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Abstract

Imidacloprid, the largest selling insecticide in the world, has received particular attention from scientists, policymakers and
industries due to its potential toxicity to bees and aquatic organisms. The decline of aquatic macro-invertebrates due to
imidacloprid concentrations in the Dutch surface waters was hypothesised in a recent paper by Van Dijk, Van Staalduinen
and Van der Sluijs (PLOS ONE, May 2013). Although we do not disagree with imidacloprid’s inherent toxicity to aquatic
organisms, we have fundamental concerns regarding the way the data were analysed and interpreted. Here, we
demonstrate that the underlying toxicity of imidacloprid in the field situation cannot be understood except in the context
of other co-occurring pesticides. Although we agree with Van Dijk and co-workers that effects of imidacloprid can emerge
between 13 and 67 ng/L we use a different line of evidence. We present an alternative approach to link imidacloprid
concentrations and biological data. We analysed the national set of chemical monitoring data of the year 2009 to estimate
the relative contribution of imidacloprid compared to other pesticides in relation to environmental quality target and
chronic ecotoxicity threshold exceedances. Moreover, we assessed the relative impact of imidacloprid on the pesticide-
induced potential affected fractions of the aquatic communities. We conclude that by choosing to test a starting hypothesis
using insufficient data on chemistry and biology that are difficult to link, and by ignoring potential collinear effects of other
pesticides present in Dutch surface waters Van Dijk and co-workers do not provide direct evidence that reduced taxon
richness and abundance of macroinvertebrates can be attributed to the presence of imidacloprid only. Using a different line
of evidence we expect ecological effects of imidacloprid at some of the exposure profiles measured in 2009 in the surface
waters of the Netherlands.

Citation: Vijver MG, van den Brink PJ (2014) Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid: A Rebuttal and Some New Analyses. PLoS
ONE 9(2): e89837. doi:10.1371/journal.pone.0089837

Editor: Christopher Joseph Salice, Texas Tech University, United States of America

Received June 6, 2013; Accepted January 14, 2014; Published February 28, 2014

Copyright: � 2014 Vijver, van den Brink. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors have no support or funding to report.

Competing Interests: For transparency reasons, we mentioning the following: PvdB’s chair was cofunded between 2008 and 2011 by the following pesticide
producers, Bayer, which produces imidacloprid and Syngenta. We feel that this cofunding provides no compete of interest since we don’t claim that imidacloprid
poses less risks or toxicity than stated in the Van Dijk et al. (2013) as in the current paper we only criticized their methodology. This does not alter our adherence
to all the PLoS ONE policies on sharing data and materials. This current work has not been funded. Sponsors thus had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

* E-mail: vijver@cml.leidenuniv.nl

Introduction

The Netherlands is one of the world’s foremost agricultural

producers, with 2/3 of the total land mass devoted to agriculture

or horticulture. Land use is highly intensive in terms of output per

hectare or head of livestock [2]. To achieve such high outputs a

vast range of agricultural chemicals are used, including fertilizers,

veterinary drugs, pesticides and biocides. Different pesticides are

used depending on the crop that is grown on the land. There are

several routes that pesticides may enter surface waters. Pesticides

may be washed into ditches and rivers by rainfall; surface waters

can be contaminated by direct overspray or via runoff and

leaching from agricultural fields [3]. Emission to surface waters

(and thus pesticide residue concentrations) is dictated by many

factors such as distance of the crop from the ditch and the mode of

application, weather conditions and so on.

Neonicotinoids are the first new class of insecticides to be

introduced in the last 50 years. The neonicotinoid imidacloprid is

currently one of the most widely used insecticides in the world [4].

Recently, imidacloprid has received much negative attention: The

use of certain neonicotoids has been restricted in some countries

due to evidence of an unacceptably high risk of toxicity to bees, but

this restriction was not in effect in the Netherlands at the time of

writing this paper. On April 29, 2013, the European Union passed

a two-year ban on the use of three neonicotinoids: European law

restricts the use of imidacloprid, clothianidin, and thiamethoxam

on flowering plants for two years unless compelling evidence

comes out that proves that the use of the chemicals is

environmentally safe [5]. This ban is partially, restricted to some

applications in specific crops and likely covers 15% of the total use

of the three neonicotinoids in the Netherlands [6]. Temporary

suspensions had previously been enacted in countries such as

France, Germany, Switzerland and Italy. In March 2013, a review

of 200 studies on neonicotinoids was published by Mineau and

Palmer [7], calling for a ban on neonicotinoid use as seed

treatments because of their toxicity to birds, aquatic invertebrates,

and other wildlife. The EPA – USA is now re-evaluating the safety

of neonicotinoids.

Van Dijk and co-workers [1] aimed to assess the specific

relationship between imidacloprid residues in Dutch surface

waters, and the abundance of non-target macro-invertebrate taxa.
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As also stated by the authors, finding a statistical relationship

between those two datasets does not necessarily reflect causality,

because there could be other factors (e.g. other pesticide residues,

other local habitat factors) which drive observed patterns of

abundance. We have some fundamental criticisms on the way the

data were analysed and the results were interpreted, and we feel

that this can be challenged by existing data. Therefore as a

response to the paper of Van Dijk et al [1], and by using additional

data, we explore their two key assumptions: 1) residues of

pesticides other than imidacloprid, that are collinear with

imidacloprid exposure either do not exist or have negligible effects

on macroinvertebrate abundance and 2) that imidacloprid

concentrations can be extrapolated successfully over 160 days

and at a 1 km2 spatial scale.

Materials and methods

Data collection and treatment
Data on pesticides concentrations in surface water in the

Netherlands were obtained from the Dutch Pesticides Atlas. [8].

This is an online tool from which Dutch monitoring data can be

collected and processed into a graphic format. Here, data of all

pesticide active ingredients and metabolites (n = 634) collected in

2009 were used, since this data set is contiguous with the data used

by Van Dijk et al. [1]. Only one year was selected since it can be

expected that the correlations between pesticide occurrences will

be year-specific, so this correlation should also be assessed for each

year specifically. The 2009 dataset covered 302111 individual

measurement records of which 19693 measurements exceeded the

reporting limit (LOR). The measurements were performed on

4816 samples obtained from 723 different locations. The sample

by pesticide dataset is characterised by missing values (90% of

entries) and below LOR values (9% of all entries). This is a result

of the fact that every water manager has his own suite of pesticides

that is sampled, measured and evaluated. The selection of this

suite of pesticides is based on the crops and land-use in their

region. This selection of pesticides to be monitored improves the

efficiency of the monitoring efforts of the individual water

managers but yields a data set that has missing values and with

many , LOR values when the data of multiple water managers

are combined into one. To obtain frequency distributions of the

imidacloprid concentrations, data from 2010 and 2011 have also

been used.

Environmental quality standards (EQS) of all pesticides were as

follows: for imidacloprid the annual average-EQS value (AA-EQS)

is 0.067 mg/L (database value set 2-6-2010), and the maximum

allowable concentration (MAC-EQS) is 0.2 mg/L (database value

set 2-6-2010) as specified by the European Water Framework

Directive. In addition, in the Netherlands, the maximum

permissible concentration (MPC) of 0.013 mg/L is an important

additional criterion (database value set 8-10-2008).

For all samples in which a pesticide could not be detected or

quantified, the database substitutes a value of lower than the LOR.

The values of reporting limits vary across samples (unique location

x time). In our calculations these measurements below LOR are

set as zero. We chose to do so, as choosing any other value below

LOR would be arbitrary. Moreover, if not taking zero as a value,

any other chosen value will result in relatively high toxicity at

intensively measured surface waters even if the pesticides are not

applied in that area since all measurements results in a lowest

value possible of being below the LOR. These types of

assumptions are inherent when working with data sets based on

monitoring efforts.

Collinearity of imidacloprid concentrations with
concentrations of other pesticides

Collinearity refers to a linear relationship between two

explanatory variables, meaning that one can be linearly predicted

from the others with a non-trivial degree of accuracy. Collinearity

was determined on the data set of 2009 measurements restricted to

all samples with at least one measurement above the LOR. The

reduced data contained measured values for 18% of the samples,

of which 8% of the total were measurements above the LOR. In

order to assess the correlation between the concentrations of

different pesticides we needed a sample by pesticide matrix with as

little missing values as possible. From this gappy database, the

largest closed data sets were extracted using Principal Component

Analysis [9]. For this, measured values in the database were coded

as one and missing data by zero. After running the PCA, the

species-by-substance matrix was sorted, based on the scores of the

substances and samples on the first principal component. Using

this approach, it was possible to extract closed data sets by

extracting groups of samples with the same score on the first

principal component. Four data sets could be extracted that

contained more than 100 samples in which the same pesticides

were measured. One data set did not include imidacloprid and was

not taken into account. The remaining three matrices contained

114, 108 and 191 samples, 27, 51 and 54 pesticides, with 11, 11

and 13% of the measurements above the LOR for data set 1, 2

and 3, respectively. All sampling points of data set 1 were within

the provinces of Utrecht and Gelderland while all sampling points

of data set 2 and 3 were located in the province of South Holland.

The log((1000 * conc) +1) transformed pesticide concentration

values were analysed with Principal Component Analysis (PCA)

using the Canoco5 computer programme [10], (see Zafar et al.

[11] for the rationale of the transformation]. The pesticide data

were centred and standardised for each pesticide. The graphical

pictures based on orthogonal coordinate systems describe optimal

variance in a dataset. Points that are clustered near each other

have a strong correlation. PCA [9] transforms data to a new

coordinate system such that the greatest variance by any

projection of the data comes to lie on the first coordinate (called

the first principal component), the second greatest variance on the

second coordinate [12].

Calculating multi substance PAF
The potential affected fraction (PAF) is a common way to

express ecotoxicological risks [13]. Following this approach,

measured pesticides concentrations were translated into PAF

using the species sensitivity distribution (SSD) approach. Toxicity

data for each pesticide was obtained from De Zwart [14], and

based on acute median effect concentrations (EC50) as derived in

the laboratory (database eTox, RIVM as described in [14]). The

eTox database consists mainly of data entries from the ECOTOX

EPA database. The SSD for imidacloprid is given in Figure 1, and

includes 41 different species from 7 different taxonomic groups.

Underlying data including references are given in Table S1 of the

Supplementary Information. The full database used for the multi

substance PAF (msPAF) calculations contained data of 496

different pesticides with 75 different modes of action. To quantify

the ecological impacts due to imidacloprid concentrations amongst

all other pesticide concentrations as measured in the surface

waters, the msPAF was calculated. Firstly, all concentrations of

individual pesticides measured over one month per location were

aggregated using the maximum measured value. Secondly

individual pesticide concentrations were compared to the toxicity

data resulting in the PAF. Thirdly, pesticides were grouped based

on their mode of action. The PAF’s of the pesticides with a similar
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mode-of-action were added using a concentration addition

equation. In this equation, each substance concentration is divided

by its effect concentration, ECxa, i.e., the concentration of a that

represents a standard effect expressed as EC50 for endpoint x.

This gives: Emix (Cmix) = (Ca/ECxa) + (Cb/ECxb) + …... In

which Emix(Cmix) is the summed ratio of the mixture components

at the exposure concentration of each chemical (Cx). Fourthly, the

different pesticides groups with dissimilar mode-of-action were

added using a response addition equation. In response addition,

the toxicity of the substances in the mixture can be predicted from

the product of the fractional effects of the mixture components.

This gives Emix (Cmix) = 1 – ((1 – E(Ca)) * (1 – E(Cb)) * …... In

which Emix(Cmix) is the calculated effect of the mixture, Ca the

exposure concentration of substance a, and E(ca) the effect of

substance a at concentration Ca.

Both models for mixture toxicity are described in Hewlett and

Plackett [15]. Chemicals with an unknown mode-of-action were

treated according to a unique mode-of-action. As a result an

msPAF value per month per monitoring location was derived. In

this study we reported the maximum msPAF of the year 2009. The

quantification of the relative contribution of imidacloprid on the

total chemical pressure as expressed by msPAF was based on acute

toxicity data as insufficient chronic toxicity data were available in

the literature.

Pairwise combinations of samples taken within 1 km and
160 days

Datasets on imidacloprid concentrations and abundances of

macroinvertebrates were linked to each other by Van Dijk and co-

workers [1] by using the criteria #1 km distance and # 160 days

of time difference. We performed pairwise comparisons of

imidacloprid measurements to determine whether imidacloprid

concentrations at sites that meet these criteria, matched success-

fully. Therefore, all imidacloprid measurements were extracted

from the 2009 data set. All sampling sites were first ranked on their

x coordinate and the difference in distance with the next sample

was assessed (using Pythagoras theorem). All site combinations

which yielded a difference less than 1 km were extracted. The

same procedure was performed using a ranking based on the y-

coordinate. The site combinations from both queries were

combined. This procedure is not exhaustive since two sites that

are not ranked next to each other can also be closer to 1 km from

each other, but is likely to find most combinations. The

imidacloprid concentrations of all samples taken at the paired

sites were compared to each other when the samples were taken

within 160 days. The result of the comparison were categorised

into: 1) two measurements below the LOR, 2) one measurement

below and one above the LOR (0% matching), 3) two

measurements above the LOR, of which the number of sample

pairs that matched 100% (based on one decimal) was also noted.

The analysis resulted in 37 pairs of sites containing a total of 260

observations and 584 concentration measurement pairs being

evaluated.

Time series of imidacloprid exposure
For each sampling site it was determined how often imidaclo-

prid samples were analysed. For 34 sampling sites 10 or more

samples were analysed, of which imidacloprid was not detected in

any of the samples at 14 sites (41%), and in less than half of the

samples at 28 sites (82%). The concentration dynamics of the

Figure 1. The Species Sensitivity Distribution of imidacloprid based on acute toxicity data. The data consist of 7 different taxomonic
groups and 41 species. EPA database downloaded at Oct 23th 2013.
doi:10.1371/journal.pone.0089837.g001
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remaining 18% of the sites were plotted to evaluate whether

chronic concentrations of imidacloprid may be expected.

Cumulative frequency of maximum imidacloprid
concentrations

The measured maximum concentration of each site was

compared with threshold concentrations based on the findings of

Roessink et al. [16], i.e. the chronic EC10 of the mayfly species

Caenis horaria and Cloeon dipterum (<0.03 mg/L) and the different

environmental quality standards. In order to remove the within-

site sample dependency, for each sampling site the maximum

imidacloprid concentration was extracted. The analysis resulted in

225 negative measurements (below the LOR) and 226 positive

measurements (above the LOR).

MPC exceedances of imidacloprid compared to other
pesticides

Since only for a restricted number of pesticide AA-EQS and

MAC-EQS values have been set in the WFD, we used the (Dutch)

MPC standard to compare exceedance frequencies between

pesticides. For this comparison, both the magnitude of exceedance

as well as the frequency of exceedance was incorporated. Firstly,

the exceedance of the MPC of an individual pesticide concentra-

tion was derived per measuring location. Secondly, the degree of

standard exceedance was weighted according to the following

classes: 0 (#MPC); 1 (. MPC and # 2 x MPC), 2 (. 2 x MPC

and # 5 x MPC) and 5 (. 5 x MPC exceedance). Thirdly, the

exceedance classes were summed over all measuring locations per

year. Fourthly, pesticides were ranked on the basis of the weighted

number of monitoring sites at which the MPC for the compound

was exceeded, i.e. corrected for the number of monitoring sites by

taking the percentage of sites that show an exceedance of the

MPC. Compounds monitored at fewer than ten sites were ignored.

Results and Discussion

For many locations pesticide concentrations have been found to

exceed the MPC in 2009 (see Fig. 2). Figure 2 shows that

throughout the entire country more than one pesticide exceeds

their respective quality standard, so this exceedance is not a

common regionally problem. The maximum amount of pesticides

exceeding their MPC in one sample is 35. From this it can be

concluded that a single pesticide is not likely to drive solely the

macro-invertebrate quality, rather all pesticides exceeding the

quality standards should be considered.

Collinearity of imidacloprid concentrations with other
pesticides

Figure 3A clearly shows that imidacloprid exposure is highly

correlated with all chemicals placed on the right, lower side of the

diagram, like carbendazim and DEET and to a lesser extend with

the large group of chemicals which have a high loading with the

horizontal axis, which explains almost double the amount of

variance compared to the vertical axis. The results of the second

data set (Fig. 3B) show that imidacloprid is placed in the centre of a

large group of pesticides placed in the middle of the diagram, since

it was measured only in a few samples (7% of the total). The results

of the third data set shows a high occurrence of imidacloprid

above the LOR (78% of all samples), with concentrations strongly

collinear with those that have a high loading on the horizontal axis

which explains almost triple the amount of variance of the vertical

one (Fig. 3C). The results of the first and third data set show that

the contribution of imidacloprid toxicity in surface waters cannot

easily be separated from the toxicity arising from other co-

occurring pesticides, or indeed any other co-occurring chemical or

physical stressing agent.

The correlations derived from the PCA-plots (Fig. 3) can also be

explained from the fact that the active ingredient imidacloprid

currently has several authorizations in 38 different products

(database ctgb.nl [17], accessed 21-5-2013). The professional use

ranges from the use in crops grown in glasshouses such as all

different vegetables and in open systems for different bulbs of

flowers, potatoes and sugarbeets. Imidacloprid is also registered for

use in fruit trees including apple and pear trees. Generally, more

than one pesticide is used to protect a specific crop from pest

attack. Thus, depending on the land use type, imidacloprid is

invariably emitted to surface waters in combination with other

pesticides that are authorized to be used on those crops.

Imidacloprid contribution in the msPAF
The potentially affected fraction of the aquatic species by the

measured pesticides is higher than 5% in 11 locations (reflecting

1.2 % of all monitoring sites) in the Netherlands in the year 2009.

The maximum level that we determined based on the msPAF was

23% in the province of South-Holland. Imidacloprid contributed

Figure 2. Number of pesticides exceeding the MPC in 2009. All
monitoring locations in the Dutch surface waters with one (yellow); two
till five pesticides concentrations (orange); and . five different
pesticides (red) exceeding their MPC-values are depicted. Locations
were measurements were performed but no exceedances were found
are depicted in white.
doi:10.1371/journal.pone.0089837.g002
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in 8 out of 11 cases to this potential risk (Table 1). The relative

contribution compared to other pesticides as measured at the same

location at the same sampling time is rather modest and varied

with a maximum of 21% at one location. Note that this calculation

was based on acute toxicity data only, so likely is an underesti-

mation of the potential risks that include both acute as chronic

effects. From Table 1, it can be deduced that depending on

location, the contribution of specific individual active ingredients

differs.

Pairwise combinations of samples
Imidacloprid measurements performed within a time window of

160 days which were taken at sites closer than 1 km from each

other were compared. By this pairwise analysis we investigate if

Figure 3. Results of the PCA analysis on data set 1 (A), 2 (B) and 3 (C). The PCA diagram of data set 1 displays 51% (33% on horizontal axis
and 18% on vertical one) of the variation in chemical concentrations between the sites while 34% is displayed for data set 2 (21% on horizontal axis
and 13% on vertical one) and 38% for data set 3 (28% on horizontal axis and 10% on vertical one).
doi:10.1371/journal.pone.0089837.g003

Potential Collinear Effects of Pesticides in Field

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e89837



selected pairs of imidacloprid concentrations match with each

other, and subsequently can be used to accurately link biological

effect data and imidacloprid concentrations. Table 2 shows that in

39% of the comparisons there was no match in the presence of

imidacloprid above the LOR, while only in 23% of the cases

imidacloprid was present above the LOR in both samples. The

remaining 38% of comparisons showed two measurements below

the LOR. So when imidacloprid is found in at least one of the

samples there is a large probability (62%) of not finding

imidacloprid in the other site, which hampers the extrapolation

of imidacloprid over a time window of 160 day and over a distance

of 1 km (Table 2). We, therefore, conclude that the criteria used by

Van Dijk et al. [1] to link chemical with biological observations

result in a large probability (46%) of linking a site where

imidacloprid was detected with a site, where the biological sample

was taken, where actually no imidacloprid could be detected. The

alternative, i.e. the first measurement being below the LOR and

the second one above also has a relatively high probability (34%)

(Table 2). Especially in a water-rich country such as the

Netherlands, that has more than 350.000 km of ditch systems

[18], it should be noted that sampling locations taken within 1 km,

not necessarily have a hydrological connection with each other.

Imidacloprid dynamics
The concentration dynamics of imidacloprid (reflecting the

concentrations of imidacloprid at the sampling locations with 10 or

more samples taken in 2009 and with detection above the LOR in

at least 50% of those samples) are shown in Figure 4. In all but two

(Fig. 4B and 4C) of these sampling sites the 28d, EC10 values for

C. horaria and C. dipterum are exceeded for a period longer than 28

days, so at these sites chronic effects of imidacloprid exposure on

mayflies can be expected. Also all standards are exceeded for some

time in most of the sampling sites, with Fig. 4G showing the largest

exeedence for a site near Boskoop in the province of South

Holland. It should be noted that these 7 sites only constitute a

small percentage (18%) of the total number of sites with 10 or

more observations, so likely these exposure patterns represent the

worst-cases of the exposure patterns at sites with 10 or more

observations. Since we don’t know whether there is a bias to

measure imidacloprid more intensively at sites where exposure is

expected we cannot extrapolate this to the whole population of

sites.

Maximum concentrations of imidacloprid
Figure 5 shows the cumulative frequency of the all concentra-

tion measurements on the maximum level of imidacloprid for the

years 2009, 2010 and 2011. The below LOR measurements are

indicated at the 0.001 mg/L level and constituted 50, 53 and 55%

of the maximum concentrations in 2009, 2010 and 2011,

respectively. The results in Figure 4 show that peak concentrations

of imidacloprid in the Dutch surface waters often exceeds the

chronic effect concentrations of mayfly as determined in the

chronic single species studies by Roessink et al. [16], as well as the

three standards. In 2011 the MPC, 28d, EC10, AA-EQS and

Table 1. Contribution of imidacloprid to the msPAF at locations where msPAF . 5%.

x-coordinate y-coordinate Province

Total msPAF of
measured pesticides
(%)

Relative contribution of
imidacloprid to the total msPAF
of measured pesticides (%)

N 51 46 39.9 E 4 16 36.7 South Holland 22.53 0

N 52 1 29.6 E 4 30 24.7 South Holland 13.85 7.59

N 51 43 11.8 E 4 16 1.5 Zealand 12.48 0.002

N 51 52 33.5 E 4 10 26.2 South Holland 10.11 0

N 51 46 38.6 E 4 33 19.3 South Holland 9.91 0.009

N 51 45 0.4 E 4 25 46.2 South Holland 9.44 0

N 52 31 7.8 E 4 40 36.5 North Holland 9.25 0.014

N 51 57 10.2 E 4 15 8.8 South Holland 7.09 21.04

N 51 50 20 E 4 35 16.7 South Holland 6.61 0.001

N 51 21 52 E 4 2 10.1 Zealand 6.36 11.49

N 52 41 42.6 E 6 53 54.9 Drenthe 5.64 0.011

doi:10.1371/journal.pone.0089837.t001

Table 2. Result of the comparison of imidacloprid concentrations in samples taken in 2009 at sampling sites closer than 1 km and
within 160 days.

Category # sample pairs % of total comparisons
% when 1st observation
is above LOR

% when 1st observation
is below LOR

Two below LOR 217 38 66

One below and above LOR 223 39 46 34

Two above LOR 134 23 54

100% matching measurements 10 1.7

LOR = analytical reporting limit.
doi:10.1371/journal.pone.0089837.t002

Potential Collinear Effects of Pesticides in Field
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Figure 4. Concentration dynamics at the selected sampling sites (see text for procedure). The sampling sites 4A through 4G have X,Y
coordinates of 108313,456412, 105888,455853, 103707,455196, 105927,453177, 170370,518957, 106781,503700 and 105079,453602, respectively. The
horizontal lines denotes the MAC-EQS, the AA-EQS, the 28d, EC10 value for the mayflies C. horaria and C. dipterum (Roessink et al., 2013) and the MPC
(top to bottom).
doi:10.1371/journal.pone.0089837.g004
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MAC-EQS threshold values are exceeded by 36, 28, 15 and 9% of

the maximum concentrations at the sampling sites, respectively.

Since the Hazardous Concentration 5% based on 96h,EC10

values of 0.083 mg/L [16] corresponds more or less with the AA-

EQS, acute effects of imidacloprid exposure cannot be excluded at

a relatively large proportion of the sites (<15%). The maximum

concentration is of course not a good predictor for the time

weighted average concentration of 28d which should ideally be

compared with the chronic threshold value of 0.03 mg/L. Still,

when combining the results of the time-series (Fig. 3) and the

exceedance of this threshold value by the maximum concentra-

tions (Fig. 4) chronic effects of imidacloprid on insects like mayflies

may be expected at a vast proportion of sites, with 28% being the

most conservative estimate and 5% being the best guess. This 5%

is calculated by multiplying the 28% chance of exceeding the

threshold value by the maximum concentration and 15% chance

of having above LOR measurements at more than 50% of the

samples taken at a particular site where imidacloprid is measured

at least 10 times. The comparison of the standards with the

ecotoxicological threshold value for mayflies also suggests that the

MAC-EQS and AA-EQS are not fully protective for acute and

chronic effects on insect taxa, respectively.

Exceedances of environmental quality standards
As stated in the Van Dijk et al [1] paper, in 2009 imidacloprid

frequently exceeds quality standards for surface waters: 111 and 62

times for the AA-EQS and the MAC-EQS respectively [8,18]. In

addition to the probability of exceeding a standard, also the

magnitude of exceedance is important since it is likely that at

higher magnitudes the ecological effects are more severe and

maybe even last longer. Table 3 shows the compounds that

exceeded the MPC most frequently in 2009, ranked according to

degree of exceedance.

Imidacloprid was predicted to have a relatively large impact on

the ecosystems compared to other pesticides, and gained third

place in the Top 10 pesticides violating the environmental quality

standards in respect to frequency and magnitude of exceedance.

The number of measurements is high, as is also the number of

locations from which the samples are taken. This means that

monitoring is quite intensive for this compound, and surely covers

many different surface waters belonging to different water

managers and covering the geographical distribution of the

different water types in the Netherlands. Although less intensively

measured – a factor 5 to 10 – Table 3 also shows that other

pesticides exceed the MPC more often. Thus although imidaclo-

prid poses a significant ecological risk to surface waters in the

Netherlands, it is not the only potential cause of degradation in

macroinvertebrate abundance, as many other pesticides men-

tioned in Table 3 also exceed the MPC frequently (and in cases by

orders of magnitude) and thus undoubtedly contribute to overall

stress regime. It is a common flaw in ecological studies to

selectively interpret individual causal agents within stressor

regimes as the sole cause of observed phenomena, leading to

erroneous conclusions.

Conclusion

Imidacloprid is one of several pesticides that can be detected in

surface waters draining agricultural areas at levels frequently

exceeding environmental quality standards. Despite this, we show

here that key assumptions made by Van Dijk et al. [1] specifically

relating to imidacloprid toxicity are not supported by observa-

tional data and, therefore, their assessment is unsuitable to

determine threshold levels of effects. Specifically, the validity of

Figure 5. The cumulative frequency of the maximum imidaclo-
prid concentrations of the sampling sites in 2009, 2010 and
2011, together with three standards and the 28d, EC10 of
Cloeon dipterum and Caenis horaria.
doi:10.1371/journal.pone.0089837.g005

Table 3. Top10 pesticides exceeding the MPC in the Netherlands in the year 2009.

Pesticides name No. of monitoring sites % Exceedance No. of measurements % Exceedance

Captan 38 47 194 13

desethyl-terbuthylazin 63 37 299 10

Imidacloprid 451 44 2133 28

Triflumuron 24 21 142 4

Dicofol 24 17 142 3

Omethoaat 31 16 169 3

Foraat 51 14 313 2

Captafol 15 27 29 14

Fipronil 69 12 230 7

Pyraclostrobin 66 17 341 7

No. = number. The ranking of pesticides is based on frequency and magnitude of exceedances.
doi:10.1371/journal.pone.0089837.t003
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two assumptions: 1) that imidacloprid levels are not correlated

with toxic levels of other pesticides residues and 2) that chemical

exposure data can be extrapolated over a 1 km distance and 160

day time window are here shown to be highly questionable. The

ecological status of field sites can be attributed to a complex suite

of stressors resulting from a range of anthropogenic practices in the

highly managed landscape of the Netherlands, of which pesticides

are just one factor, and imidacloprid only one of many pesticides

being applied, albeit an important one in terms of ecological risks.

We therefore propose that any risk assessment should base the

ecological threshold values not solely on field observations but also

largely rely on the results of controlled experiments, since these

types of experiments allow a full control of separating the

imidacloprid stress from other stressors.

Supporting Information

Table S1 Acute toxicity values of imidacloprid (source
eTox database, EPA database downloaded Oct 23th

2013). Legend: Species selected for the toxicity test were given

with their scientific name and with their species group. Toxicity

data were given as log10 effect concentrations at which 50% of

the organisms showed adverse effects. The scientific papers from

which those data are collected are given.

(DOCX)
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