interior four-plot by

four-plot square comparing the SVD, Split-ratio, LM, and KNN

methods only have moderate amounts of scatter, and the bottom

two-by-two square of the Constant Pace and Britt methods have

very little scatter. It is intriguing that there are 22 runners for

whom their predicted finishing times by the various methods

differed by more than one hour, which appears to be a large

difference. A closer investigation of these cases revealed one

common characteristic: they all slowed down their pace by at least

3 min/mile. Slowing down is not part of any standard marathon

race strategy, but rather an ominous sign. While there are no

‘‘true’’ finishing times, since these runners did not continue, to

evaluate the different predictions, it is questionable whether such

an evaluation would be meaningful given that all the methods

presented here are geared towards more typical profiles and not

particularly suitable for these extreme scenarios. It might make

sense to exclude such cases altogether.

Looking Forwards: A Method for Predicting
Marathon Finish Times from Intermediate Split
Times

Looking beyond the specific issues posed by the 2013 Boston

marathon, in this section we discuss the broader implications of a

method for predicting finishing times in marathons and other road

races from split times taken at intermediate points along the

course. Many large road races, including the Boston marathon,

provide real-time information on competitors’ performances.

While the race is in progress, one can go to the race website

and look up the split times of any competitor, and it is also possible

for friends and relatives to sign up to receive updates by text

messaging or email during the race itself. This information is

valuable to spectators following the race and to friends or relatives

planning to meet their runners at the finish line. Such updates

often include estimates of a runner’s finish time, but in all cases

that we are familiar with, the projection is based on ‘‘constant

pace’’ — in other words, the assumption that a runner’s pace at

the intermediate split time will remain constant for the remainder

of the race, which is unrealistic for the majority of runners. The

methodology in this paper could, we believe, provide for more

realistic estimates, including some indication of uncertainty. For

this section, we propose a modified and somewhat simplified

version of the ‘‘KNN’’ methodology, which we have found to be as

good or better than all the other methods considered. This is a

‘‘rescaled KNN’’ analysis, which works as follows:

1. For a given runner observed at an intermediate point of the

course, find K ‘‘nearest neighbors’’ among the database of

runners (e.g. who have completed the course in previous years)

for whom complete split times are available. As in the earlier

analysis, the definition of nearest neighbors is based on

Euclidean distance applied to the complete vector of split

times up to the sampling point.

2. For each of the nearest neighbors, rescale the split times (by

multiplying all the split times by a constant) so that the

neighbor’s cumulative time at the sampling point equals that of

the runner being predicted.

3. Project all the split times of the neighbor runners forwards to

the finish of the race.

4. The median finish time of all the neighbor runners may be

taken as a point prediction of the finish time of the runner

being predicted. The distribution of finish times of the neighbor

runners may also be taken as a measure of uncertainty — for

example, the 5th and 95th percentiles of the neighbor runners

may be taken as the lower and upper bounds of a 90%

prediction interval for the runner being predicted.

Figure 8 illustrates this method graphically. This method differs

from the KNN method presented earlier in the paper because the

rescaling proposed at Step 2 is simpler than the local linear

regression step used earlier. Table 8 shows three measures of

performance for each of the possible dropout points and five

different values of K . Table 8 also incidentally illustrates the

possibility of using the validation sample to choose the optimal K .

Table 8. Properties of the rescaled KNN procedure.

Dropout
point

Number of
dropouts K MAE MSE

Coverage
Probability

25 9.03 175.3 0.84

50 8.80 172.7 0.90

20 km 62

100 8.79 170.8 0.90

150 8.81 169.6 0.89

200 8.84 170.5 0.90

25 7.55 105.2 0.76

50 7.27 103.3 0.83

25 km 29

100 7.38 105.0 0.86

150 7.29 104.8 0.90

200 7.20 101.7 0.86

25 4.76 60.8 0.86

50 4.75 62.8 0.88

30 km 314

100 4.83 63.6 0.89

150 4.87 65.2 0.89

200 4.91 66.6 0.89

25 2.87 20.2 0.82

50 2.86 19.6 0.85

35 km 435

100 2.87 19.5 0.87

150 2.88 19.3 0.88

200 2.90 19.6 0.88

25 0.95 2.31 0.82

50 0.95 2.31 0.85

40 km 3314

100 0.95 2.29 0.86

150 0.96 2.32 0.87

200 0.96 2.34 0.88

For five values of K, the table shows the mean absolute error (MAE), mean
squared error (MSE) and coverage probability of the proposed 90% prediction
interval, using the validation dataset for the 2013 Boston marathon, for the
various dropout points along the course. The results for MAE and MSE are
directly comparable with those shown in Table 6 for the other procedures
considered in this paper.
doi:10.1371/journal.pone.0093800.t008
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Which K is best among the five values considered varies according

to the dropout point and which of the three validation measures is

used (MAE, MSE or CovPr), but overall either K~50 or K~100
seems fully satisfactory in comparison to the others. Figure 9

illustrates the performance of this method for one runner, whom

we have taken to be a runner from the 2013 Boston marathon with

a 2:45 finish time, which is well under the Boston qualifying time

for his age group (currently 3:05 for a male runner aged 18 to 34),

but not an elite runner. This individual ran a fairly consistent pace

but slowed slightly in the later stages, which is common among

experienced but not elite marathon runners. For this runner, his

actual splits (shown by square dots) all fall well within the 90%

prediction interval for each of the intermediate times, but the

Constant Pace projections fall outside those prediction intervals.

This reinforces our argument against using Constant Pace

projections, though we have noted earlier that almost all current

projections are based on this assumption. Figure 10 illustrates the

contrasting performance of a runner who finished in 3:45 with a

substantial slowing down in the later stages of the race. In this case,

the prediction intervals from a 25 km intermediate sampling point

fail to include this runner’s actual performances during the later

stages of the race, as must inevitably happen for some runners

whose pattern of split times differs substantially from the norm.

However, the later projections do incorporate this runner’s

substantial slowing down between 25 km and 35 km, as the

prediction intervals from a sampling point after 30 km include the

actual runner’s performances. In conclusion, the rescaled KNN

method seems to be a simple method to define and to implement.

This could be recommended as an all-purpose approach to the

problem of making real-time projections of finish times in road

Figure 9. Comparison of Predicted and Actual Pace I. The comparison is made for the 2:45 marathoner depicted in Figure 8. Given the runner’s
splits up to a sampling point (one of 25 km, 30 km, 35 km or 40 km), the diagram shows the median prediction (central horizontal line) and the
boundary points of a 90% prediction interval (outer horizontal lines) for all subsequent split points. Also shown are the runner’s actual results (open
square dots) and the projections assuming Constant Pace (round black dots). All results are presented as net overall pace (minutes/mile), as in Fig. 8.
doi:10.1371/journal.pone.0093800.g009

Figure 10. Comparison of Predicted and Actual Pace II. Similar to Fig. 9 but for a 3:45 marathoner.
doi:10.1371/journal.pone.0093800.g010
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races, which includes uncertainty bounds and is clearly superior to

the simple Constant Pace approach.

Discussion

Although it is difficult to definitively say that any one of our five

proposed statistical approaches is better than the others, the

nearest neighbor method (KNN) with neighborhoods of size 200

seems competitive with the others based on the measures

considered. Alternatively, the ‘‘rescaled KNN’’ method with a

slightly smaller value of K (we have used 100 here) is almost as

good based on statistical measures such as MAE or MSE, and is

simpler to explain and envision. All five proposed methods clearly

perform better than the Constant Pace or Britt methods. Using

KNN, the mean absolute error in the prediction of final running

time is only about 1.5 minutes, meaning that on average, our

predictions should be off by about one and a half minutes

compared to the true time we would have seen if the runner had

completed the race. In addition, we expect 80% of the runners to

receive an estimated finishing time that is within 2 minutes from

the true finishing time and 90% of the runners to receive an

estimated finishing time that is within 4 minutes from the true one.

Within the different subdivisions, female runners are predicted

more accurately than male runners, younger runners more

accurately than older runners, and faster runners more accurately

than slower runners. As expected, the results are much less

accurate for runners who had to drop out earlier during the race.

Aside from the Constant Pace method, Britt’s method appears to

perform worse than the others when restricted to runners who

stopped at the 35 km or 40 km points. Our final recommendation

to the BAA was that they adopt the nearest neighbor prediction

‘‘KNN (K = 200)’’ approach for determining the final results of the

2013 Boston marathon. The file of projected results on our website

at http://www.stat.unc.edu/faculty/rs/Bostonwebpage/readme.

html includes finishing times under all seven algorithms for each

of the 5,524 runners who reached the half marathon point and

who were projected by our methods not to have finished before

2:49 pm (the few runners who were projected to have finished by

that time we are treating as genuine dropouts, not affected by the

bombs). For these runners, we also computed the Boston Qualifier

Difference (BQDIF), which measures the difference between the

runner’s actual time and the official qualifying time for the 2014

Boston marathon based on that runner’s age and sex. Runners for

whom BQDIF,0 would, by this calculation, have an official

qualifying time for 2014. According to our KNN method, there

were 158 runners for whom this condition was satisfied. Why did

the BAA eventually decide not to use these times for their official

results, instead preferring the Constant Pace method? In the end,

they made a number of decisions which made the actual predicted

results less critical. First among these, they decided to accept all the

DNF runners for the 2014 race (they had to re-enter the race but

were guaranteed acceptance). We estimate that only about 30

runners achieved qualifying times under the BAA projections who

would not have done under our proposal (and precisely one runner

in the opposite direction), which is too small a number to be worth

worrying about. In the end, we can understand the BAA’s decision

to adopt an approach that is easier to explain and defend, though

they acknowledged that our results were informative in helping

them make that decision. Nevertheless, our comparisons do show

that the alternative methods which we have proposed (in

particular, the KNN method in either its original or rescaled

form) have considerably better statistical properties than the

Constant Pace projections, and we believe they could easily be

incorporated into ‘‘athlete tracker’’ apps which are by now widely

used in large road races for real-time projections of final results.

From a statistical perspective, the analysis provides an example of

modern prediction methods based on large datasets, which could

well lead to even better methods being developed in the future.
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