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Abstract

Everyday functioning relies on episodic memory, the conscious retrieval of past experiences, but this crucial cognitive ability
declines severely with aging and disease. Vulnerability to memory decline varies across individuals however, producing
differences in the time course and severity of memory problems that complicate attempts at diagnosis and treatment. Here
we identify a key source of variability, by examining gene dependent changes in the neural basis of episodic remembering
in healthy adults, targeting seven polymorphisms previously linked to memory. Scalp recorded Event-Related Potentials
(ERPs) were measured while participants remembered words, using an item recognition task that requires discrimination
between studied and unstudied stimuli. Significant differences were found as a consequence of a Single Nucleotide
Polymorphism (SNP) in just one of the tested genes, PRKCA (rs8074995). Participants with the common G/G variant
exhibited left parietal old/new effects, which are typically seen in word recognition studies, reflecting recollection-based
remembering. During the same stage of memory retrieval participants carrying a rarer A variant exhibited an atypical
pattern of brain activity, a topographically dissociable frontally-distributed old/new effect, even though behavioural
performance did not differ between groups. Results replicated in a second independent sample of participants. These
findings demonstrate that the PRKCA genotype is important in determining how episodic memories are retrieved, opening
a new route towards understanding individual differences in memory.
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Introduction

Episodic remembering is fundamental to a healthy high-quality

life, supporting both day-to-day functioning and creating a

coherent sense of self [1]. Episodic memory is also extremely

fragile, declining with age [2], and easily disrupted by diseases

such as dementia [3], depression [4] and schizophrenia [5].

Attempts to diagnose and treat memory problems are however

complicated by individual variation in the timing and severity of

symptoms [6]. One possible cause of such variability is an

individual’s genotype. In both clinical [7] and healthy populations

[8] genetic variability has been found to be a significant source of

variation in cognitive abilities [9], including episodic memory,

where evidence from twin studies suggests that heritability

accounts for between 30% and 60% of variability in performance

[8]. In addition to evidence of differences in behaviour [10], a

number of functional Magnetic Resonance Imaging (fMRI) studies

have shown that genetic variation can influence brain activity

associated with memory [11–16]. Despite the grounding of many

investigations of memory decline in the current understanding of

episodic memory in healthy young adults, the full consequences of

these genetic differences remain unknown, particularly in those

whose memory is intact.

Whilst fMRI studies provide valuable information regarding

which neural structures are activated during memory retrieval, the

use of the hemodynamic response to measure neural activity

results in a 1 to 2 second lag between the neural event and the

information recorded whilst the vascular system responds to these

changes in the brain. In contrast, measuring the electrophysiolog-

ical activity of neurons from electrodes placed on the scalp, and

generating Event-Related Potential (ERPs) to events of interest,

provides real-time information about the neural activity associated

with that event. Despite the superior temporal quality of ERPs

there does not appear to be any research looking at the

relationship between ERP correlates of episodic memory retrieval

and genetic polymorphisms. In light of the quick onset and

duration of retrieval processes the question arises as to whether

there is genetic variability in neural activation associated with

memory retrieval, and if so, whether such variability is time-

specific?

Here we use ERPs to investigate genetic variability in the neural

basis of remembering, targeting polymorphisms (in genes ADCY8

[17], APOE [16], BDNF [11], COMT [18], KIBRA [13], PRKACG

[17] and PRKCA [17]) previously linked to episodic memory across

patient and genome-wide association studies. One hundred and

twenty nine healthy young adults provided saliva samples (using

Oragene OG-100 vials, DNA Genotek Inc), allowing DNA to be

extracted and genotyped at the Wellcome Trust Clinical Research

Facility, Edinburgh. To avoid the possibility that mental health

issues could act as a confound [19] participants completed a
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Psychiatric Diagnostic Screening Questionnaire [20], leading to

the exclusion of 43 participants, with data from 86 participants

analysed.

Results

Brain activity was measured using scalp recorded ERPs,

providing high temporal resolution neural data that allows genetic

effects to be linked to distinct stages of memory processing. ERPs

were recorded while participants performed a visual item

recognition memory test, using common six-letter nouns and

verbs as stimuli. Participants studied 50 words, subsequently

discriminating them from 50 additional randomly inter-mixed

unstudied words at test (responding ‘old’ or ‘new’). Memory

performance was excellent overall, with 72% of old and 82% of

new words receiving correct responses, reflecting high levels of

discrimination [21] (Pr mean = 0.53, s.d. = 0.17; Br mean = 0.39,

s.d. = 0.16). An additional two participants were excluded from

further analysis on the basis of low discrimination (Pr,0.2),

ensuring that neural activity was examined only for participants

who were unquestionably remembering, leaving 84 participants

for inclusion in the genetic analysis.

For each participant average ERP waveforms were generated

for correctly recognized old (Hits) and correctly rejected new (CRs)

words. Averaged across participants the resulting ERP ‘old/new

effect’ (i.e., the difference between Hits and CRs) is a reliable well-

established neural correlate of retrieval success [22], consistent

with multi-process models of episodic memory [23]. Critically,

ERP old/new effects capture two core temporally distinct stages of

retrieval: an early (300–500 ms post-stimulus) positivity over

frontal scalp has been linked with familiarity [24] and conceptual

priming [25], whereas a later onsetting (500–700 ms post-stimulus)

positivity over left parietal scalp reflects recollection based retrieval

[26]. Focusing on these two existing ERP old/new effects

constrains our analysis strategy, providing strong a priori hypoth-

eses about the pattern of neural activity expected during episodic

retrieval.

ERP data was examined separately for each polymorphism,

collapsing polymorphisms of n,16 where possible, and excluding

polymorphisms where not (as outlined in Table 1). The number of

participants in the final analysis are as follows: n = 72 for

polymorphism rs3249 in gene ADCY8, n = 78 for the combined

polymorphisms of rs7412 and rs429358 in gene APOE, n = 84 for

polymorphism rs6265 in gene BDNF, n = 84 for polymorphism

rs4650 in gene COMT, n = 80 for polymorphism rs17070145 in

gene KIBRA, n = 84 for polymorphism rs3730386 in gene

PRKACG, and n = 82 for polymorphism rs80764995 in gene

PRKCA. Analysis compared ERP old/new difference waveforms

during early (300–500 ms) and late (500–700 ms) stages of

retrieval. An initial global omnibus ANOVA was performed for

each polymorphism, with a between-subjects factor of genotype

and a within-subjects factor of electrode (35 sites covering the scalp

including locations F/FC/C/CP/P at electrode sites 1/3/5/z/2/

4/6; see Figure S1). Results are presented in Table 2, showing a

single significant genotype by electrode interaction for PRKCA,

during the late time window, with no significant genotype by

electrode interactions found for the earlier 300–500 ms time

window. Figure 1 shows group average ERPs for A and G/G

variants of PRKCA, along with topographic scalp maps illustrat-

ing the distribution of old/new effects from 500–700 ms (Figure

S2 shows equivalent maps for all other polymorphisms).

To further characterise the phenotypic difference in the pattern

of brain activity found for each PRKCA group we carried out

regional analysis of the 500–700 ms data. ANOVA directly

compared the old/new effects (i.e., subtraction waveforms) using

a between-subjects factor of genotype, and within-subjects factors

of location (F/FC/C/CP/P), hemisphere (L/R), and electrode (I/

M/S) including locations F/FC/C/CP/P at electrode sites 1/3/5

on the left and 2/4/6 on the right. A significant genotype by

location interaction (F(1,94) = 6.9, p = 0.007) reflects the more

anteriorly distributed old/new effect seen for A carriers compared

to homozygous G carriers. Importantly, topographic analysis using

rescaled data (normalised to remove amplitude differences) also

revealed a significant genotype by location interaction

(F(1,94) = 6.9, p = 0.007), confirming that the pattern of activity

differs in distribution not just magnitude. Figure 2 shows ERP

difference waveforms for A and G/G groups, along with a scalp

map illustrating the difference between groups.

Topographically distinct memory related ERP effects have been

reported previously as a function of sex, e.g., in memory for faces

[27], introducing a potential confound here. We therefore re-

examined the group data as a function of sex (with categorisation

based on a self report of either male or female), finding that the

heterozygous PRKCA group included a significantly larger

proportion of males than the homozygous group (50% vs. 26%

respectively, Fisher’s exact test yields p = 0.042). Given this

significant difference we reanalyzed the ERP data for the 500–

700 ms time window, introducing sex as an additional between-

subjects factor. Analysis revealed no significant main effects of sex

or interactions involving sex, for either the omnibus (all p.0.2) or

regional (all p.0.1) analyses, confirming that sex differences did

not influence the results.

Regional analysis suggests that A allele carriers exhibit

additional positivity over frontal electrodes (Figure 2). To confirm

the focus of effects, t-tests were carried out on data from virtual

frontal (F1, Fz, F2) and left parietal (P5, P3, P1) electrodes,

revealing a significant difference over frontal (mean differen-

ce = 2.23 mV; t(80) = 2.349, p = 0.021) but not parietal (mean

difference =20.36 mV; t(80) =20.438, p = 0.662) sites. Analysis of

genetic variants inherently relies on a comparison of two unequally

sized groups (A carriers = 24, G/G = 58), potentially introducing

biased sampling and violations of homoscedasticity. Consequently

a bootstrap analysis [28] was carried out on data from the virtual

frontal electrode. Re-averaging the G/G data 500 times, using

random subsets of 24 participants each time, confirmed the

significant gene-cognition effect (mean difference of 2.23 mV,

bootstrap 95% confidence intervals of 2.17 mV and 2.29 mV, p,

0.001).

The difference between A and G/G carriers could, in principle,

reflect differential engagement of the retrieval mechanisms that

support episodic remembering (i.e., recollection, familiarity and

priming) [23]. Equally, the difference could reflect greater reliance

on monitoring and control processes, such as those located within

the frontal lobes [26]. To assess these possibilities we examined

behavioral measures as a function of gene, on the basis that

changes of this type would be expected to alter either the timing or

accuracy of retrieval [29]. Analysis of discrimination accuracy (A

mean = 0.54, s.d. = 0.18; G/G mean = 0.53, s.d. = 0.16), decision

bias (A mean = 0.39, s.d. = 0.17; G/G mean = 0.38, s.d. = 0.16),

and response times (HIT: A mean = 852 ms, s.d. = 187 ms; G/G

mean = 811 ms, s.d. = 109 ms, and CR: A mean = 908 ms,

s.d. = 188 ms; G/G mean = 891 ms, s.d. = 136 ms) all revealed

no significant difference between groups (independent sample t-

tests, all p.0.2), suggesting that carriers of the rare PRKCA

variant actually exhibit an atypical pattern of neural activity when

remembering.

The use of multiple comparisons across seven different genes

raises the serious possibility that the PRKCA result may be a
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statistical false positive [30]. We therefore calculated a strict

Bonferroni adjusted alpha level of 0.0023 for each test (0.05/22:

11 polymorphism comparisons over two time-windows); with this

adjustment the PRKCA global omnibus ANOVA

(F(3,247) = 3.945, p = 0.008) does not reach significance. Although

the Bonferroni correction is arguably overly conservative, the

failure to survive a correction for multiple comparisons led us to

conduct a targeted independent replication, focusing specifically

on the PRKCA rs8074995 polymorphism and ERP activity in the

500–700 ms time-window. Sixty three participants (PRKCA

frequencies A/A = 2, A/G = 14, G/G = 44, undetermined = 3;

Hardy-Weinberg equilibrium x2 = 0.43, p = 0.51) completed two

study/test blocks using two hundred 5–7 letter words (50 old words

and 50 new words per block). Analysis of all 63 participants

indicates that overall task performance mirrored that of Experi-

ment One, with 70% of old and 82% of new words receiving

correct responses, reflecting high discrimination (Pr mean = 0.51,

s.d. = 0.21; Br mean = 0.39, s.d. = 0.23). The task and procedures

Table 1. Candidate genes included in the global omnibus ANOVA.

Gene Hardy-Weinberg equilibrium (n=129) Polymorphism N (frequency)1

ADCY8 X2 = 1.72, p = 0.19 A/A 11 (13%)

(rs263249) A/G 40 (48%)

G/G 32 (38%)

APOE X2 = 3.06, p = 0.08 (rs7412) e2 carriers 19 (23%)

(rs7412 & X2 = 1.32, p = 0.25 (rs429358) e3/e3 41 (49%)

rs429358) e4 carriers 18 (21%)

BDNF X2 = 2.98, p = 0.08 A/A 1 (1%)

(rs6265) A/G 28 (33%)

G/G 55 (66%)

COMT X2 = 0, p = 0.98 A/A 23 (27%)

(rs4680) A/G 42 (50%)

G/G 19 (23%)

KIBRA X2 = 0.97, p = 0.32 C/C 35 (42%)

(rs17070145) C/T 38 (45%)

T/T 7 (8%)

PRKACG X2 = 0.49, p = 0.48 C/C 58 (69%)

(rs3730386) C/G 24 (29%)

G/G 2 (2%)

PRKCA X2 = 0.51, p = 0.47 A/A 4 (5%)

(rs8074995) A/G 20 (24%)

G/G 58 (69%)

1Only variants with n.16 were analysed, with variants not included in the analysis presented in italic, and variants collapsed into a single carrier group presented in
bold.
doi:10.1371/journal.pone.0098018.t001

Table 2. Statistical results of the global omnibus ANOVA.

Genotype 300–500 ms 500–700 ms

ADCY8 (A/G v. G/G) F(3,184) = 0.775, p = 0.494 F(3,201) = 1.219, p = 0.304

APOE (e2 v. e3) F(3,158) = 1.353, p = 0.261 F(3,160) = 1.560, p = 0.204

APOE (e2 v. e4) F(3,91) = 1.88, p = 0.147 F(3,98) = 1.434, p = 0.239

APOE (e3 v. e4) F(3,157) = 0.221, p = 0.867 F(3,175) = 0.165, p = 0.923

BDNF (A Carriers v. G/G) F(3,226) = 0.181, p = 0.896 F(3,241) = 0.206, p = 0.889

COMT (A/A v. G/G) F(3,118) = 1.125, p = 0.341 F(3,111) = 0.319, p = 0.796

COMT (A/G v. A/A) F(2,157) = 0.157, p = 0.895 F(3,189) = 0.342, p = 0.795

COMT (A/G v. G/G) F(3,162) = 1.112, p = 0.343 F(3,175) = 1.277, p = 0.284

KIBRA (C/C v. T Carriers) F(3,215) = 0.844, p = 0.463 F(3,229) = 0.434, p = 0.725

PRKACG (C/C v. G Carriers) F(3,229) = 1.339, p = 0.263 F(3,242) = 0.362, p = 0.777

PRKCA (A Carriers v. G/G) F(3,224) = 1.261, p = 0.289 F(3,247) =3.945, p=0.008*

*Significant differences (p,0.05) are highlighted in bold and starred.
doi:10.1371/journal.pone.0098018.t002
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Figure 1. Distinct patterns of memory related brain activity for PRKCA polymorphisms. Grand-average ERP old/new effects for PRKCA
genotypes at representative Frontal (a) and Left-Parietal (c) electrodes, along with topographic maps (b) illustrating the distribution of old/new
effects from 500–700 ms. The vertical scale indicates electrode amplitude (microvolts) and the horizontal scale change in time (milliseconds), with
markers indicating the 500–700 ms window where significant results were found. The colour scale indicates Hit-CR difference size (microvolts). For
both groups Hit ERPs are more positive going than CR from ,300 ms post-stimulus onset (0 ms), reconverging by epoch end. Topographically
dissociable maxima are evident across groups: parietally focused for G/G carriers and frontally focused for A carriers.
doi:10.1371/journal.pone.0098018.g001

Figure 2. PRKCA polymorphisms elicit differences over frontal scalp electrodes. (a) Grand-average ERP difference waveforms (Hits-CRs) for
PRKCA A and G/G carriers at electrodes Fz and P3, showing equivalent activity over parietal scalp, but greater activity for A carriers over frontal scalp.
(b) Topographic map from 500–700 ms illustrating the distribution of the difference between PRKCA A and G/G old/new effects. (c) Histogram of
mean old/new effect magnitude (in microvolts) at midline-frontal (Fz) and left-parietal (P3) electrodes, from 500–700 ms, for each PRKCA genotype.
Statistical analysis confirms significant gene-dependent differences in activity at frontal but not parietal sites. Scale bars as in Figure 1.
doi:10.1371/journal.pone.0098018.g002
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were identical to that used previously, except that after each ‘old’

response participants made a Remember (R), Know (K) or Guess

(G) judgement [31]. The R/K/G distinction allows recollection

(R = 59%) based responses to be identified and examined in

isolation, excluding ‘no-recollection’ trials (a combination of

familiarity (K = 31%) and guessing (G = 10%)). As previously,

participants were excluded from further analysis if they had

undetermined genotype, exhibited poor memory, or had insuffi-

cient artifact-free trials in any response category (3, 4 and 29

participants respectively) leaving 27 participants. An additional

four participants were excluded because they had contributed to

the original sample, leaving 23 participants contributing ERP data

(10 A carriers and 13 homozygous G carriers). Performance for the

sub-sample of 23 participants reflected that of the full sample, with

71% of old and 81% of new words receiving correct responses,

again reflecting high discrimination (Pr mean = 0.52, s.d. = 0.13;

Br mean = 0.39, s.d. = 0.20) and high levels of recollection

(R = 56%, K = 31%, G = 13%). ERP Analysis focused on neural

activity associated with recollection (Remember minus CR

difference waveforms), between 500–700 ms post-stimulus, across

genotypes.

Group average ERPs for A carriers and G/G carriers are

presented in Figure 3, alongside maps showing the distribution of

activity. A global ANOVA (35 sites, including locations F/FC/C/

CP/P at electrode sites 1/3/5/z/2/4/6) revealed a significant

genotype by electrode interaction (F(3,67) = 3.99, p = 0.010).

Regional analysis revealed a significant genotype by location

interaction (F(1,27) = 7.00, p = 0.009), indicating greater activity

over anterior electrodes for A carriers compared to G/G carriers.

An additional genotype by hemisphere by electrode interaction

(F(2,36) = 5.59, p = 0.011) indicates that the difference between

genotypes is larger over the left than right hemisphere, particularly

at inferior electrodes. Importantly, topographic analysis revealed

significant genotype by location (F(1,27) = 6.81, p = 0.010), and

genotype by hemisphere by electrode (F(2,36) = 5.88, p = 0.008)

interactions, confirming the presence of a qualitative difference in

retrieval-related brain activity. As in the original experiment no

significant (all p.0.1) behavioural differences were found between

groups across measures of discrimination accuracy (A

mean = 0.49, s.d. = 0.12; G/G mean = 0.54, s.d. = 0.14), decision

bias (A mean = 0.34, s.d. = 0.17; G/G mean = 0.43, s.d. = 0.21), or

response times (HIT: A mean = 1119 ms, s.d. = 151 ms; G/G

mean = 1230 ms, s.d. = 238 ms, and CR: A mean = 1123 ms,

s.d. = 270 ms; G/G mean = 1337 ms, s.d. = 355 ms), nor in the

additional recollection rate data (A mean = 0.54, s.d. = 0.11; G/G

mean = 0.58, s.d. = 0.11). In short, we replicated the original

findings, with carriers of the PRKCA A allele exhibiting more

frontally distributed ERP effects during retrieval than homozygous

G carriers.

Discussion

The results presented indicate differences in memory related

neural activity as a function of PRKCA polymorphism rs8074995.

The rs8074995 SNP occurs in the PRKCA gene that encodes the

alpha isoform of Protein Kinase C (PKCa), which is known to be

involved in the trafficking of N-Methyl-D-Aspartate (NMDA)

receptors [32], mediating long-term potentiation and synaptic

plasticity [33]. The discovery of PRKCA associated differences in

retrieval-related brain activity highlights the important role of

PKCa in episodic memory. A link between possession of the

PRKCA homozygous A variant and reduced episodic recall has

been previously identified in people with schizophrenia who

exhibit cognitive impairment [19]. Given the importance of neural

dys-connectivity for schizophrenia [34], the present findings

suggest that the consequences of abnormal integration between

brain regions for memory should be greater for A carriers than G/

G carriers, due to the reliance on a wider neural network for

successful memory retrieval.

The present findings provide clear evidence of a link between

variability in PRKCA polymorphism and variability in the neural

basis of episodic memory. As with any genetic association study it

remains possible that the SNP (rs8074995) has high linkage

disequilibrium with a polymorphism at another loci, which is itself

driving the neural difference. In addition, although we replicated

our results in an independent sample, the relatively small size of

our participant groups merit caution (small samples necessarily

increase the risk of false positive results [35]), suggesting that a

further, larger-scale, replication is essential. Regardless, our

findings provide clear evidence that the neural basis of episodic

memory retrieval can vary across participants, and suggests that

the rs8074995 SNP plays a role in memory retrieval, providing an

effective marker of individual differences in the neural basis of

episodic memory.

Our results show that genetic differences in neural activity were

limited to 500–700 ms after stimulus presentation. During the

500–700 ms post-stimulus time-window participants with the

common G/G polymorphism exhibited typical left parietal old/

new effects, reflecting recollection of contextual information from

memory, a finding that was corroborated by isolating Remember

responses in Experiment Two. More importantly, the high

temporal resolution of the ERP data reveals that A carriers did

not exhibit differences in the timing or magnitude of the left

parietal effect per se. Rather, additional frontal activity was present

during the same stage of retrieval, reflecting the engagement of an

extended network of brain regions in A carriers. One potential

interpretation of our findings is that A carriers exhibit additional

Figure 3. Replication of PRKCA dependent patterns of memory
related brain activity. Grand-average ERP old/new effects for each
PRKCA genotype from Experiment Two are shown at Frontal (a) and
Left-Parietal (c) electrode sites, along with topographic maps (b)
illustrating the distribution of effects (Remember-CR) between 500–
700 ms. The pattern of activity replicates initial findings (see Figure 1)
with topographically dissociable maxima across polymorphisms,
showing a parietal focus for the common G/G group but a frontal
focus for the rarer A group. Data shown as in Figure 1.
doi:10.1371/journal.pone.0098018.g003
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frontally mediated strategic monitoring and decision processes

[36]. Typically, however, the frontal ERP effects associated with

post-retrieval processing exhibit a strong right-side hemispheric

asymmetry, and are maximal in size between 1 and 2 seconds

post-stimulus – neither of which is true of the old/new effects

reported here. In addition, interpretations that rely on claims of

additional post-retrieval processing also predict differences in

behaviour (e.g., changes in reaction time) – which are not present

in the data reported here. Taken together, therefore, the data

suggests that recollection operates differently in the two PRKCA

groups, a finding that fits well with recent demonstrations that the

neural correlates of recollection can vary within individuals

depending on the type of material being remembered [37,38]

reflecting different processing demands across material. Whether

individuals with the rare PRKCA variant also differ in how they

respond to the processing demands imposed by different materials

remains to be seen. If such differences do exist, they would suggest

that changing how you retrieve actually alters what you are

predisposed to retrieve.

Critically, the results presented here highlight important

individual variations in the neural activity associated with episodic

memory retrieval, differences that are typically overlooked and

ignored. Healthy ‘outliers’, such as PRKCA A Carriers, may

provide insight into the associations made between neural activity

and specific cognitive processes as to whether such associations are

indeed functional, or if they are simply a co-varying or down-

stream consequence of other functional activity. For example, the

link between PKCa and plasticity suggests that the retrieval-

related differences evident here may themselves reflect the

consequence of changes occurring during the encoding and

storage of memories, a possibility that warrants further investiga-

tion. These data also highlight the need for greater attention to

individual variability across theories of episodic memory -

demanding more sophisticated and nuanced models than

currently exist.

In summary, the presented results reveal differing patterns of

retrieval related neural activity dependent on PRKCA (rs8074995)

polymorphism, but independent of behavioural performance.

Eight polymorphisms were tested, with differences in neural

activity only evident for the PRKCA polymorphism and restricted

to the later 500–700 ms time-window, typically associated with

recollection of contextual information. The results therefore

provide evidence for a role of PRKCA in the way we retrieve

episodic memories, and specifically in the way we recollect.

Furthermore, the existence of gene dependent changes in the

underlying neural activity associated with episodic memory

retrieval in healthy young participants, highlights individual

variation in the way we retrieve memories, questioning the

generalisability of current interpretations of the relationship

between neural activity and episodic memory retrieval.

Materials and Methods

Ethics Statement
Ethical approval for the study was received from the University

of Stirling Psychology Ethics Board. All participants gave written

informed consent to participate in the study and were fully

debriefed upon completion. Participants aged over 16 years were

considered to have legal capacity in accordance with the Age of

Legal Capacity (Scotland) Act 1991.

Participants, Stimuli, Procedure
We carried out two independent memory studies. Participants

in both Experiment One and Experiment Two were healthy,

right-handed, native English speakers, recruited from the Univer-

sity of Stirling, Scotland and were reimbursed for their participa-

tion with course credits or at a rate of £5 per hour in Experiment

One and £7.50 in Experiment Two. Participants were aged 17–35

years in Experiment One and aged 18–28 years in Experiment

Two, and all reported normal/corrected to normal vision; no

history of colour blindness, hearing difficulties, dyslexia, neuro-

logical problems, brain injury, CNS infection, drug or alcohol

abuse, and had not or were not currently receiving treatment for a

psychological illness. Participants completed a series of cognitive,

neuropsychological and psychometric assessments, the majority of

which are not reported here. Although the studies were carried out

independently, experimental sign up procedures allowed partici-

pants to take part in both experiments; we therefore excluded four

participants from Experiment Two on the basis that they had

already taken part in Experiment One.

Memory was tested using a PC, with Psychology Software Tools

five-button response box and software (Eprime 1.1). For Exper-

iment One, 100 medium frequency six letter words (10–13

occurrences per million [39]) were sorted alphabetically and

allocated alternately to two lists, allowing counterbalancing of

studied/unstudied status (stimulus order was randomised for each

participant). Words were presented for 1000 ms in white 18-point

bold Courier New font (black background), proceeded by a

2000 ms cross-hair. Fifty words were presented during study and

100 words during test (fifty old and fifty new) with a one-minute

break separating the two phases, during which participants were

instructed to relax and rest their eyes. At test participants

responded ‘old’ or ‘new’ as quickly and accurately as possible,

with responses triggering the next trial. Responses were made with

left and right index fingers (counterbalanced across participants).

Markedly fast (,300 ms) and slow (.twice the mean) responses

were excluded from analysis (mean = 1%). Experiment Two

replicated Experiment One with a new set of words that were

five to seven letters in length. A secondary Remember/Know/

Guess judgment was added at test to ‘old’ judgments, with

responses triggering the next trial. ‘Remember’ and ‘Know’

responses were made with left and right index fingers (counter-

balanced across participants) and ‘Guess’ responses always made

with the center button.

EEG Acquisition and Analysis
EEG was acquired using Neuroscan amplifier (SynAmps2) with

electrode caps (Quickcaps) and software (Aquire/Edit 4.3/4.4).

Data was recorded from 62 Ag/AgCl electrodes conforming to the

International 10–20 System of electrode location. Impedances

were kept below 5 KV and data was digitised at a rate of 250 Hz,

sampling at 4 ms/point, and a band-pass filter of 0.1–40 Hz was

used to attenuate both high and low frequencies. Signals were

amplified with a gain of 2010.

EEG data was re-referenced off-line to linked-mastoids. Epochs

of 1200 ms (2100 to 1100 ms) were extracted from EEG, time-

locked to stimulus onset (0 ms), with 100 ms preceding stimulus

onset used as a baseline. Eye-blinks were removed using the ocular

artifact reduction procedure in Neuroscan Edit software (version

4.3) and trials where drift was greater than 675 mV or where the

signal exceeded 6100 mV on any electrode were excluded. Data

was smoothed using a rolling average, over a successive 5 point

kernel. Average ERPs were formed for each participant (Exper-

iment One trials: Hit/CR mean = 29/32 respectively; min/

max = 16/45; mean trials rejected = 16%; Experiment Two: R/

CR mean = 32/61; min/max = 18/79; mean trials reject-

ed = 22%). Mean old/new effect amplitude (Experiment One:

Hit-CR; Experiment Two: R-CR) was calculated for each
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genotype, analysed using ANOVA (Greenhouse-Geisser corrected

for non-sphericity as appropriate), with topographic differences

assessed following max/min rescaling [40].

SNP Genotyping
Saliva samples were collected using Oragene OG-100 DNA

collection vials (DNA Genotek Inc) in accordance with Oragene

guidelines. DNA was extracted by Welcome Trust Clinical

Research Facility Edinburgh from saliva using Oragene Purifier

OG-L2P-5 and quantified using Picogreen dye. SNP genotyping

was conducted using an Applied Biosystems 7900HT Fast Real-

Time PCR system, with Taqman SNP assays rs6265, rs17070145,

rs7412, rs429358, rs4680, rs263249, rs8074995, rs3730386

(Applied Biosystems).

Supporting Information

Figure S1 Schematic illustration of electrode montage.
EEG was recorded from 62 electrodes arranged according to the

extended International 10–20 system. Electrodes are displayed as

if looking down on the top of the head, with the nose at the top of

the oval. The figure illustrates the pattern of electrodes used in

statistical analysis - all 35 electrodes employed in the global

omnibus ANOVA are enlarged. The allocation of these electrodes

into factors for regional analysis is also indicated, using location,

hemisphere and electrode markers.

(TIF)

Figure S2 Retrieval related brain activity is unaffected
by polymorphisms of ADCY8, APOE, BDNF, COMT,
KIBRA, PRKACG. Topographic maps depicting the distribu-

tions of the old/new effects (Hits minus CRs) in the 500–700 ms

time-window for all genes included in the global omnibus

ANOVA that failed to reveal significant genotype differences. As

evident from the analysis there is minimal difference between

genotypes, with carriers of both common and rare variants of each

polymorphism exhibiting the typical left parietal distribution

reported in the literature. The scale bar indicates the size of the

old/new difference in microvolts.

(TIF)
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24. Düzel E, Yonelinas AP, Mangun GR, Heinze HJ, Tulving E (1997) Event-

related brain potential correlates of two states of conscious awareness in
memory. Proc Natl Acad Sci USA 94: 5973–5978.

25. Paller KA, Voss JL, Boehm SG (2007) Validating neural correlates of familiarity.

Trends Cogn Sci 11: 243–250.

26. Wilding EL, Rugg MD (1996) An event-related potential study of recognition
memory with and without retrieval of source. Brain 119: 889–905.

27. Guillem F, Mograss M (2005) Gender differences in memory processing:

Evidence from event-related potentials to faces. Brain Cognition 57: 84–92.

28. Vizioli L, Foreman K, Rousselet GA, Caldara R (2010) Inverting faces elicits
sensitivity to race on the N170 component: A cross-cultural study. J Vision 10:

1–23.

29. Henson R, Rugg M, Shallice T, Dolan R (2000) Confidence in recognition
memory for words: dissociating right prefrontal roles in episodic retrieval.

J Cognitive Neurosci 12: 913–923.

30. Chabris CF, Hebert BM, Benjamin DJ, Beauchamp JP, Cesarini D, et al. (2012)
Most reported genetic associations with general intelligence are probably false

positives. Psychol Sci 23: 1314–1323.

31. Gardiner JM, Ramponi C, Richardson-Klavehn A (1998) Experiences of
remembering, knowing, and guessing. Conscious Cogn 7: 1–26.
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