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Abstract

Dispersal is a topic of great interest in ecology. Many organisms adopt one of two distinct dispersal tactics at reproduction:
the production of small offspring that can disperse over long distances (such as seeds and spawned eggs), or budding. The
latter is observed in some colonial organisms, such as clonal plants, corals and ants, in which (super)organisms split their
body into components of relatively large size that disperse to a short distance. Contrary to the common dispersal viewpoint,
short-dispersal colonial organisms often flourish even in environments with frequent disturbances. In this paper, we
investigate the conditions that favor budding over long-distance dispersal of small offspring, focusing on the life history of
the colony growth and the colony division ratio. These conditions are the relatively high mortality of very small colonies,
logistic growth, the ability of dispersers to peacefully seek and settle unoccupied spaces, and small spatial scale of
environmental disturbance. If these conditions hold, budding is advantageous even when environmental disturbance is
frequent. These results suggest that the demography or life history of the colony underlies the behaviors of the colonial
organisms.
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Introduction

Dispersal distance varies widely among organisms. Dispersal

determines the genetic structure of the meta-population and

influences the evolution of individual characteristics such as

mortality, reproductive efforts, sex allocation and altruism [1–3].

Since dispersal is a costly activity, why organism disperse has

become an important issue in evolutionary ecology [4,5]. In the

pioneering meta-population model of Hamilton and May (1977) it

was shown that dispersal can evolve even when the dispersal cost is

so high that nearly all dispersers are destined to die. Subsequent

studies identified specific factors that favor dispersal over non-

dispersal, such as the avoidance of competition among relatives

and inbreeding [1,2]. Disturbances such as predation, drought and

flooding are regarded as important general triggers of dispersal,

encouraging organisms to hedge the risks [6].

However, many organisms do not disperse long distances. For

example, some organisms often adopt an ‘‘budding’’ strategy,

where a colony splits into two or more parts which subsequently

move away from each other. The budding by clones, buds, or

propagules has been studied theoretically and experimentally from

the viewpoint of the evolution of altruism and sex ratio [7–9].

However, those studies did not focus on the difference in dispersal

distance, while in many real organisms the budding strategy is

typically characterized by shorter-range dispersal in comparison to

non-budding dispersal. Contrary to the conventional view,

organisms reproducing by budding often survive in environments

undergoing frequent disturbance. For example, many invasive

clonal plants that are specialists of disturbed habitats predom-

inantly use vegetative reproduction, despite retaining the seed-

producing capability that would enhance their spread [10,11].

New colonies of branching gorgonian coral (Plexaurella sp.) exposed

to waves are predominantly founded by fragments of broken

branches, rather than by inseminated gametes that can migrate

long distances [12]. In some invasive ants, such as Linepithema

humile (the Argentine ant) and Wasmannia auropunctata (the tiny fire

ant), winged queens do not engage in nuptial (dispersal) flights.

Instead they mate within or near natal nests, and new colonies are

founded by colony-splitting (fission or budding), in which queens

search for a new nest site on foot, accompanied by some workers

[13,14]. These invaders are recognized as specialists of disturbed

habitats [13,15,16]. However, the ecological conditions favoring

budding remain obscure.

All of the above examples (clonal plants, corals and ants) are

colonial or super organisms that must maintain a spatially fixed life

following initial settlement. Assuming such colonial life, Nakamaru

et al. (2007) pioneered the investigation of ecological conditions

favoring budding under disturbance in a spatially explicit

computational model (lattice model) [17]. They identified an

important trade-off between dispersal distance and offspring size

(table 1); small reproductive units, such as plant seeds, spawned

coral eggs and winged ant queens, travel long-distance, whereas
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large units, such as the propagules of clonal plants, broken

branches of corals and dependently-founded ant colonies remain

within their local environment. This difference in dispersal affects

the survival and growth of offspring; small offspring suffer low

survival and reach maturity comparatively slowly, while large

offspring (buds) benefit from high survival and rapid growth to

maturity. Nakamaru et al. (2007) concluded that the short distance

dispersal strategy (budding) is advantageous over long distance

dispersal (non-budding) under conditions of (i) very high mortality

of a small-sized colony, or (ii) relatively frequent environmental

disturbance over a small spatial scale.

However, Nakamaru et al. did not clarify the effect of spatial

structure and the life history on the above-mentioned advantage.

For each colony, they specifically assumed that growth is logistic

and that death rate is a negative exponential function of colony

size. However, other survivorship patterns and other growth

functions are possible in nature. The authors failed in their quest

for a mathematical model that could accommodate relatively

complicated assumptions and therefore could not obtain analytical

results. These drawbacks have precluded a precise understanding

of the adaptive significance of budding. To more generally

understand the ecological conditions that induce budding dispers-

al, here we investigate the characteristics of an organism’s life

history functions, such as survivorship and colony growth, that

favor budding dispersal under disturbance.

We adopt the general view that life history parameters (survival,

growth and reproduction functions) directly determine the evolved

dispersal strategy [18,19]. Environmental conditions, such as

spatial structure and disturbance, influence the above parameters

in a complicated manner through environment vs. phenotype

interactions. In this paper we make a simple generalized

assumption that is applicable to colonial organisms adopting

similar resource allocation strategies. We first focus on colonial life

history using a model without spatial structure, called the baseline

model. This model assumes discrete colony size, assigning different

death and growth probabilities to each colony size. Under this

assumption, we can construct discrete equations or a matrix model

in the baseline model that permit exact solutions. We clarify the

effects of life histories or demographics (such as survivorship and

growth rate) on the competition between the two strategies, i.e.

budding vs. non-budding. We also examine the conditions under

which budding is advantageous over non-budding when realistic

and possible assumptions are added to the baseline model.

Methods and Results

Model 1: The baseline model in the completely mixed
population

It is common that an individual is assumed to be a basic unit in

the agent-based simulation model. In contrast, here the basic unit

in our agent-based simulation model is the clonal (super) organism

or the colony of individuals, and the model is called the colony-

based model. Gardner and Grafen (2009) proved that there is no

mathematical difference between an individual organism and a

clonal group if social groups have no intracolonial conflicts [20].

We consider only non-spatial structures or completely mixed

populations, ignoring the effect of dispersal distance. Instead, we

aim to clarify the effect of colonial life history patterns on the

population dynamics. The colony size-structured matrix model

assumes four colony sizes, designated size 1, size 2, size 3 and size

4. The first three denote immature colonies, while size 4 represents

the mature colony. Life history pattern is described by two

parameters; the baseline death probability and the growth

probability of the colony (Fig. 1 A). The baseline death probability

of a colony of size i is defined as di (0#di#1, i = 1, 2, 3 and 4.). An

additional death probability, independent of the baseline death, is

imposed by disturbance. The survival probability of a colony of

size i is 12di, defined as pi (0#pi#1, i = 1, 2, 3 and 4). Let gi be the

probability that a colony of size i expands to size i+1 (0#gi#1,

i = 1, 2, 3). When a colony of size i survives with probability pi, it

expands to size i+1 with probability gi (i = 1, 2, 3); otherwise it

remains at its present size with probability 12gi. When the colony

has reached size 4, it can divide into two colonies, one of which

will colonize an empty site. Therefore the chance of division is

proportional to the density of empty sites in the population

multiplied by the division rate, h, where h controls the division

speed. A size 4 colony deprived of the opportunity to divide will

survive with probability p4.

The colony divides by one of two strategies: designated 2:2

division and 1:3 division (Fig.1 B and C). A size 4 colony adopting

the 2:2 division strategy divides into two colonies of size 2, one of

which moves to an empty site. Alternatively, a size 4 colony

adopting the 1:3 division strategy divides into two unequally sized

colonies (of size 1 and size 3), the smaller of which moves to an

empty site. This situation mimics nature; if a biological colony

splits into two equal parts, one of the daughter colonies moves to a

new site close to the natal colony; if the colony is unequally split,

the smaller colony disperses far from the natal colony. The 2:2 and

1:3 division strategies correspond to budding and seed-like

dispersal, respectively. To purely clarify the effect of division ratio

on the population dynamics, we ignore spatial structure and

distance.

The size-structured matrix model for colonies adopting the 2:2

division strategy in the population is constructed as

x(t) = S(t)x(t),

Table 1. Life history characteristics of long and short dispersal units.

Dispersal units
Seeds, spawned eggs, and independently
founding queens

vegetative propagule, broken coral braches, or dependently-founded ant
colonies

Dispersal distance long short

Size small large

Time to reproduction long short

Number many few

Survival rate low high

doi:10.1371/journal.pone.0091210.t001

(1)
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where x(t) = (x0(t), x1(t), x2(t), x3(t), x4(t))t and

S(t)~

1{hx4(t) 1{p1 1{p2 1{p3 1{p4ð Þ 1{hx0(t)ð Þ
0 p1 1{g1ð Þ 0 0 0

hx4(t) p1g1 p2 1{g2ð Þ 0 hx0(t)

0 0 p2g2 p3 1{g3ð Þ 0

0 0 0 p3g3 p4 1{hx0(t)ð Þ

2
6666664

3
7777775
:

Let x0(t) be the density of empty sites at time t and xi(t) (i = 1, 2, 3

and 4) be the density of colonies of size i adopting the 2:2 division

strategy at time t, subject to Si xi(t) = 1. The values of hx4(t) in

element (3, 1) and hx0(t) in element (3, 5) show that, when a size 4

colony divides, one of the two resulting size 2 colonies disperses to

an empty site while the other remains in its natal habitat.

Similarly, the size-structured matrix model for colonies adopting

the 1:3 division strategy in the population is constructed as

y(t) = L(t)y(t),

Figure 1. Life history of a colony and its division strategies. (A) Life history of a colony. (B) The 2:2 division strategy, in which a mature (size 4)
always divides into two size 2 daughter colonies. The new colonies grow to maturity. (C) The 1:3 division strategy, in which a mature colony always
divides into a small (size 1) and a large (size 3) daughter colony. The size 1 matures slowly via size 2 and size 3, while the size 3 colony matures rapidly.
doi:10.1371/journal.pone.0091210.g001

(2)
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where y(t) = (y0(t), y1(t), y2(t), y3(t), y4(t))t and

L(t)~

1{hy4(t) 1{p1 1{p2 1{p3 1{p4ð Þ 1{hy0(t)ð Þ
hy4(t) p1 1{g1ð Þ 0 0 0

0 p1g1 p2 1{g2ð Þ 0 0

0 0 p2g2 p3 1{g3ð Þ hy0(t)

0 0 0 p3g3 p4 1{hy0(t)ð Þ

2
6666664

3
7777775
:

Let y0(t) be the density of empty sites at time t and yi(t) (i = 1, 2, 3

and 4) be the density of colonies of size i adopting the 1:3 division

strategy at time t, subject to Si yi(t) = 1. When a size 4 colony

divides, the probability of the resulting size 1 colony successfully

migrating to an empty site is determined by hy4(t) in element (2, 1),

while the probability that the size 3 colony remains in its natal

habitat is hy0(t) in element (4, 5).

The dynamics of competition between colonies adopting 1:3

and 2:2 division strategies can be described using the competition

matrix, F(w(t)):

w(t+1) = F(w(t))w(t),

in which the vector w(t) consists of xi(t) and yi(t) (i = 1, 2, 3, 4) and

z0(t) which is the density of empty sites, and the matrix F represents

the colony size transition. Detailed information about Eq. (3) is

given in Appendix S4.

Results when all growth probabilities are one
Mathematical results of the colony size-structured matrix

model. Here we consider the simplest case in which all growth

probabilities are one (gi = 1). By local stability analysis of Eq. (1),

the equilibrium point where colonies adopting the 2:2 division

strategy become extinct (x0*(t) = 1.0) is locally unstable when

2p2p3.p4 + (12p4)/h,

otherwise the equilibrium point x0*(t) = 1.0 is locally stable (see

appendix S1 and S2-(i)). This result implies that colonies adopting

the 2:2 division strategy could stably survive in the local

environment under conditions satisfying the inequality (4).

Inequality (4) is called the viability condition of the 2:2 division

strategy. When p1#p2#p3#p4, inequality (4) is locally stable at the

equilibrium x1*(t)+x2*(t)+x3*(t)+x4*(t).0 and x0*(t),1.0 (see appen-

dix S1 and S2-(ii)).

Similarly, by local stability analysis of Eq. (2), the equilibrium

point where colonies adopting the 1:3 division strategy become

extinct (y0*(t) = 1.0) is locally unstable when

(1+p1p2)p3.p4+(12p4)/h.

Under this condition, colonies adopting the 1:3 division strategy

can stably survive; hence, inequality (5) is called the viability

condition of the 1:3 division strategy (appendix S1 and S3-(i)).

When p1#p2#p3#p4, inequality (5) defines the locally stable

condition at equilibrium (y1*(t) + y2*(t) + y3*(t) + y4*(t) . 0 and

y0*(t) , 1.0) (see appendix S1 and S3-(ii)).

We also analyze the matrix model in which two strategies

compete for empty sites (see appendix S4). The notation of

parameters and variables is unaltered, apart from the density of

empty sites at time t, denoted z0(t). As shown in appendix S4-(ii),

the equilibrium point of the pure 2:2 division strategy, (x1*(t) +

x2*(t) + x3*(t) + x4*(t) . 0 and yi*(t) = 0 (i = 1–4)), is locally stable

when inequalities (4) and (6) are satisfied, where (6) is given by

2p2 .1+p1p2.

Appendix S4-(iii) also shows that the equilibrium point of the

pure 1:3 division strategy, (y1*(t) + y2*(t) + y3*(t) + y4*(t) . 0 and

xi*(t) = 0 (i = 1–4)), is locally stable when inequalities (5) and (7) are

satisfied, where (7) is given by

2p2 ,1+p1p2.

Inequalities (6) and (7) are called the competition conditions.

These analyses indicates that the 2:2 division strategy wins

against the 1:3 division strategy when inequalities (4) and (6) are

satisfied, while upholding inequalities (5) and (7) favors the 1:3

division strategy. Inequalities (4)–(7) indicate that the division rate

h does not affect the competition condition, but does affect the

viability conditions. Under the viability conditions, small h

restrains colony survivorship. The competition conditions are

influenced by the survival probabilities of colonies of size 1 and 2

(see inequalities (6) and (7)), but not by those of older colonies.

Equation (6) can be rewritten as p2.1/(22p1)$1/2, indicating

that colonies adopting the 2:2 division strategy can overcome their

1:3 counterparts when p2 exceeds 0.5. Inequality (7) can be

rewritten as p2,1/(22p1)#1. Equations (6) and (7) also indicate

that relatively high p2 can favor colonies adopting the 2:2 division

strategy.

When d1 = d2 = d3 = d4, i.e. the dynamics are size-independent,

inequality (7) always holds. This result implies that, in size-

independent dynamics, the 1:3 division strategy is always

advantageous over the 2:2 division strategy.

To investigate whether inequalities (4) – (7) hold for any values

of p1, p2, p3 and p4, we conduct the numerical simulations of Eq.

(D1) presented in appendix S4, and also run the colony-based

simulations.

Simulation results of competition for empty sites between

two reproductive strategies (2:2 division and the 1:3

division). We conducted colony-based simulations based on

the assumptions in the previous section. We assume 2,500 sites,

either unoccupied or occupied by colonies adopting one of two

reproductive strategies. Each parameter set was run 100 times.

Three forms of the baseline death probability function are

considered in the simulations. Death type (i) assumes that

d2 = d3 = d4. If d1 is higher than the other rates, this function is

similar to the exponential decreasing function adopted in

Nakamaru et al. [17]. In death type (ii), the death probability

function is a linear function of size, and defining d1 and d4

automatically determines d2 and d3. In death type (iii), we assume

that d1 = d2 = d3. If d1 = d4, the four death probabilities are

identical. In this scenario, we can investigate the size-independent

ecological dynamics and compare them with the size-dependent

dynamics.

To understand the effect of colony division and death

probability on the ecological dynamics described by Eqs. (1), (2)

and (D1), the theoretical results (computed from inequalities (4) –

(7)) and the simulation results are plotted in Fig. 2. We now

compare the results of inequalities (4) – (7) with those of the

colony-based simulations and the numerical calculations of eq. (3),

and show that these approaches are consistent. Figure 2 A shows

how the outcomes are affected by two death probabilities (d1 and

d4) in death type (i). Each parameter set was tested in 100

(7)

(3)

(4)

(5)

(6)
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simulation runs. Since the simulated and theoretical outcomes are

consistent, we conclude that inequalities (4) – (7) can predict the

simulated ecological dynamics even though p1#p2#p3#p4 is

violated (see appendix S2). When inequality (7) is satisfied

(roughly, d1#d4), colonies adopting the 1:3 division strategy

dominate the population. Conversely, if inequality (6) is upheld

(roughly, d1.d4), the population is dominated by colonies

undergoing 2:2 division. When d4 is high or neither viability

condition is satisfied, size 4 colonies die out before dispersing their

daughter colonies and all colonies become extinct.

Figure 2 B shows the simulation outcomes in the d1- d4 graph in

death type (ii). In parameter sets satisfying d1.d4 and small d4,

colonies adopting the 2:2 division strategy dominate the popula-

tion in some cases. When d1 or d4 is high, all colonies become

extinct. Otherwise, the population is dominated by colonies

adopting the 1:3 division strategy. As also shown in Fig. 2 B,

inequalities (4) – (7) can predict the simulated ecological dynamics

even when p1#p2#p3#p4 is violated (See appendix S2). In death

type (iii), colonies adopting the 2:2 division strategy are always

overwhelmed by those undertaking the 1:3 division strategy

(figure 2 C).

Figure 2 displays the outcomes of special cases of the death

functions. One fixed (d4 = 0.2) and three variable (d1, d2 and d3)

death probabilities were assumed in the additional simulations

(figures are not shown). The outcome of this scenario also support

inequalities (4) – (7), in which the competition between the two

strategies depends on both d1 and d2, and colony survivorship is

affected by all death probabilities. The high d1 ensures that

colonies adopting the 2:2 division strategy ultimately win, while

low d2 favors the 2:2 division strategy.

We conclude that the 2:2 division strategy is advantageous over

the 1:3 strategy when the death probability of size 1 colonies is

relatively higher than that of size 2 colonies (see Eq. (6) and Fig. 2).

Otherwise, the 1:3 strategy is favorable. The reasons for these

findings are now discussed: Fig. 1 C shows that the 1:3 strategy

divides a mature colony into two daughter colonies of unequal size

(1 and 3). The size 1 colony matures much more slowly than the

size 3 colony, which rapidly (by comparison) reaches size 4 and

divides. By contrast, the 2:2 strategy divides a mature colony into

two half-sized colonies (figure 1 B). A size 2 colony matures more

rapidly than a size 1 colony but less rapidly than one of size 3.

Therefore, if all colonies share the same death probability, the 1:3

division strategy is advantageous over the 2:2 strategy because the

probability of reproduction is higher for size 3 colonies than for

size 2 colonies (see Fig. 1 B and C).

Now consider the scenario in which the death probability of a

size 1 colony is prohibitively high. Once colonies adopting the 1:3

Figure 2. The d1-d4 graphs of the theoretical and simulated
solutions in a completely mixed population. The horizontal and
vertical axes represent d1 and d4, respectively The lines in the graphs
delineate the viability and competition conditions in the completely
mixed population. Theoretical analysis predicts that the 2:2 division
strategy wins in the dark gray area, while the 1:3 division strategy wins
in the light gray area. Each pie chart shows the average densities of sites
occupied by either of the two strategies, as well as the empty sites
(open circles) after 10,000 iterations in 100 simulation runs. The black
and gray portions of the filled circles indicate the average density of
sites occupied by the 2:2 and 1:3 division strategies, respectively. In
d4 = 0.0, matured colonies adopting both strategies ultimately survive
and neutral ly coexist . In it ia l densit ies are z 0 = 0.2 and
x1 = x2 = x3 = x4 = y1 = y2 = y3 = y4 = 0.1. Other parameters are: 2,500 sites
in the population, u = 0 and h = 1. (A) Death probability function
assumes that d2 = d3 = d4. (B) Death probability function is linear. (C)
Death probability function assumes that d1 = d2 = d3.
doi:10.1371/journal.pone.0091210.g002
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division strategy have divided, the size 1 daughter colonies die out,

while the size 3 colonies survive and mature. Colonies adopting

the 2:2 division strategy are not affected by the small survival

chance of size 1 colonies, and both daughter colonies will likely

survive.

Next, we assign a high death probability to a size 2 colony, and

observe the effects on the ecological dynamics. Figure 1 B indicates

that colonies adopting the 2:2 division strategy can scarcely

increase their numbers because most of the daughter colonies dies

out before reaching maturity. Meanwhile, although new size 1

colonies also die out, the size 3 colonies can survive to maturity.

Therefore, imposing a high death probability on size 2 colonies

favors colonies adopting the 1:3 division strategy. This discussion is

supported by the competition conditions (Eqs. (6) and (7)).

The results when all growth probabilities are less than
one

The following analysis concerns the effect of growth probability

on the ecological dynamics. Applying the methods of appendices

S1–S3 to Eqs. (1) and (2), the viability condition of the 2:2 and 1:3

division strategies are respectively obtained as

2p2p3g2g3.(p4+ (12p4)/h)(12p2(12g2))(12p3(12g3)),

and (p1p2g1g2+ (12p1(12g1))(12p2(12g2))) p3g3

.(p4+ (12p4)/h) (12p1(12g1)) (12p2(12g2))(12p3(12g3)).

Applying the methods of appendix S4 to Eq. (3) and to the

general equation (D1), we can calculate the conditions under

which the 2:2 division strategy wins against the 1:3 strategy when

inequalities (8) and (10) are satisfied, where (10) is given by

2p2g2(12p1(12g1)) . (12p1(12g1))(12p2(12g2)) +p1p2g1g2.

On the other hand, if inequalities (9) and (11) hold, the 1:3

division strategy can defeat the 2:2 strategy, where (11) is given by

2p2g2(12p1(12g1)) , (12p1(12g1))(12p2(12g2)) + p1p2g1g2.

Inequalities (10) and (11) are called the competition conditions.

The competition conditions are independent of the division rate

h, but h does affect the viability conditions. In essence, small h

restrains colony survival. The competition conditions are influ-

enced by the survival and growth probabilities of size 1 and 2

colonies (see also inequalities (6) and (7)), but not by those of older

colonies.

When d1 = d2 = d3 = d4 and g1 = g2 = g3, interpreted as no colony

dynamics, inequality (11) is always upheld. This result implies that,

in static colonies, the 1:3 division strategy always confers survival

at the expense of the 2:2 division strategy.

We now compare the results of inequalities (8)-(11) with those of

the colony-based simulations and the numerical calculations of eq.

(3), and show that these approaches are consistent. First, we

examine the effect of growth probabilities on the system using the

outcomes derived from inequalities (8) – (11). Figure 3 shows the

effect of g2 and g1 ( = g3) on the competition and viability conditions

defined in inequalities (8) – (11). If g2.g1 = g3, the fastest growing

colonies are those increasing from size 2 to 3. This scenario mimics

logistic growth. When d1 = 0.35.d2 = d3 = d4 = 0.15, and also

g1 = g2 = g3 = 1 (see Figures 2 A and 3 A), the population is

dominated by colonies adopting the 2:2 division strategy. When

g2.g1 = g3, colonies adopting the 2:2 division strategy can always

defeat their unequally dividing counterparts. Conversely, lower g2

favors colonies adopting the 1:3 division strategy. When

d1 = d2 = d3 = d4 = 0.15, and also g1 = g2 = g3 = 1, the 1:3 division

strategy becomes favorable (see figure 3 B). When g2,g1 = g3,

colonies adopting the 1:3 division strategy outcompete those

Figure 3. The g1-g2 plot of simulated and theoretical results in
a completely mixed population. Simulations are iterated 6,250
times. Parameters are d2 = d3 = d4 = 0.15, h = 1, u = 0. The horizontal and
vertical axes represent g1 ( = g3) and g2, respectively. Initial densities are
z0 = 0.6 and x1 = x2 = x3 = x4 = y1 = y2 = y3 = y4 = 0.05. More information is
provided in the caption to Fig. 2. (A) d1 = 0.35. (B) d1 = 0.15.
doi:10.1371/journal.pone.0091210.g003

(8)

(9)

(10)

(11)
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adopting the 2:2 division strategy. The reverse occurs when

g2.g1 = g3, especially when g2 is high. According to Figure 3, low

and high g2 promote the 1:3 division strategy and the 2:2 division

strategy, respectively. These results are supported by the

simulation outcomes.

Model 2 and results: Direct competition between a
dispersing colony and settled colonies

Thus far, the model has assumed no direct competition between

colonies; dispersing colonies avoid sites occupied by existing

colonies, and seek unoccupied sites in which to settle. However,

direct competition is the norm in nature. In this section, we

examine the effect of direct competition imposed by dispersing

colonies settling at new sites.

Competition is introduced to the baseline model with gi = 1.

Once a colony has divided into two, one of the daughter colonies

migrates from the natal colony site to a new site chosen randomly

from the site population. If the site is empty, the dispersing colony

settles there. If the site is occupied by another colony, the

dispersing colony competes with the settled colony for the space.

Let wij be the probability that a dispersing colony of size i invades

and annihilates a settled colony of size j. We investigate three types

of direct competition: (i) wij = 0.0, (ii) wij = 1.0, (iii) wij = 1 if i.j,

wij = 0.5 if i = j, and wij = 0.0 if i,j. In situation (i), the settled

colony can overcome the dispersing colony regardless of its size,

and the dispersing colony dies out. In (ii), the dispersing colony

always combats the settled colony, the settled colony dies out, and

the dispersing colony occupies the site. Situation (iii) implies that a

larger colony always overtakes a smaller one.

If all colonies in the population adopt the 2:2 division strategy,

the matrix construct is

x(t) = S1(t)x(t),

where x(t) = (x0(t), x1(t), x2(t), x3(t), x4(t))t and

S1(t)~

1{hx4(t) 1{p1 1{p2 1{p3 1{p4ð Þ 1{hð Þ
0 {hx4(t)w21 0 0 0

hx4(t) p1zhx4(t)w21 0 hx4(t)w23 hzhx4(t)w24

0 0 p2 {hx4(t)w23 0

0 0 0 p3 p4 1{hð Þ{hx4(t)w24

2
6666664

3
7777775
:

At equilibrium, x* = (1, 0, 0, 0, 0)t is locally unstable when

2p2p3 . p4 + (12p4)/h regardless of wij, which corresponds to

inequality (4).

Similarly, if all colonies in the population adopt the 1:3 division

strategy, the matrix construct is

y(t) = L1(t)y(t),

where y(t) = (y0(t), y1(t), y2(t), y3(t), y4(t))t and

L1(t)~

1{hy4(t) 1{p1 1{p2 1{p3 1{p4ð Þ 1{hð Þ
hy4(t) 0 hy4(t)w12 hy4(t)w13 hy4(t)w14

0 p1 {hy4(t)w12 0 0

0 0 p2 {hy4(t)w13 h

0 0 0 p3 p4 1{hð Þ{hy4(t)w14

2
6666664

3
7777775
:

(12)

(13)
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At equilibrium, y* = (1, 0, 0, 0, 0)t is locally unstable when

(1+p1p2)p3 . p4 + (12p4)/h regardless of wij, which corresponds to

inequality (5).

Interestingly, the baseline model with gi = 1 and the direct

competition model share the same local stability condition; an

equilibrium in which all colonies become extinct. This arises

because a newly-divided dispersing colony encountering many

empty sites at equilibrium will more likely settle at a site not

already occupied. In this situation, direct competition exerts little

influence on the population dynamics.

To investigate the effect of direct competition among colonies

adopting either reproductive strategy, we run the colony-based

simulations under death type (i), which most strongly favors the 2:2

division strategy among the three death categories. As shown in

Figure 4, among the three categories of direct competition, the 2:2

division strategy is most favored in category (ii).

Next, we discuss why direct competition category (ii), rather

than category (i), confers advantage to the 2:2 division strategy,

focusing on the disadvantage of the 1:3 division strategy in this

scenario. The 1:3 division strategy disperses a size 1 colony, while

the larger colony remains at the site. Recall that, in this strategy, a

size 3 colony matures more rapidly than a colony of size 1. In

direct competition category (ii), a size 3 colony dies out, whereas a

size 1 colony disperses and settles at a new site. Since a size 1

colony matures more slowly than a size 2 colony, the 2:2 division

strategy is advantageous over the 1:3 division strategy. Conversely,

in direct competition category (i), a size 3 colony can survive but a

size 1 colony cannot colonize a new site. In this scenario, the 1:3

division strategy is preferable.

The assumptions of the baseline model and direct competition

category (i) are similar in that dispersing colonies can settle only at

empty sites. However the two scenarios generate completely

different outcomes (see Figures 2 A and 4 A). In Figure 2 A, the 2:2

division strategy is more advantageous than in Figure 4 A, because

dispersing colonies always die out under direct competition (i),

unless they find an unoccupied site to colonize. Conversely, in the

baseline model, colonies do not disperse unless empty sites are

available. Although the dispersing colonies die out, the 1:3 division

strategy confers less damage than the 2:2 division strategy because

the size 3 colonies remaining at the natal site after division

compensate for the loss of the smallest colonies in direct

competition category (i). Populations of colonies adopting the 2:2

division strategy lose their dispersing size 2 members, which is

more damaging to the population dynamics than the loss of size 1

colonies. Therefore the 2:2 division strategy cannot outcompete

the 1:3 division strategy in this scenario.

Although direct competition (ii) most favors the 2:2 division

strategy among the three direct competitions, it disadvantages the

2:2 division strategy relative to the baseline model with gi = 1 (See

Figures 2 A and 4 B). Therefore we conclude that the 2:2 division

strategy is advantageous if newly-divided colonies disperse solely to

empty sites and never directly compete with colonies to claim an

occupied site. In the following section, we investigate the effect of

spatial structure and environmental disturbance on the population

dynamics by imposing spatial structure on the baseline model.

Model 3 and results: Spatial structure and environmental
disturbance

In a previous section, we found that imposing death type (i) and

the logistic growth of colonies favor the 2:2 division strategy over

the 1:3 strategy when dispersing colonies seek and settle at

unoccupied spaces in a completely mixed population. In this

section, we examine the environmental factors that favor the 2:2

division strategy over the 1:3 division strategy. To this end, we use

the lattice-structured population as a spatial structure, assuming

death type (i) and that a dispersing colony seeks and settles at an

unoccupied site. Although the 2:2 division strategy is advantageous

when g2.g1 and g3, here we set g1 = g2 = g3 = 1 for simplicity. We

then run simulations to investigate how the population dynamics

are affected by spatial structure and environmental disturbance.

We first present the assumptions of the spatial structured model

without environmental disturbance. We use a lattice model as a

spatial structure model. Each colony distributed in each lattice site,

possesses two traits; colony division and dispersal distance. Each

colony adopts either the 2:2 or the 1:3 division strategy (Figure 1),

and disperses either short- or long-distance.

This setup yields four possible division/dispersal strategies: 1:3

long, 1:3 short, 2:2 long and 2:2 short. The 1:3 long strategy

disperses the size 1 colony to a random site in the lattice-structured

population. The 1:3 short strategy displaces the size 1 colony to an

empty site among the nearest neighbors. The 2:2 long disperses

one of the size 2 colonies to a random site in the lattice-structured

population. The 2:2 short strategy and deposits one of the divided

size 2 colonies in a nearest-neighbor empty site. Among these

strategies, the 1:3 long and 2:2 short are most commonly found in

nature. Thus, we focus on the competition between the 1:3 long

and 2:2 short strategies in the lattice-structured population.

Simulated results in the absence of environmental

disturbance. First, to clarify the effect of the lattice-structured

population on the competition between the two strategies, we

assume no environmental disturbance. Computer simulations

were conducted using death type (i) and g1 = g2 = g3 = 1. The

outcomes of the simulations are presented in Figure 5. When the

colony is static (d1 = d2 = d3 = d4), and the death probabilities

relatively low, the 1:3 long overwhelms 2:2 short. Colonies

adopting the 2:2 short strategy can outcompete their 1:3 long

counterparts if the death probability of size 1 colonies is sufficiently

high. The 1:3 long strategy is favorable over the 2:2 short because

the latter strategy places a daughter colony only at a nearest

neighbor site. Thus, the 2:2 short strategy cannot search for

unoccupied sites when the local colony density is high, and

colonies adopting this strategy are prevented from increasing their

number. On the other hand, the 1:3 long strategy disperses a new

colony to a random site, releasing it from local density effects.

Provided that empty sites exist in the population, colonies adopting

the 1:3 long strategy can sustain population growth. We also

conducted simulations in which death probabilities d1, d2 and d3

were variable while d4 was fixed at 0.2. The outcomes of these

simulations are consistent with other results (see Figure S1).

When all of g1, g2, and g3 are less than one, the lattice-structured

population displays logistic growth, which favors the 2:2 short

strategy over the 1:3 long (see Figure S2).

Figure 4. The d1-d4 graph of the colony-based simulations in
which a dispersing colony competes with settled colonies. The
horizontal and vertical axes represent d1 and d4, respectively. Death type (i),
in which d2 = d3 = d4, is assumed. Each pie chart shows the average
densities of sites occupied by either of the two strategies, as well as the
empty sites (open circles) after 5,000 iterations of (A) and (B) and after
20,000 iterations of (C) in 100 simulations. The black and gray portions of
each circle indicate the average densities of sites occupied by colonies
undertaking the 2:2 division strategy and the 1:3 division strategy,
respectively. The open portion represents the average density of empty
sites. Initial densities are z0 = 0.6 and x1 = x2 = x3 = x4 = y1 = y2 =
y3 = y4 = 0.05. The other parameters are: 2,500 sites, u = 0 and h = 1. (A)
Direct competition (i), in which wij = 0.0. (B) Direct competition (ii), in which
wij = 1.0. (C) Direct competition (iii), in which a bigger colony always
combats a smaller one.
doi:10.1371/journal.pone.0091210.g004
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Furthermore, if competition is introduced among all four

division/dispersal strategies, colonies adopting either short-dis-

tance strategy rapidly become extinct because competition

strongly favors long dispersal distance. After just a few iterations,

the population comprises colonies adopting the 1:3 long strategy

and the 2:2 long strategy. Since the 1:3 and 2:2 long-dispersing

colonies in the lattice-structured population behave identically to

their counterparts adopting the 1:3 and the 2:2 division strategies

in the completely mixed population, the final competition

outcomes among all four division/dispersal strategies are those

of the 1:3 and the 2:2 division strategies in the completely mixed

population (see Figure S3).

Simulated results in the presence of environmental

disturbance. We now introduce two parameters of environ-

mental disturbance, u and q, defined as the frequency of

disturbance and the disturbance scale, respectively [17]. These

parameters are independent of the baseline natural death. q can be

interpreted as the degree of spatial autocorrelation. The proba-

bility that a colony of size i is removed from a site by

environmental disturbance (leaving the previously occupied site

empty) is defined as ui (0.0#ui#1.0). Disturbance is assumed

independent of colony size and density (u1 = u2 = u3 = u4 = u). A

disturbance kills a colony occupying a lattice site with probability

u. The disturbance then spreads to a nearest neighbor site (selected

randomly among eight neighbors) with probability q and kills the

residential colony (if present). If the site is unoccupied, it is merely

disturbed. The disturbance is repeated with probability q until

halted with probability 1 – q. For example, if u is low and q is high,

the lattice contains a few large or clustered disturbed areas. If u is

high and q is low, many small areas are disturbed in the lattice.

Figure 6 shows the effect of the disturbance parameters u and q

on the competition between 1:3 long and 2:2 short when

g1 = g2 = g3 = 1. This simulation assumes death type (i). As

demonstrated in Figure 6, low q and relatively high u confer an

advantage to the 2:2 short strategy when d1 is higher and the

difference between d1 and d2 ( = d3 = d4) is larger (see figure 6 C, D

and E). Increasing u and q favors the 1:3 long strategy at certain

death probabilities favoring the 2:2 short strategy in the absence of

disturbance. These outcomes are supported by standard dispersal

theory. The simulation outcomes are influenced by disturbance

when the growth probabilities are less than 1 (see figure S4).

According to this figure, the 2:2 short strategy is advantageous

over 1:3 long when size 2 colonies grow rapidly (high g2) relative to

g1 (which is fixed; see figure S4 A–C and D–F). Figure S4 A and D,

together with Figure S4 B and E, indicate that the 2:2 short

strategy is advantageous when g1 is low relative to g2.

Discussion and Conclusions

We examined the ecological conditions under which budding

can be advantageous over migration in colonial organisms. The

main conclusions are summarized as follows: (1) when the life

history parameters are independent of colony size, budding

colonies are overwhelmed by dispersive colonies. (2) When the

death probability of the smallest colonies is relatively higher than

that of more mature colonies, survival favors the budding strategy.

The death function can be modeled as a negative exponential

function of the continuous lifespan. (3) Budding wins against

dispersal when the growth rates of size 1 and size 3 colonies are

lower than that of size 2 colonies. In this scenario, colonies

undergo logistic growth, which ensures their survival if they adopt

the budding strategy. (4) When a newly-divided dispersing colony

does not compete with a settled colony for space, but instead

colonizes open spaces, the budding strategy is advantageous over

dispersal. This corresponds to the situation in which founding

colonies leave their natal site, and seek and settle at a nearby open

space.

We then examine the effects of spatial structure and environ-

mental disturbance on the population dynamics. Relative to

dispersal, the budding strategy proved less favorable in spatial

structured populations than in completely mixed populations. This

occurs because long distance dispersal prevents local overcrowd-

ing. In the event of environmental disturbance, long distance

dispersal confers a survival advantage over budding species

because migrating species can escape the risk. However, when

the scale of environmental disturbance is small, budding can retain

an advantage even under relatively high frequency of environ-

mental disturbance.

Our current paper roughly supports the main results presented

in Nakamaru et al. (2007). Among the various growth and death

functions, logistic colony growth (corresponding to g1, g3,g2) and

an exponentially decreasing death function (corresponding to

d1..d2, d3, d4) favor budding over dispersal. However, the

assumptions of our current model differ from those in Nakamaru

et al (2007). For example, the previous study assumed continuous

colony size, and that each colony obeys logistic growth and an

exponentially decreasing death function. Here, to more easily

investigate the effect of different growth and death functions on the

Figure 5. The d1-d4 graph of the two-dimensional lattice-
structured population. The horizontal and vertical axes represent d1

and d4, respectively. Each circle shows the average densities of sites
occupied by either of the two strategies, as well as the empty sites
(open circles) after 10,000 iterations in 100 simulations on the two-
dimensional lattice. The black and gray portions of each circle indicate
the average density of the sites occupied by colonies undertaking the
2:2 division and 1:3 division strategies, respectively. The open portion
represents the average density of the empty sites. The lines in the
graphs delineate the theoretical solutions in a completely mixed
population. In the dark gray area, the 2:2 division strategy theoretically
wins over the 1:3 strategy. In the light gray area, the predicted winning
strategy is 1:3. In d4 = 0.0, mature colonies always survive and a neutral
relationship develops between the strategies, which then coexist. Initial
densities are z0 = 0.2 and x1 = x2 = x3 = x4 = y1 = y2 = y3 = y4 = 0.1. The
other parameters are: 2,500 lattice sites, u = 0 and h = 1. The death
probability assumes death type (i).
doi:10.1371/journal.pone.0091210.g005
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evolutionary population dynamics, we discretized the colony size.

Despite these differences in model assumptions, the results are

consistent between the two studies, which strengthens our

conclusions.

Budding likely evolves when very small individuals (or colonies)

undergo logistic growth and are subject to relatively high

mortality. Furthermore, our models suggest that budding is

favored when dispersing offspring (colonies) can seek unoccupied

spaces in which to settle without inciting conflict. Ant or coral

colonies (or colonies of ramets in plants) usually exhibit type III

survivorship curves (negative exponential mortality functions) [21–

23] and logistic growth [21,24–26]. Furthermore, ants are known

to seek suitable empty sites when their colony disperses [27,28].

Thus, these organisms are naturally predisposed to budding.

Although our results also suggest that environmental disturbance

promotes long-dispersing by its risk hedging effect and discourages

budding, the benefits of budding may outweigh the disadvantage

of short-distance dispersal in some of the above mentioned

organisms (some corals, plants and ants) that reproduce by

budding in frequently disturbed environments.

Rigorous empirical testing of our hypothesis is limited by the

difficulty of distinguishing the baseline death and growth rates

from the changes in those parameters induced by disturbance.

However, we consider that our model predictions could be tested

on realized average death and growth rates that include both

baseline and additional (or reduced) rates caused by disturbance.

As already mentioned, life history parameters such as survival and

growth functions appear to directly determine which strategy

should evolve. If the average death and growth rates of fission-

dividing colonial organisms fulfill the predicted conditions favoring

the 2:2 division strategy described in Figure 2 and Eqs. (4) and (6),

our models would be supported. The life history of species or

closely related species adopting both budding and non-budding

tactics must be investigated in empirical studies.

Previous studies on the evolution of body-condition dependency

in dispersal have not directly addressed the budding phenomenon

[29–31]. Instead, these models assume semelparity or an annual

lifecycle. Budding is possible only when a parent (or part of the

parent’s body) survives after reproduction, coexists with the

offspring (perennial) and re-reproduces (iteroparity). Therefore,

our results are not directly comparable with the results of these

studies.

We now discuss the factors that should be incorporated into our

current model to render it more realistic. We assumed that a

colony reproduces by dividing in two. We also assumed that (not

always, however) large offspring disperse over a smaller distance

(size-dispersal distance trade off). However, another reproductive

constraint has been reported in the literature; the trade-off

between size and number of offspring (e.g. [32]). We consider that

the size-number trade-off is a sensible proposition when the

parental effort or total parental resource that can be allocated to

reproduction is constant. For generality in our current study, the

total reproductive effort was assumed labile (for instance, the

dispersive strategy (3:1 strategy) invests more resource in survival

than budding, given that the dispersed portion is the offspring). We

now introduce the 2:1:1: division strategy, in which a size 4 colony

divides into one size 2 colony and two size 1 colonies that then

disperse, and the 1:1:1:1 division strategy, in which a size 4 colony

divides into four size 1 colonies. We constrained the reproduction

effort to be constant (mimicking a size–number trade off) in the

competition between 2:1:1 vs. 2:2 strategies. However, biological

strategies might be more precisely described by 2:1:1 and 1:1:1:1

strategies; for example; plants may release many seeds and ant

colonies disperse many winged queens simultaneously. We have

partially tackled this situation. In well-mixed populations, the local

stable conditions of the 1:1:1:1 and the 2:1:1 division strategies are

4p1p2p3 . p4 + (12p4)/h and p2p3(1+2p1) . p4 + (12p4)/h,

respectively (method presented in the Appendices). The left hand

side of both inequalities specifies the probability that dividing

colonies mature to size 4. This result implies that (i) budding wins

against the other three strategies when the survival probability of

size 1 colonies (p1) is very small, and (ii) if the converse is true (p1 is

high), the 1:1:1:1 division strategy may be favored. The latter

condition might simulate the evolution of semelparity. However,

the strongest strategy when members of the population adopt all

four strategies has yet to be elucidated.Furthermore, one must

consider relaxing the assumption on the timing of reproduction.

Size 4 colonies only reproduce in the current model. If we assume

that size 2 and 3 colonies can reproduce, we can analyze the

conditions under which annual or perennial life cycles evolve

(regarding the reproductive strategy of size 2 colonies as annual

semelparity).

The current model does not include colony size effects in

disturbance. For instance, if smaller colonies are more vulnerable

to environmental disturbance than larger ones, the budding might

be more advantageous over dispersal than is predicted in this

paper. Finally, our study considers neither explicit competition

among individuals within each colony nor direct interference

induced by competition between neighboring colonies. In future

work, we will incorporate these factors into a more realistic model.

Budding has been considered to play a key role in evolutionary

ecology. Theoretically, budding increases the genetic variance

among groups and/or the genetic relatedness within groups, thus

promoting the evolution of group-advantageous traits such as

altruism and female-biased sex allocation [33–35]. On the other

hand, restricted migration (which frequently accompanies fission)

intensifies the local competition among related individuals and

hinders the evolution of altruism, despite the apparent enhance-

ment of genetic relatedness of interactants [36–38]. However,

recent theoretical and empirical studies suggest that budding can

solve this ‘‘viscous population dilemma’’ and enable the evolution

of altruism, because budding increases the number of more related

individuals in the background local population [7,8,39–45]. All of

the above-mentioned theoretical studies focus on the effect of

budding on evolved social traits. Thus, budding is assumed as the

given condition, without considering the environments in which

budding evolves. The latter problem is the focus of our current

paper. On the other hand, the ecological life history models

introduced here neglect issues such as relatedness and intra-

colonial conflicts. Therefore, our current study is complementary

to existing studies. In future studies, we hope to incorporate

relatedness and intra-colonial conflicts into the model scheme, to

better understand the ecological drivers of coevolving life history

and social traits.

Figure 6. The u-q graph of colony-based simulations in the two-dimensional lattice-structured population after 5,000 iterations.
Details are provided in the caption to Figure 5. The death probability assumes death type (i). (A) d1 = 0.25 and d2 = 0.15, (B) d1 = 0.3 and d2 = 0.15, (C)
d1 = 0.35 and d2 = 0.15, (D) d1 = 0.4 and d2 = 0.15, (E) d1 = 0.35 and d2 = 0.1 and (F) d1 = 0.35 and d2 = 0.2. Other parameters are: g1 = g2 = g3 = 1 and h = 1.
doi:10.1371/journal.pone.0091210.g006

Budding under Environmental Disturbance

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e91210



Supporting Information

Figure S1 Effect of life history parameters on competi-
tion between the two strategies in the two-dimensional
lattice. Black spheres indicate that the 2:2 short strategy

overcomes the 1:3 long strategy, while gray spheres indicate the

opposite. Where no spheres are presented, colonies have become

extinct. The volume of each sphere denotes the average density of

the strategy after 1,000 iterations. This graph shows the effect of

imposing the death probabilities d1, d2, d3. The parameters are

d4 = 0.2, g1 = g2 = g3 = 1, h = 1. Initial densities are z0 = 0.6 and

x1 = x2 = x3 = x4 = y1 = y2 = y3 = y4 = 0.05.

(TIF)

Figure S2 Effect of life history parameters on competi-
tion between the two strategies in the two-dimensional
lattice. Black spheres indicate that the 2:2 short strategy

overcomes the 1:3 long strategy, while gray spheres indicate the

opposite. Where no spheres are presented, the colonies have

become extinct. The volume of each sphere denotes the average

density of the strategy after 6,250 iterations. This graph illustrates

the effect of growth probabilities g1, g2, and g3. Other parameters

are: d1 = 0.35, d2 = d3 = d4 = 0.15. Initial densities are z0 = 0.6 and

x1 = x2 = x3 = x4 = y1 = y2 = y3 = y4 = 0.05.

(TIF)

Figure S3 Competition among four possible strategies
in a structured population residing on a two dimension-
al lattice, after 10,000 iterations. The parameters are g2 = g3,

d1 = 0.35, d2 = d3 = d4 = 0.15 and h = 1. The initial population

density of each strategy is the same and the initial density of vacant

sites is 0.6.

(TIF)

Figure S4 The u-q graph of colony-based simulations in
the two-dimensional lattice structured population after
6,250 iterations. Details are provided in the caption to Figure 5.

(A) g1 = 0.8 and g2 = 0.8, (B) g1 = 0.8 and g2 = 0.6, (C) g1 = 0.8 and

g2 = 0.4, (D) g1 = 0.6 and g2 = 0.8, (E) g1 = 0.6 and g2 = 0.6 and (F)

g1 = 0.6 and g2 = 0.4. Other parameters are: d1 = 0.35,

d2 = d3 = d4 = 0.15, h = 1 and g3 = 0.9. Initial density of each size

of each strategy is identical, and the initial density of vacant sites is

0.6.

(TIF)

Appendix S1 Corollary of Jury’s criterion.
(DOC)

Appendix S2 Local stability analysis of positive equilib-
rium on the 2:2 division strategy.
(DOC)

Appendix S3 Local stability analysis of positive equilib-
rium on the 1:3 division strategy.
(DOC)

Appendix S4 Local stability analysis in competitive
system between two strategies.
(DOC)
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