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Abstract

Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate
detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no
consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To
identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with
litter from Alnus glutinosa (common alder) or Betula pendula (silver birch) trees propagated under ambient (380 ppm) or
elevated (ambient +200 ppm) CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter
from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were
provided individually with either (i) two litter discs, one of each CO2 treatment (‘choice’), or (ii) one litter disc of each CO2

treatment alone (‘no-choice’). Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the
choice test, consuming more ambient- than elevated-CO2 birch litter. Species’ responses to alder were highly idiosyncratic
in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating
compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2

treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry,
affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level
information when predicting changes to detrital processing–a key ecosystem function–under atmospheric change.
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Introduction

Global concentrations of atmospheric carbon dioxide (CO2)

could more than double by 2100 [1]. Typically, CO2 enrichment

leads to increased plant photosynthesis, resulting in greater

biomass and production [2]. Plant tissue chemistry is typically

modified, with decreasing nitrogen concentrations and increasing

carbon-nitrogen (C/N) ratios affecting herbivore life-history and

feeding responses [3].

Approximately 90% of primary production in forest ecosystems

escapes herbivory and forms detritus [4], providing a crucial

energy pool that underpins the trophic structure of soils and

adjacent freshwaters [5]. The effect of elevated CO2 on the

chemical composition of green foliar tissues reduces its palatability

to detritivores when it falls as litter [6]. In particular, elevated CO2

can reduce litter resource quality by decreasing litter nitrogen

content [7,8], subsequently increasing C/N ratios [9,10]. Increases

in structural [6,8,9] and defensive [10,11] compounds have also

been reported, along with both increases and decreases in

phosphorus concentrations [12,13]. The potential for rising CO2

concentrations to alter litter chemical composition is established,

but the consequences for invertebrate-mediated decomposition –

an important ecosystem function – remain unclear [14].

Detritivorous macroinvertebrates are functionally important in

detritus-based ecosystems, as they are responsible for both

comminution and consumption of litter, releasing nutrients for

other organisms, such as saprophagous fungi [15,16]. To maintain

optimal body nutrient concentrations, theoretical predictions and

empirical evidence suggest that invertebrates can increase feeding

rates of reduced-quality material (e.g. [17,18]), a process known as

‘compensatory feeding’ (as defined by [19]). Despite this, poor

quality litter has also been shown to increase handling times [20],

while reducing nutrient assimilation, slowing development rates,

and increasing mortality [6,21]. These conflicting responses have

resulted from studies focusing on a small number of species (e.g.

[13,18]), which also fail to incorporate aquatic and terrestrial
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invertebrates, despite differences in detrital accumulation and

energy flow between these habitats [22]. A broad-scale study

incorporating a range of invertebrate species from different

habitats is essential to identify the unifying mechanisms that

govern invertebrate feeding responses to elevated-CO2 litter.

We investigated the feeding preferences and consumption rates

of eight detritivorous macroinvertebrate species presented with

Alnus glutinosa (Linnaeus) Gaertner (common alder) and Betula

pendula Roth (silver birch) leaf litter produced under ambient and

elevated atmospheric CO2. We tested the hypotheses that: (1) CO2

enrichment will reduce leaf chemical quality and, given nitrogen-

fixing ability in alder, responses will differ by tree species; (2) when

presented with a choice between ambient and elevated CO2 litter,

invertebrates will prefer ambient material due to its higher quality;

(3) when given litter of one CO2 treatment only, consumption of

elevated-CO2 litter will be greater, to compensate for its reduced

quality.

Methods

Leaf Litter Preparation
Alder and birch litters were produced at the BangorFACE

facility, Bangor, UK [23] (Fig. 1). Trees were grown in eight

identical plots (four ambient-CO2 and four elevated-CO2) to

minimise infrastructure-induced artefacts. CO2 enrichment was

carried out using high velocity pure CO2 injection, controlled

using equipment and software modified from EuroFACE [24].

Elevated CO2 concentrations, measured at 1 min intervals, were

within 30% deviation from the pre-set target concentration of

580 ppm CO2 (ambient +200 ppm) for 75–79% of the photosyn-

thetically-active period (daylight hours from budburst until leaf

abscission) of 2005–2008. Vertical profiles of CO2 concentration

measured at 50 cm intervals through the canopy showed a

maximum difference of +7% from reference values obtained at the

top of the canopy [23]. From the beginning of leaf senescence,

fallen leaf litter was collected weekly until all leaves had abscised

(October to December). Litter within each CO2 treatment was

homogenised and air-dried.

Initial chemical leaching and microbial colonisation of litter

(‘conditioning’) are crucial steps in making litter palatable to

detritivorous macroinvertebrates [25,26]. Prior to the start of the

experiment, litter was conditioned in fine mesh bags (100 mm to

permit microorganisms only) placed in plastic containers

(29629610 cm; Fig. 1). For each tree species 6CO2 treatment

combination, one bag was placed in aerated stream water that was

inoculated with stream-collected litter of mixed-species origin

(‘aquatic conditioning’); a second bag per tree species 6CO2

treatment combination was inserted between field-collected soil

and mixed deciduous leaf litter (‘terrestrial conditioning’). Con-

tainers were maintained at 1161uC with a 12:12 h light-dark

cycle and terrestrial containers were sprayed with deionised water

every three days to maintain humidity (,50%). These conditions

were selected to represent natural conditioning processes in

aquatic and terrestrial habitats in a controlled manner. After two

weeks, leaf discs were cut using a 9 mm diameter cork-borer

(avoiding the mid-vein), which were air-dried and weighed

(60.1 mg) prior to experimental use.

Litter samples allocated to chemical analyses (Fig. 1) were stored

at –80uC before being oven-dried (50uC for 24 h) and ground into

powder (120 s, 50 beats s–1; Pulverisette 23 ball mill, Fritsch

GmbH, Idar-Oberstein, Germany). Each sample was composed of

litter from three separate leaves. For carbon, nitrogen and

phosphorus analyses, five samples were processed per tree 6
CO2 treatment 6 conditioning type combination; for lignin

analysis, four samples were used. The percentage leaf dry mass (%

leaf DM) of carbon and nitrogen, and the carbon-nitrogen (C/N)

ratio, were determined by flash combustion and chromatographic

separation of ,1.5 mg leaf powder using an elemental analyser

(Elemental Combustion System 4010 CHNS-O Analyzer, Costech

Analytical Technologies, Inc., Milan, Italy), calibrated against a

standard (C26H26N2O2S). Phosphorus concentrations (% leaf DM)

were quantified using X-ray fluorescence (see [27] for detailed

methodology). The percentage Acetyl-Bromide-Soluble Lignin (%

ABSL) was determined following the acetyl bromide spectropho-

tometric method [28]. Lignin-nitrogen (lignin/N) ratios were

calculated for each tree species6CO2 treatment 6 conditioning

treatment combination.

Invertebrates
Eight macroinvertebrate species were selected for study

(Table 1), representing a taxonomic range of litter consumers

found in temperate forest habitats [29,30]. Aquatic species were

collected from streams in the Brecon Beacons National Park,

South Wales, UK (51u509530N, 3u229160W and 51u509550N,

3u339430W) and Roath Park, Cardiff, UK (51u309000N,

Figure 1. Overview of the experimental approach. Litter was produced under ambient- and elevated-CO2 atmospheres at BangorFACE, UK.
Half of the litter from each CO2 treatment was conditioned aquatically and half terrestrially. Chemical analyses of the conditioned litter were
undertaken, and litter discs were presented to aquatic and terrestrial invertebrates in choice and no-choice tests. Only one tree and one invertebrate
species have been shown for clarity. Not to scale.
doi:10.1371/journal.pone.0086246.g001
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3u109100W); terrestrial species were collected from soil-litter

interfaces in Bute Park, Cardiff, UK (51u489490N, 3u189240W).

The National Park Authority granted general permission to access

sites on common land in the Brecon Beacons National Park, South

Wales, UK. Cardiff Council granted permission for access to sites

in Cardiff, UK. No endangered or protected species were involved

in collections from the field. All individuals were adults, apart from

larval Odontocerum albicorne and Sericostoma personatum caddisflies.

Individuals from within each species were selected for size

similarity. Prior to experimental use, invertebrates were main-

tained for at least four weeks in single-species containers (1161uC,
12:12 h light-dark cycle) and were fed Fagus sylvatica Linnaeus

(common beech) litter conditioned as for experimental litter,

preventing habituation to experimental alder and birch litter.

Feeding was ceased two days prior to the experiments to allow for

gut clearance.

Experimental Arenas
All experiments were conducted in 11616.563.5 cm lidded

plastic arenas (Cater For You Ltd, High Wycombe, UK) lined

with compacted sterilised aquarium gravel (Unipac, Northampton,

UK) and were maintained at 1161uC with a 12:12 h light-dark

cycle. Aquatic microcosms were filled with 400 ml of filtered

(100 mm mesh) stream water (circumneutral pH; collected from

51u509530N, 3u229160W) and aerated through a pipette tip (200 ml
Greiner Bio-One) attached to an air-line. Terrestrial microcosms

were sprayed with deionised water every three days to maintain

moisture content and humidity (,50%). All arenas were uniquely

labeled (‘microcosm ID’). These standardised conditions were

chosen to mimic natural habitats, while minimising the availability

of supplementary organic material that could act as a confounding

resource during the feeding trials.

For litter of each tree species, detritivores were presented with:

(i) a choice between ambient- and elevated-CO2 material, to

provide a direct comparison of detritivore preferences, and (ii) a

no-choice situation with each CO2 treatment presented on its own,

approximating litter consumption in current (ambient-CO2) and

future (elevated-CO2) atmospheric conditions (Fig. 1). In each

experiment, ten microcosms were set up for each invertebrate and

tree species combination (n=160). A single invertebrate was added

to each arena and was placed in the end opposite the airline in

aquatic arenas and equidistant to both discs in the choice test. In

the choice test, one disc of each CO2 treatment was pinned to the

centre of the arena, 4 cm apart. Discs were replenished when at

least 50% of the existing disc had been consumed. In the no-choice

test, half of the microcosms contained one ambient-CO2 disc and

the other half one elevated-CO2 disc, pinned to the centre of the

arena. Both experiments ended after 14 days, or when five (50%)

of the individuals of a specific species consumed at least 50% of

one disc (choice experiment only). For each invertebrate, the total

mass of litter consumed was calculated (60.1 mg). For choice

experiment data, this value was divided by the number of days

over which the test had taken place.

Additionally, control microcosms were set up to ensure that

differences in mass loss between CO2 treatments were due to

invertebrate activity alone. For each experiment, ten microcosms

were set up for each habitat type 6 tree species combination.

Controls for the choice test each contained one disc of each CO2

treatment; half of the no-choice control microcosms contained one

ambient-CO2 disc and the other half contained one elevated-CO2

disc. Leaf discs were air-dried and weighed (60.1 mg) after 14

days and their total mass loss calculated.

Data Analysis
Statistical analyses were performed separately for alder and

birch litter using R version 3.0.1 [31]. Data available from http://

dx.doi.org/10.6084/m9.figshare.791634. were checked for nor-

mality and homogeneity of variance following Crawley [32];

response variables were transformed using Box-Cox power

transformations when assumptions were not met (car package

[33]). Significance was set at a=0.05 for all analyses.

Two-way analysis of variance (ANOVA) was used to test the

main and interactive effects of CO2 treatment and microcosm type

on each chemical variable (carbon, nitrogen, phosphorus and

lignin concentrations, and C/N ratio). Planned contrasts (lsmeans

package [34]) were used to compare the effects of CO2 treatments

for each conditioning treatment.

The main and interactive effects of CO2 treatment and

microcosm type were tested on the mass loss of control discs.

Linear mixed-effects models were used to analyse choice control

data (nlme package [35]), where non-independence of discs sharing

the same microcosm was accounted for by including microcosm

ID as a random term. The same fixed terms were used to analyse

control data from the no-choice test using two-way ANOVA.

In the choice test, litter consumption per day was analysed using

linear mixed-effects models (nlme package [35]) with the main and

interactive effects of CO2 treatment and invertebrate species as

fixed effects and microcosm ID as a random effect. Planned

contrasts were performed to compare consumption of ambient-

and elevated-CO2 discs within (i) each invertebrate species, and (ii)

invertebrate species grouped by habitat of origin (contrast package

[36]).

In the no-choice test, the main and interactive effects of CO2

treatment and invertebrate species on litter consumption were

Table 1. Detritivorous macroinvertebrate species used in the study.

Habitat Name Authority Order: Family

Aquatic Asellus aquaticus (Linnaeus 1758) Isopoda: Asellidae

Gammarus pulex (Linnaeus 1758) Amphipoda: Gammaridae

Odontocerum albicorne (Scopoli 1763) Trichoptera: Odontoceridae

Sericostoma personatum (Kirby & Spence 1826) Trichoptera: Sericostomatidae

Terrestrial Blaniulus guttulatus (Bosc 1792) Julida: Blaniulidae

Oniscus asellus Linnaeus 1758 Isopoda: Oniscidae

Porcellio scaber Latreille 1804 Isopoda: Porcellionidae

Tachypodoiulus niger (Leach 1815) Julida: Julidae

doi:10.1371/journal.pone.0086246.t001
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tested using two-way ANOVA. Planned contrasts were performed

to test the effects of CO2 treatment on disc consumption within (i)

each invertebrate species (lsmeans package [34]) and (ii) inverte-

brate species grouped by habitat of origin (gmodels package [37]).

Results

Litter Chemistry
CO2 enrichment altered leaf litter chemistry, but effects differed

between tree species. For birch, CO2-enriched litter contained

lower nitrogen concentrations, and higher lignin concentrations

and C/N ratios than ambient-CO2 litter (Tables 2 and 3). Litter

chemistry varied between conditioning types, with higher carbon

concentrations in aquatically-conditioned litter and lower nitrogen

concentrations in terrestrially-conditioned litter (Table 2). For both

conditioning types, elevated-CO2 litter contained lower nitrogen

concentrations (aquatic, estimate = 0.76% DM, P,0.001; terres-

trial, estimate = 1.17% DM, P,0.001; Table 3) and higher C/N

ratios (aquatic, estimate = 8.31, P,0.001; terrestrial, esti-

mate = 10.28, P,0.001; Table 3). For alder litter, the effect of

CO2 treatment was less predictable, with differential responses

between conditioning types (Table 2). Elevated CO2 increased

alder nitrogen concentrations when conditioned terrestrially

(estimate = 0.29% DM, P=0.036; Table 3), although there was

no concurrent effect in aquatically-conditioned litter (esti-

mate = 0.1% DM, P=0.44; Table 3). No treatment or species

effects on litter phosphorus concentrations were observed (Tables 2

and 3).

Invertebrate Responses
For both tree species in the choice and no-choice control arenas,

disc mass loss in the absence of invertebrates was unaffected by

CO2 treatment and conditioning type (P.0.05). Litter mass loss in

the presence of invertebrates was therefore assumed to be a result

of invertebrate feeding alone.

In the choice test, leaf palatability affected invertebrate feeding,

but this was dependent on tree species. Birch litter consumption

was higher for ambient- than elevated-CO2 discs overall

(F1,72 = 10.48, P=0.002); there was no effect of CO2 on

consumption of alder discs (F1,72 = 187.21, P=0.34). Consumption

also varied between invertebrate species (alder, F7,72 = 0.92,

P,0.001; birch, F7,72 = 30.05, P,0.001). The effect of CO2 on

birch consumption varied by invertebrate species (F7,72 = 3.44,

P=0.003), where O. albicorne preferred ambient-CO2 discs

(estimate = 1.29 mg d21, P,0.001; Fig. 2B). The effect of CO2

on litter preference did not vary between invertebrates feeding on

alder (F1,72 = 0.5, P=0.83; Fig. 2A). When grouped, aquatic

species preferred ambient-CO2 birch discs over those grown under

elevated CO2 (estimate = 1.09 mg d21, P=0.008), but no other

preferences were exhibited (aquatic species fed alder, estima-

te = 0.02 mg d21, P=0.585; terrestrial species fed alder, estima-

te = 0.03 mg d21, P=0.496; terrestrial species fed birch, estima-

te = 0.06 mg d21, P=0.061).

In the no-choice test, consumption rates were higher when

invertebrates fed on ambient- rather than elevated-CO2 birch

discs (F1,64 = 6.39, P=0.014). The trend was consistent across all

invertebrate species, but no individual species showed a significant

response (CO2 treatment 6 invertebrate species: F7,64 = 0.341,

P=0.932; Fig. 2D). This overall effect of CO2 did not occur in

alder leaves (F1,64 = 3.6, P=0.062), but the effect of CO2 varied

significantly between species (F7,64 = 4.56, P,0.001); more of the

elevated-CO2 discs were consumed by G. pulex (estima-

te = 2.89 mg, P=0.002) and O. albicorne (estimate = 3.22 mg,

P,0.001), while O. asellus consumed more of the ambient-CO2

discs (estimate = 2.86 mg, P=0.0022; Fig. 2C). When grouped by

habitat, aquatic invertebrates ate more elevated-CO2 than

ambient-CO2 alder (estimate = 1.965 mg, P,0.001) but there

was no effect on birch (estimate = 0.1 mg, P=0.073). CO2

treatment had no effect on consumption by terrestrial species fed

either alder (estimate = 0.22 mg, P=0.306) or birch (estima-

te = 0.1 mg, P=0.085).

Discussion

Elevated atmospheric CO2 and microbial conditioning type

modified leaf litter chemistry, though effects differed between tree

species (supporting Hypothesis 1). Individual invertebrate species

varied in their responses, suggesting that caution has to be taken

when extrapolating general trends from single-species studies.

Elevated atmospheric CO2 reduced birch litter quality: the

concentration of nitrogen decreased and the C/N ratio increased,

regardless of conditioning type. Most species did not respond to

this change; O. albicorne was the only species with behaviour that

supported Hypothesis 2, showing a strong preference for ambient-

CO2 litter. Prior work supports this response: Ferreira et al. [13]

showed that low C/N ratios reduced birch litter consumption by

the caddisfly Sericostoma vittatum Rambur, while Cotrufo et al. [17]

found that the woodlouse P. scaber preferred high quality (lower C/

N ratio and lignin concentration) Fraxinus excelsior Linnaeus litter

grown under ambient CO2. Alder litter showed negligible

chemical change as a result of elevated CO2, perhaps due to

symbiosis with nitrogen-fixing bacteria that help maintain nutrient

supplies [38]. Unexpectedly, a slight increase in quality (increased

Table 2. ANOVA summary table of main and interactive effects of CO2 treatment (CO2) and conditioning type (CT) on litter
chemistry.

Carbon Nitrogen Phosphorus Lignin C/N

Tree species Variables F1,16 P F1,16 P F1,16 P F1,12 P F1,16 P

Alder CO2 0.6 0.435 1.1 0.305 2.8 0.117 0.04 0.543 1.3 0.271

CT 0.3 0.577 4.1 0.059 0.2 0.684 0.2 0.673 3.8 0.071

CO2 6CT 1.5 0.241 4.7 0.045 0.4 0.387 3.6 0.082 4 0.064

Birch CO2 0.1 0.712 791 ,0.001 3.1 0.098 4.8 0.048 605.3 ,0.001

CT 12.1 0.003 95 ,0.001 0.04 0.848 1 0.331 62.5 ,0.001

CO2 6CT 3.6 0.077 36.4 ,0.001 0.3 0.566 0.1 0.756 6.8 0.019

P values ,0.05 are emboldened.
doi:10.1371/journal.pone.0086246.t002
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nitrogen concentration) under elevated CO2 occurred when alder

litter was conditioned terrestrially, but this did not result in any

feeding preferences. Effects of conditioning type on litter chemistry

may have occurred due to differences in chemical leaching and

microorganism activity between aquatic and terrestrial environ-

ments [39]. Our data indicate that CO2 enrichment will affect

litter palatability to macroinvertebrate detritivores as a result of

chemical change, though these effects will be plant and

invertebrate species-specific.

In the no-choice test, invertebrates were expected to compen-

sate for low-quality litter by increasing consumption relative to

high-quality litter. In contrast to this expectation, compensatory

feeding was not observed in either tree species. There was no clear

pattern for alder; invertebrate responses were highly idiosyncratic,

with O. asellus being the only species to consume more of the low-

Table 3. Chemical composition of leaf litter (mean 61 SEM).

Chemical composition Chemical ratios

Tree
species CT CO2

Carbon
(% DM)

Nitrogen
(% DM)

Phosphorus
(% DM)

Lignin
(% ABSL) C/N Lignin/N

Alder Aquatic Ambient 48.6160.37a 3.7360.16a 0.07460.009a 22.1762.64a 13.1160.16a 5.94

Elevated 48.4860.25a 3.6360.091a 0.06460.009a 19.5662.74a 13.3760.36a 5.38

Terrestrial Ambient 48.0460.22a 3.3560.016a 0.08460.009a 19.1661.01a 14.3360.02a 5.71

Elevated 48.6860.40a 3.6560.026b 0.06260.01a 24.3461.14a 13.3560.10a 6.68

Birch Aquatic Ambient 51.2260.13a 2.5460.018a 0.0960.008a 22.1063.28a 20.1760.11a 8.7

Elevated 50.8460.13a 1.7960.004b 0.06660.01a 27.7661.69a 28.4760.08b 15.55

Terrestrial Ambient 49.8660.24a 3.0860.017a 0.08260.01a 25.0962.07a 16.1960.04a 8.15

Elevated 50.4460.41a 1.9160.063b 0.0760.006a 29.3261.52a 26.4760.74b 15.33

Abbreviations: percent dry mass (% DM), percent acetyl-bromide-soluble lignin (% ABSL), conditioning type (CT).
Different lowercase letters indicate significant differences (P,0.05) between CO2 treatments for each tree species 6CT combination.
doi:10.1371/journal.pone.0086246.t003

Figure 2. Effects of CO2 treatment on feeding responses of each invertebrate species. The mean litter consumption (61 SE) of each
invertebrate species is shown for (A) alder and (B) birch in the choice test, and (C) alder and (D) birch in the no-choice test. Asterisks indicate
significant differences between CO2 treatments within each invertebrate species (***P,0.001). Species are arranged by habitat of origin: aquatic
species are Asellus aquaticus (Aa), Gammarus pulex (Gp), Odontocerum albicorne (Oa) and Sericostoma personatum (Sp); terrestrial species are Blaniulus
guttulatus (Bg), Oniscus asellus (On), Porcellio scaber (Ps) and Tachypodoiulus niger (Tn).
doi:10.1371/journal.pone.0086246.g002

Elevated CO2, Litter Chemistry and Invertebrates

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e86246



quality resource (terrestrially-conditioned alder litter contained

lower nitrogen when grown under ambient-CO2). Hättenschwiler

et al. [18] detected a similar compensatory response for O. asellus

and another woodlouse, P. scaber: higher consumption rates were

recorded on low-quality, CO2-enriched F. sylvatica litter (low

nitrogen concentration, high C/N ratio). The current study

showed that G. pulex and O. albicorne consumed more elevated-CO2

than ambient-CO2 alder, despite no observed chemical differenc-

es. It is possible that elevated CO2 reduced litter palatability by

altering chemical constituents that were not quantified here, such

as secondary metabolites. For example, phenolics and tannins

have been shown to be affected by CO2 levels [40]. Birch litter

responses appeared less idiosyncratic, with no individual species

increasing consumption of elevated-CO2 litter. These results

suggest that litter species identity determines the predictability of

invertebrate feeding responses, but that compensatory feeding is

not a unifying trend amongst detritivorous macroinvertebrates.

Feeding rates may have varied due to increased handling times

associated with low quality birch litter (e.g. [20]), or because of

differences in species’ body chemistry and their ability to cope with

elemental imbalances with CO2-enriched resources [41,42].

Heterotrophs, such as the detritivores in our study, tend to

maintain constant body elemental composition [43] and may alter

feeding behaviour to achieve optimum chemical balance. Our

results show that individual invertebrate species rarely demon-

strated significant responses to CO2 treatments in either test. This

suggests that although individual species responses appear

idiosyncratic, when considered as a whole, the invertebrate

community generally shows consistent and predictable behaviour-

al and functional responses to litter chemical changes induced by

elevated CO2.

Altered consumption of litter by macroinvertebrates will affect

energy release from detritus, in turn affecting secondary produc-

tion, and food-web structure and functioning [5]. Specifically, on

the basis of invertebrate responses in our study, mineralisation of

carbon and nutrients could slow down in forests dominated by

birch or other tree species with similar chemistry. This is

reinforced by our observations of high lignin/N and C/N ratios

of elevated-CO2 birch litter, which are predictors for slow

decomposition rates [44]. Conversely, stands containing a lot of

alder, or other species with lower C/N ratios, may show little

response in terms of detrital processing and nutrient turnover.

Differences between tree species make it difficult to predict overall

decomposition rates, a task made more difficult by the prevalence

of litter mixtures in temperate deciduous forests, which tend to

exhibit non-additive decay [45].

Changes to litter quality as a result of elevated CO2 may also

affect invertebrate community composition, a potentially impor-

tant determinant of decomposition rates [19]. This could be

caused by changes to food selection [46] and increased patchiness

of resource quality in litter mixtures on the forest floor [47].

Differential changes to feeding rates may alter competitive

dynamics between invertebrate species, with advantages for

species whose dietary breadth extends beyond leaf litter, such as

G. pulex and S. personatum [48,49].

Our study provides, to date, the broadest assessment of

detritivorous invertebrate species’ feeding responses to CO2-

enriched litter, improving our mechanistic understanding of a

key ecosystem process in temperate woodland ecosystems. Future

elevations of atmospheric CO2 are predicted to affect the

breakdown of detritus indirectly by reducing leaf litter quality

for macroinvertebrate detritivores. The study highlights that this

process is highly tree species-specific, and there will be strong

responses in some forest stands and minimal effects in others.

Identifying the mechanisms governing such ecosystem variation in

functional responses to climate change is essential if we are to

predict the consequences of elevated CO2 for forest carbon

dynamics and nutrient cycling at regional and landscape-scales.
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