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Dispersal is a topic of great interest in ecology. Many organisms adopt one of two distinct dispersal tactics at reproduction:
the production of small offspring that can disperse over long distances (such as seeds and spawned eggs), or budding. The
latter is observed in some colonial organisms, such as clonal plants, corals and ants, in which (super)organisms split their
body into components of relatively large size that disperse to a short distance. Contrary to the common dispersal viewpoint,
short-dispersal colonial organisms often flourish even in environments with frequent disturbances. In this paper, we
investigate the conditions that favor budding over long-distance dispersal of small offspring, focusing on the life history of
the colony growth and the colony division ratio. These conditions are the relatively high mortality of very small colonies,
logistic growth, the ability of dispersers to peacefully seek and settle unoccupied spaces, and small spatial scale of
environmental disturbance. If these conditions hold, budding is advantageous even when environmental disturbance is
frequent. These results suggest that the demography or life history of the colony underlies the behaviors of the colonial
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Introduction

Dispersal distance varies widely among organisms. Dispersal
determines the genetic structure of the meta-population and
influences the evolution of individual characteristics such as
mortality, reproductive efforts, sex allocation and altruism [1-3].
Since dispersal is a costly activity, why organism disperse has
become an important issue in evolutionary ecology [4,5]. In the
ploneering meta-population model of Hamilton and May (1977) it
was shown that dispersal can evolve even when the dispersal cost is
so high that nearly all dispersers are destined to die. Subsequent
studies identified specific factors that favor dispersal over non-
dispersal, such as the avoidance of competition among relatives
and inbreeding [1,2]. Disturbances such as predation, drought and
flooding are regarded as important general triggers of dispersal,
encouraging organisms to hedge the risks [6].

However, many organisms do not disperse long distances. For
example, some organisms often adopt an “budding” strategy,
where a colony splits into two or more parts which subsequently
move away from each other. The budding by clones, buds, or
propagules has been studied theoretically and experimentally from
the viewpoint of the evolution of altruism and sex ratio [7-9].
However, those studies did not focus on the difference in dispersal
distance, while in many real organisms the budding strategy is
typically characterized by shorter-range dispersal in comparison to
non-budding dispersal. Contrary to the conventional view,
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organisms reproducing by budding often survive in environments
undergoing frequent disturbance. For example, many invasive
clonal plants that are specialists of disturbed habitats predom-
mantly use vegetative reproduction, despite retaining the seed-
producing capability that would enhance their spread [10,11].
New colonies of branching gorgonian coral (Plexaurella sp.) exposed
to waves are predominantly founded by fragments of broken
branches, rather than by inseminated gametes that can migrate
long distances [12]. In some invasive ants, such as Linepithema
humile (the Argentine ant) and Wasmannia auropunctata (the tiny fire
ant), winged queens do not engage in nuptial (dispersal) flights.
Instead they mate within or near natal nests, and new colonies are
founded by colony-splitting (fission or budding), in which queens
search for a new nest site on foot, accompanied by some workers
[13,14]. These invaders are recognized as specialists of disturbed
habitats [13,15,16]. However, the ecological conditions favoring
budding remain obscure.

All of the above examples (clonal plants, corals and ants) are
colonial or super organisms that must maintain a spatially fixed life
following initial settlement. Assuming such colonial life, Nakamaru
et al. (2007) pioneered the investigation of ecological conditions
favoring budding under disturbance in a spatially explicit
computational model (lattice model) [17]. They identified an
important trade-off between dispersal distance and offspring size
(table 1); small reproductive units, such as plant seeds, spawned
coral eggs and winged ant queens, travel long-distance, whereas
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large units, such as the propagules of clonal plants, broken
branches of corals and dependently-founded ant colonies remain
within their local environment. This difference in dispersal affects
the survival and growth of offspring; small offspring suffer low
survival and reach maturity comparatively slowly, while large
offspring (buds) benefit from high survival and rapid growth to
maturity. Nakamaru et al. (2007) concluded that the short distance
dispersal strategy (budding) is advantageous over long distance
dispersal (non-budding) under conditions of (i) very high mortality
of a small-sized colony, or (ii) relatively frequent environmental
disturbance over a small spatial scale.

However, Nakamaru et al. did not clarify the effect of spatial
structure and the life history on the above-mentioned advantage.
For each colony, they specifically assumed that growth is logistic
and that death rate is a negative exponential function of colony
size. However, other survivorship patterns and other growth
functions are possible in nature. The authors failed in their quest
for a mathematical model that could accommodate relatively
complicated assumptions and therefore could not obtain analytical
results. These drawbacks have precluded a precise understanding
of the adaptive significance of budding. To more generally
understand the ecological conditions that induce budding dispers-
al, here we investigate the characteristics of an organism’s life
history functions, such as survivorship and colony growth, that
favor budding dispersal under disturbance.

We adopt the general view that life history parameters (survival,
growth and reproduction functions) directly determine the evolved
dispersal strategy [18,19]. Environmental conditions, such as
spatial structure and disturbance, influence the above parameters
in a complicated manner through environment vs. phenotype
mteractions. In this paper we make a simple generalized
assumption that is applicable to colonial organisms adopting
similar resource allocation strategies. We first focus on colonial life
history using a model without spatial structure, called the baseline
model. This model assumes discrete colony size, assigning different
death and growth probabilities to each colony size. Under this
assumption, we can construct discrete equations or a matrix model
in the baseline model that permit exact solutions. We clarify the
effects of life histories or demographics (such as survivorship and
growth rate) on the competition between the two strategies, 1.c.
budding vs. non-budding. We also examine the conditions under
which budding is advantageous over non-budding when realistic
and possible assumptions are added to the baseline model.

Methods and Results

Model 1: The baseline model in the completely mixed
population

It is common that an individual is assumed to be a basic unit in
the agent-based simulation model. In contrast, here the basic unit
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in our agent-based simulation model is the clonal (super) organism
or the colony of individuals, and the model is called the colony-
based model. Gardner and Grafen (2009) proved that there is no
mathematical difference between an individual organism and a
clonal group if social groups have no intracolonial conflicts [20].

We consider only non-spatial structures or completely mixed
populations, ignoring the effect of dispersal distance. Instead, we
aim to clarify the effect of colonial life history patterns on the
population dynamics. The colony size-structured matrix model
assumes four colony sizes, designated size 1, size 2, size 3 and size
4. The first three denote immature colonies, while size 4 represents
the mature colony. Life history pattern is described by two
parameters; the baseline death probability and the growth
probability of the colony (Fig. 1 A). The baseline death probability
of a colony of size 7 is defined as d; (0=d;=1,:=1, 2, 3 and 4.). An
additional death probability, independent of the baseline death, is
imposed by disturbance. The survival probability of a colony of
size 115 1 —d, defined as p; (0=p;=1, =1, 2, 3 and 4). Let g; be the
probability that a colony of size 7 expands to size +1 (0=g=1,
t=1, 2, 3). When a colony of size ¢ survives with probability p;, it
expands to size 1 with probability g (=1, 2, 3); otherwise it
remains at its present size with probability 1 —g; When the colony
has reached size 4, it can divide into two colonies, one of which
will colonize an empty site. Therefore the chance of division is
proportional to the density of empty sites in the population
multiplied by the division rate, £, where / controls the division
speed. A size 4 colony deprived of the opportunity to divide will
survive with probability ps.

The colony divides by one of two strategies: designated 2:2
division and 1:3 division (Fig.1 B and C). A size 4 colony adopting
the 2:2 division strategy divides into two colonies of size 2, one of
which moves to an empty site. Alternatively, a size 4 colony
adopting the 1:3 division strategy divides into two unequally sized
colonies (of size 1 and size 3), the smaller of which moves to an
empty site. This situation mimics nature; if a biological colony
splits into two equal parts, one of the daughter colonies moves to a
new site close to the natal colony; if the colony is unequally split,
the smaller colony disperses far from the natal colony. The 2:2 and
1:3 division strategies correspond to budding and seed-like
dispersal, respectively. To purely clarify the effect of division ratio
on the population dynamics, we ignore spatial structure and
distance.

The size-structured matrix model for colonies adopting the 2:2
division strategy in the population is constructed as

x() = SiHx(), M

Table 1. Life history characteristics of long and short dispersal units.

Seeds, spawned eggs, and independently

vegetative propagule, broken coral braches, or dependently-founded ant

Dispersal units founding queens colonies
Dispersal distance long short
Size small large
Time to reproduction long short
Number many few
Survival rate low high

doi:10.1371/journal.pone.0091210.t001
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Figure 1. Life history of a colony and its division strategies. (A) Life history of a colony. (B) The 2:2 division strategy, in which a mature (size 4)
always divides into two size 2 daughter colonies. The new colonies grow to maturity. (C) The 1:3 division strategy, in which a mature colony always
divides into a small (size 1) and a large (size 3) daughter colony. The size 1 matures slowly via size 2 and size 3, while the size 3 colony matures rapidly.

doi:10.1371/journal.pone.0091210.g001

where () = (x(l), x1(2), xo(0), x3(0), x4(2)) and

l—hxs(t) 1-p 1—p> I—p3s  (1—=pa)(1—=hxo(2))
0 pi(l—g1) 0 0 0
S()=| hxq(r) P11 p2(1—g2) 0 hxo(1)
0 0 D282 p3(1—g3) 0
0 0 0 P3g3 pa(1—hxo(0))
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Let x0(f) be the density of empty sites at time ¢and x{{) (=1, 2, 3
and 4) be the density of colonies of size : adopting the 2:2 division
strategy at time ¢, subject to X; x{f) =1. The values of /x,({) in
element (3, 1) and /Axy(f) in element (3, 5) show that, when a size 4
colony divides, one of the two resulting size 2 colonies disperses to
an empty site while the other remains in its natal habitat.

Similarly, the size-structured matrix model for colonies adopting
the 1:3 division strategy in the population is constructed as

2 = Lyl ()
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where y() = (o(0), 210, y2(0), 250, »4(8)" and

L—hya(t)  1—p1 1—ps I—p3  (1=pa)(1=hyo(D))
hys(t)  pi(1—g1) 0 0 0
L(t)= 0 P11 p(l1—g) 0 0
0 0 P& pi(l—g3) hyo(t)
0 0 0 P3g3 pa(1=hyo(1))

Let yo(¢) be the density of empty sites at time ¢and y{) (:=1, 2, 3
and 4) be the density of colonies of size ¢ adopting the 1:3 division
strategy at time ¢, subject to %; p{f) =1. When a size 4 colony
divides, the probability of the resulting size 1 colony successfully
migrating to an empty site is determined by /y4(f) in element (2, 1),
while the probability that the size 3 colony remains in its natal
habitat is Ayy(f) in element (4, 5).

The dynamics of competition between colonies adopting 1:3
and 2:2 division strategies can be described using the competition
matrix, Fuw(f)):

w(ttl) = Hu(@)w(), ©)

in which the vector w(f) consists of x{/) and y(/) (=1, 2, 3, 4) and
zo(f) which is the density of empty sites, and the matrix F represents
the colony size transition. Detailed information about Eq. (3) is
given in Appendix S4.

Results when all growth probabilities are one
Mathematical results of the colony size-structured matrix
model. Here we consider the simplest case in which all growth
probabilities are one (g;=1). By local stability analysis of Eq. (1),
the equilibrium point where colonies adopting the 2:2 division
strategy become extinct (xp*(f) =1.0) is locally unstable when

2p9p3>py + (1—=pa)/ by “4)

otherwise the equilibrium point xp*(#) = 1.0 1s locally stable (see
appendix S1 and S2-(i)). This result implies that colonies adopting
the 2:2 division strategy could stably survive in the local
environment under conditions satisfying the inequality (4).
Inequality (4) is called the viability condition of the 2:2 division
strategy. When p<po<ps<ps, inequality (4) 1s locally stable at the
equilibrium x*()+x0* () +x5%()+x4*()>0 and xy*(£)<1.0 (see appen-
dix S1 and S2-(ii)).

Similarly, by local stability analysis of Eq. (2), the equilibrium
point where colonies adopting the 1:3 division strategy become
extinct (o*() = 1.0) is locally unstable when

(I4p1p2)ps=pat(1—pa)/ h. ®)

Under this condition, colonies adopting the 1:3 division strategy
can stably survive; hence, inequality (5) is called the viability
condition of the 1:3 division strategy (appendix S1 and S3-(i)).
When p)<po<ps<ps, inequality (5) defines the locally stable
condition at equilibrium (y,*(#) + yo*() + »3*(f) + 94 > 0 and
90%() < 1.0) (see appendix S1 and S3-(ii)).

We also analyze the matrix model in which two strategies
compete for empty sites (see appendix S4). The notation of
parameters and variables is unaltered, apart from the density of
empty sites at time ¢, denoted zp(f). As shown in appendix S4-(ii),
the equilibrium point of the pure 2:2 division strategy, (x;*(?) +
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x0¥(f) + x3*(f) + x4*() > 0 and p*(#) = 0 (1=1-4)), is locally stable
when inequalities (4) and (6) are satisfied, where (6) is given by

2p9 > 14p1po. (6)

Appendix S4-(iii) also shows that the equilibrium point of the
pure 1:3 division strategy, ()1*({) + p2*(0) + v5*(¢) + »4¥(#) > 0 and
x#(#) =0 (1= 1-4)), is locally stable when inequalities (5) and (7) are
satisfied, where (7) is given by

2p9 <1+pipo. (7)

Inequalities (6) and (7) are called the competition conditions.

These analyses indicates that the 2:2 division strategy wins
against the 1:3 division strategy when inequalities (4) and (6) are
satisfied, while upholding inequalities (5) and (7) favors the 1:3
division strategy. Inequalities (4)—(7) indicate that the division rate
h does not affect the competition condition, but does affect the
viability conditions. Under the viability conditions, small #
restrains colony survivorship. The competition conditions are
influenced by the survival probabilities of colonies of size 1 and 2
(see inequalities (6) and (7)), but not by those of older colonies.

Equation (6) can be rewritten as po>1/(2—p;)=1/2, indicating
that colonies adopting the 2:2 division strategy can overcome their
1:3 counterparts when po exceeds 0.5. Inequality (7) can be
rewritten as po<<1/(2—p;)=1. Equations (6) and (7) also indicate
that relatively high p, can favor colonies adopting the 2:2 division
strategy.

When d, = dy=d3=dy, i.e. the dynamics are size-independent,
inequality (7) always holds. This result implies that, in size-
independent dynamics, the 1:3 division strategy is always
advantageous over the 2:2 division strategy.

To investigate whether inequalities (4) — (7) hold for any values
of p1, po, p3 and p4, we conduct the numerical simulations of Eq.
(D1) presented in appendix S4, and also run the colony-based
simulations.

Simulation results of competition for empty sites between
two reproductive strategies (2:2 division and the 1:3
division). We conducted colony-based simulations based on
the assumptions in the previous section. We assume 2,500 sites,
either unoccupied or occupied by colonies adopting one of two
reproductive strategies. Each parameter set was run 100 times.

Three forms of the baseline death probability function are
considered in the simulations. Death type (1) assumes that
dy=ds=dy. If dy 1s higher than the other rates, this function is
similar to the exponential decreasing function adopted in
Nakamaru et al. [17]. In death type (i), the death probability
function is a linear function of size, and defining 4, and d
automatically determines dy and ds. In death type (iii), we assume
that dy=dy=ds5. If dy=dy, the four death probabilities are
identical. In this scenario, we can investigate the size-independent
ecological dynamics and compare them with the size-dependent
dynamics.

To understand the effect of colony division and death
probability on the ecological dynamics described by Egs. (1), (2)
and (D1), the theoretical results (computed from inequalities (4) —
(7)) and the simulation results are plotted in Fig. 2. We now
compare the results of inequalities (4) — (7) with those of the
colony-based simulations and the numerical calculations of eq. (3),
and show that these approaches are consistent. Figure 2 A shows
how the outcomes are affected by two death probabilities (4, and
dy) in death type (i). Each parameter set was tested in 100
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Figure 2. The d;-d; graphs of the theoretical and simulated
solutions in a completely mixed population. The horizontal and
vertical axes represent d; and d,, respectively The lines in the graphs
delineate the viability and competition conditions in the completely
mixed population. Theoretical analysis predicts that the 2:2 division
strategy wins in the dark gray area, while the 1:3 division strategy wins
in the light gray area. Each pie chart shows the average densities of sites
occupied by either of the two strategies, as well as the empty sites
(open circles) after 10,000 iterations in 100 simulation runs. The black
and gray portions of the filled circles indicate the average density of
sites occupied by the 2:2 and 1:3 division strategies, respectively. In
d,=0.0, matured colonies adopting both strategies ultimately survive
and neutrally coexist. Initial densities are z;=0.2 and
X1 =X =X3=X4=Y1 =y>=Yy3=Y4=0.1. Other parameters are: 2,500 sites
in the population, u=0 and h=1. (A) Death probability function
assumes that d,=d3;=d,. (B) Death probability function is linear. (C)
Death probability function assumes that d, =d,=ds.
doi:10.1371/journal.pone.0091210.g002

simulation runs. Since the simulated and theoretical outcomes are
consistent, we conclude that inequalities (4) — (7) can predict the
simulated ecological dynamics even though pj<po=ps<ps is
violated (see appendix S2). When inequality (7) is satisfied
(roughly, d,=d,), colonies adopting the 1:3 division strategy
dominate the population. Conversely, if inequality (6) is upheld
(roughly, d,>d,), the population is dominated by colonies
undergoing 2:2 division. When d; is high or neither viability
condition is satisfied, size 4 colonies die out before dispersing their
daughter colonies and all colonies become extinct.

Figure 2 B shows the simulation outcomes in the d,- dy graph in
death type (i1). In parameter sets satistying ¢,>d, and small dj,
colonies adopting the 2:2 division strategy dominate the popula-
tion in some cases. When d; or d, is high, all colonies become
extinct. Otherwise, the population is dominated by colonies
adopting the 1:3 division strategy. As also shown in Fig. 2 B,
inequalities (4) — (7) can predict the simulated ecological dynamics
even when py=po=p3=p, is violated (See appendix S2). In death
type (iii), colonies adopting the 2:2 division strategy are always
overwhelmed by those undertaking the 1:3 division strategy
(figure 2 C).

Figure 2 displays the outcomes of special cases of the death
functions. One fixed (d; =0.2) and three variable (d;, do and ds)
death probabilities were assumed in the additional simulations
(figures are not shown). The outcome of this scenario also support
inequalities (4) — (7), in which the competition between the two
strategies depends on both d; and dy, and colony survivorship is
affected by all death probabilities. The high &, ensures that
colonies adopting the 2:2 division strategy ultimately win, while
low dy favors the 2:2 division strategy.

We conclude that the 2:2 division strategy is advantageous over
the 1:3 strategy when the death probability of size 1 colonies is
relatively higher than that of size 2 colonies (see Eq. (6) and Fig. 2).
Otherwise, the 1:3 strategy is favorable. The reasons for these
findings are now discussed: Fig. 1 C shows that the 1:3 strategy
divides a mature colony into two daughter colonies of unequal size
(1 and 3). The size 1 colony matures much more slowly than the
size 3 colony, which rapidly (by comparison) reaches size 4 and
divides. By contrast, the 2:2 strategy divides a mature colony into
two half-sized colonies (figure 1 B). A size 2 colony matures more
rapidly than a size 1 colony but less rapidly than one of size 3.
Therefore, if all colonies share the same death probability, the 1:3
division strategy is advantageous over the 2:2 strategy because the
probability of reproduction is higher for size 3 colonies than for
size 2 colonies (see Fig. 1 B and C).

Now consider the scenario in which the death probability of a
size 1 colony is prohibitively high. Once colonies adopting the 1:3
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division strategy have divided, the size 1 daughter colonies die out,
while the size 3 colonies survive and mature. Colonies adopting
the 2:2 division strategy are not affected by the small survival
chance of size 1 colonies, and both daughter colonies will likely
survive.

Next, we assign a high death probability to a size 2 colony, and
observe the effects on the ecological dynamics. Figure 1 B indicates
that colonies adopting the 2:2 division strategy can scarcely
increase their numbers because most of the daughter colonies dies
out before reaching maturity. Meanwhile, although new size 1
colonies also die out, the size 3 colonies can survive to maturity.
Therefore, imposing a high death probability on size 2 colonies
favors colonies adopting the 1:3 division strategy. This discussion is
supported by the competition conditions (Egs. (6) and (7)).

The results when all growth probabilities are less than
one

The following analysis concerns the effect of growth probability
on the ecological dynamics. Applying the methods of appendices
S1-S3 to Egs. (1) and (2), the viability condition of the 2:2 and 1:3

division strategies are respectively obtained as

2pop3ggs= (pat (1=pa)/ B)(1 = pa(1—ga))(1 = p3(1 —g3)), 8)
and (p1pegiget (1=p1(1=g))(1 —pa(l —2))) pags
>(pat (1=pa)/B) (1=p1(1=g1)) (1= po(1 = g2))(1 = p3(1 —g3)). (9)

Applying the methods of appendix S4 to Eq. (3) and to the
general equation (D1), we can calculate the conditions under
which the 2:2 division strategy wins against the 1:3 strategy when
inequalities (8) and (10) are satisfied, where (10) is given by

2pago(1=p1(1=g1)) > (1=pr(1=g))(1 —pa(1—g2)) +p1p29182- (10)
On the other hand, if inequalities (9) and (11) hold, the 1:3

division strategy can defeat the 2:2 strategy, where (11) is given by

2pogo(1=p1(1=g1)) < (1=p1(1=g))(1 —po(1 =) + pr1pogige- (11)

Inequalities (10) and (11) are called the competition conditions.

The competition conditions are independent of the division rate
hy, but & does affect the viability conditions. In essence, small /
restrains colony survival. The competition conditions are influ-
enced by the survival and growth probabilities of size 1 and 2
colonies (see also inequalities (6) and (7)), but not by those of older
colonies.

When d, =dy = ds = dy and g, = gy = g3, interpreted as no colony
dynamics, inequality (11) is always upheld. This result implies that,
in static colonies, the 1:3 division strategy always confers survival
at the expense of the 2:2 division strategy.

We now compare the results of inequalities (8)-(11) with those of
the colony-based simulations and the numerical calculations of eq.
(3), and show that these approaches are consistent. First, we
examine the effect of growth probabilities on the system using the
outcomes derived from inequalities (8) — (11). Figure 3 shows the
effect of g, and g, (= g3) on the competition and viability conditions
defined in inequalities (8) — (11). If go>g; = g3, the fastest growing
colonies are those increasing from size 2 to 3. This scenario mimics
logistic growth. When d,=0.35>dy=d5=4d,=0.15, and also
g1=g=g3=1 (see Figures 2 A and 3 A), the population is
dominated by colonies adopting the 2:2 division strategy. When
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Figure 3. The g,-g, plot of simulated and theoretical results in
a completely mixed population. Simulations are iterated 6,250
times. Parameters are d, =d;=d;=0.15, h=1, u=0. The horizontal and
vertical axes represent g, (=gs) and g,, respectively. Initial densities are
=0.6 and x; =X, =X3=X4=Y; =Y, =Y3=Y4=0.05. More information is
provided in the caption to Fig. 2. (A) d,=0.35. (B) d;=0.15.
doi:10.1371/journal.pone.0091210.g003

go>>g1 = g3, colonies adopting the 2:2 division strategy can always
defeat their unequally dividing counterparts. Conversely, lower g,
favors colonies adopting the 1:3 division strategy. When
di=dy=d3=dy=0.15, and also gy =g =g3=1, the 1:3 division
strategy becomes favorable (see figure 3 B). When g,<g; =g,
colonies adopting the 1:3 division strategy outcompete those
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adopting the 2:2 division strategy. The reverse occurs when
g9>>g1 = g3, especially when gy is high. According to Figure 3, low
and high g, promote the 1:3 division strategy and the 2:2 division
strategy, respectively. These results are supported by the
simulation outcomes.

Model 2 and results: Direct competition between a

dispersing colony and settled colonies

Thus far, the model has assumed no direct competition between
colonies; dispersing colonies avoid sites occupied by existing
colonies, and seek unoccupied sites in which to settle. However,
direct competition is the norm in nature. In this section, we
examine the effect of direct competition imposed by dispersing
colonies settling at new sites.

Competition is introduced to the baseline model with g;=1.
Once a colony has divided into two, one of the daughter colonies
migrates from the natal colony site to a new site chosen randomly
from the site population. If the site is empty, the dispersing colony
settles there. If the site is occupied by another colony, the
dispersing colony competes with the settled colony for the space.
Let w; be the probability that a dispersing colony of size 7 invades
and annihilates a settled colony of size ;. We investigate three types
of direct competition: (i) w;= 0.0, (i) w;= 1.0, (i) w;=1 if >y,
w;=0.5 if i=j, and w;=0.0 if i<j. In situation (i), the settled
colony can overcome the dispersing colony regardless of its size,
and the dispersing colony dies out. In (ii), the dispersing colony
always combats the settled colony, the settled colony dies out, and
the dispersing colony occupies the site. Situation (iii) implies that a
larger colony always overtakes a smaller one.

If all colonies in the population adopt the 2:2 division strategy,
the matrix construct is

x(l) = Si(hx(d), (12)
where x(f) = (xo(f), x1(9), xa(2), x3(d), x4(t))’ and

1—/xq(2) 1—p 1—p> 1—ps (1=ps)(1=h)

0 7h)€4([)Wz] 0 0 0
Si(t)= hxa(1) P1+hxa(t)wa 0 hxa(H)was h+hxa(t)wa
0 0 P2 —hx;;(l)wn 0
0 0 0 D3 p4(1 7/1) 711){4([)}1/‘24

At equilibrium, »* = (1, 0, 0, 0, 0) is locally unstable when
2pops > pa + (1=ps)/h regardless of wy which corresponds to
inequality (4).

Similarly, if all colonies in the population adopt the 1:3 division
strategy, the matrix construct is

20 = Liip(), (13)

where y() = (0(0), 210, y2(8), 230, »4(8)’ and

L—hys(t) 1—p 1—p> 1—ps3 (1=pa)(1—h)

hya(1) 0 hya(t)wiz hya(t)wis hya()wia
Li(n= 0 P —hya(wi 0 0
0 0 P2 —hys(t)wi3 h
0 0 0 p3 pa(l—h)—hys(tywis
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