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Abstract

We propose the technique of biogeochemical typing (BGC typing) as a novel methodology to set forth the sub-systems of
organismal communities associated to the correlated chemical profiles working within a larger complex environment. Given
the intricate characteristic of both organismal and chemical consortia inherent to the nature, many environmental studies
employ the holistic approach of multi-omics analyses undermining as much information as possible. Due to the massive
amount of data produced applying multi-omics analyses, the results are hard to visualize and to process. The BGC typing
analysis is a pipeline built using integrative statistical analysis that can treat such huge datasets filtering, organizing and
framing the information based on the strength of the various mutual trends of the organismal and chemical fluctuations
occurring simultaneously in the environment. To test our technique of BGC typing, we choose a rich environment
abounding in chemical nutrients and organismal diversity: the surficial freshwater from Japanese paddy fields and
surrounding waters. To identify the community consortia profile we employed metagenomics as high throughput
sequencing (HTS) for the fragments amplified from Archaea rRNA, universal 16S rRNA and 18S rRNA; to assess the elemental
content we employed ionomics by inductively coupled plasma optical emission spectroscopy (ICP-OES); and for the organic
chemical profile, metabolomics employing both Fourier transformed infrared (FT-IR) spectroscopy and proton nuclear
magnetic resonance (1H-NMR) all these analyses comprised our multi-omics dataset. The similar trends between the
community consortia against the chemical profiles were connected through correlation. The result was then filtered,
organized and framed according to correlation strengths and peculiarities. The output gave us four BGC types displaying
uniqueness in community and chemical distribution, diversity and richness. We conclude therefore that the BGC typing is a
successful technique for elucidating the sub-systems of organismal communities with associated chemical profiles in
complex ecosystems.
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Introduction

Unravelling trends that rule complex aquatic environments is a

puzzling task due to the myriad of possibilities of interactions

presented between and within the hosted organismal consortia

with organic and inorganic compounds.

As explaining the totality of the interactions is a goal hard to

achieve, if not plainly impossible considering the never ending

development on science, therefore, here we intend to frame sub-

systems co-existing within a larger system using a data-driven

approach [1]. To comprehend such interactions we gave rise to

the biogeochemical typing (BGC typing), a flexible tool to bring

forth and individualize a subset of structures underlying in the

studied environment based on the correlation between the

community and chemical profiles analysed.

The BGC typing analysis is a pipeline built using integrative

statistical analysis and can treat massive datasets as used here

produced by multi-omics analysis [2] which would otherwise be

hard to visualize [3] and process [4]. It filters, organizes and
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frames the data based on the strength of the mutual trends

working within the environment.

The multi-omics analyses here was composed by metagenomics

which gave the community consortia profile, ionomics showing the

elemental content a metabolomics for the organic chemical profile.

Here, we regard metagenomics as applying solely to the

characterization of small-subunit ribosomal RNA. Therefore, the

multi-omics analysis provided who is there and what is there as

explained as following.

In this study we researched on the aquatic environment of three

distinct paddy fields and surrounding water located in Saitama

Prefecture, Japan. The paddy field is the source of one of the most

important staple foods in the world and a rich environment

comparable to a natural wetland: more than merely the ability to

sustain crops, it harbours an intricate net of life, and it is able to

support even higher-trophic level organisms such as fish [5].

In a complex environment, one can find thousands of different

organisms thriving. To answer who is there, we performed the

metagenomics to identify the organismal consortia. The identifi-

cation was expressed as operational taxonomic units (OTUs) [6]

retrieved by high throughput sequencing (HTS) the polymerase

chain reaction (PCR) products of Archaea-specific and universal

16S (Archaeal genes excluded) and universal 18S small-subunit

ribosomal RNA primers.

To assess what is there we joined the pieces of information from

ionomics and metabolomics.

The ionomics is the elemental analysis evaluating its variation

over a set of samples in an approach as the one applied to plant

assay [7]. The ionomic analysis was assessed by the use of

inductively coupled plasma optical emission spectroscopy (ICP-

OES).

For the metabolomics we used two techniques, the attenuated

total reflectance Fourier transformed infrared (FT-IR) and the

proton nuclear magnetic resonance (1H-NMR).

The FT-IR is a technique easy to be employed by request little

preparation to the sample and give us information about its

organic chemical profile regarding the rotational-vibrational

frequency from the chemical bonds present in the molecules

being a useful tool in metabolomics [8].

The 1H-NMR has been proved for long to be also a powerful

tool in metabolomics [9,10], assessing the information related to

the structure from the molecules in our sample that contain

hydrogen as the large majority of organic compounds.

Such multi-omics dataset was split in two groups of data: one

derived from metagenomics aggregating the OTUs from Archaea,

16S rRNA and 18S rRNA forming our organismal community

matrix (matrix community) and the second group of data formed

by the ionomic information acquired by ICP-OES joint to the

metabolomic information represented by the integration of FT-IR

and 1H-NMR spectra, thus being fused to one matrix of chemical

profile (matrix chemicals).

As in our method we are not able to differentiate whether the

cells were dead or alive in the exact time of sampling and some

organisms may feed on dead cells it was assumed that all matter

including the cells constituents took part of the environmental

condition, therefore, regarded on the chemical profile.

The integrated statistical analysis is the tool to connect and

frame the various trends acting underneath the broader complex-

ity of the totality of the environment. Our group has being

developing statistical tools to grasp the explainable features present

on diverse environments [11,12].

Here, we filter, organize and frame the data applying the

pipeline of the BGC typing to expose the links amongst the

organismal community and the chemical profile. It optimizes the

set of information retrieved by filtering the data according to the

strength of the correlation and individualizes sub-systems of

organismal consortia along its chemical features framing our BGC

types. Each BGC type thus comprises a small universe statistically

isolated working within the environment, helping the understand-

ing of the whole system.

The BGC typing pipeline is based on integrative statistical

analysis: namely, Spearman correlation [13,14], least-squares

structuring [15] and k-means clustering [16,17]. The set formed

by the groups of organisms and the chemical profiles associated by

this pipeline we call the BGC types which are meaningful a priori

only in the specific study, nevertheless we expect to find similar

BGC types spread on similar environments under similar

conditions and analyses. The BGC typing then would improve

and develop itself as more and more studies are done following this

approach.

The description of four singular BGC types found in this study

shows that we successfully established the technique of BGC

typing as a tool to characterize sub-systems composed by the

community distributions and structures associated to chemical

profiles on a complex environment such the Japanese paddy field

and surrounding waters (Fig. 1).

Materials and Methods

Sampling
We designed the sampling method to encompass what we

regarded as three unities of sampling sites which comprised three

samples from the water of a chosen paddy field plus its collector

stream. We added two sampling points from the river that

boundaries the paddy fields, the Ara river – one sampling was

taken from the river right before it meets the paddy field area and

another right after such paddy area ends.

The sampling site lies on the plains of the Hiki District of

Saitama Prefecture (Japan) over a large agricultural area following

the course of the Ara River for approximately 13 km. Samples

were collected on August 23, 2011, a few weeks prior to harvest;

the paddy fields had been flooded all summer to raise the crop

(rice). Using sterile tubes, four 50 mL aliquots of water were

collected per sample from each sampling point. The points were

located in three individual paddy fields, their respective collector

streams, and the Ara River itself, for a total of 14 sampling points

(Fig. 2). Specifically, there were two samples from the Ara River,

one upstream of the paddy field areas and the other downstream

of the paddy fields (ara1 - 36u29320N 139u30980E; ara2 -

35u569540N 139u329410E); three samples from different points of

paddy field 1 (p1f1–p1f3 - 36u29230N 139u299510E) and its

collector stream (p1s - 36u29250N 139u299460E); three samples

from different points of paddy field 2 (p2f1–p2f3 - 35u599370N

139u30950E) and its collector stream (p2s - 35u599370N

139u30950E); three samples from different points of paddy field 3

(p3f1–p3f3 - 35u589290N 139u309330E) and its collector stream

(p3s - 35u589290N 139u309320E). The samples were stored at 4uC
in a cooler box and returned to the laboratory immediately, where

they were stored at –80uC. Before each analysis, a 60 h freeze-

drying pre-processing step was performed. All freeze-dried samples

were weighed. One 50-mL aliquot was used for DNA extraction

and community analysis, another aliquot for ICP-OES, another

aliquot for FT-IR, and another one for 1H-NMR.

HTS of the PCR products from the ribosomal RNA gene
from environmental samples

High throughput sequencing is a powerful tool to identify the

constituent organisms in environmental studies [18].

Biogeochemical Typing of Paddy Field Environment
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The DNA was extracted from the freeze-dried samples by using

the Power Soil DNA extraction kit (MoBio, CA, USA); the

concentration of extracted nucleic acids was measured using a

CLUBIO Micro Spectrophotometer.

We amplified by PCR the small sub-unit ribosomal RNA

sequences from the extracted DNA. Fragments from 16S rRNA,

18S rRNA, and Archaeal rRNA were separately amplified. The

hipervariable regions from V1 to V3 for the 16S rRNA were

amplified using modified Ba27F (59-AGAGTTT-

GATCCTGGCTCAG-39) as the forward primer [19] and

PRUN518 (59- ATTACCGCGGCTGCTGG-39) as the reverse

primer [20]. The hipervariable regions from V1 to V3 for the 18S

rRNA were amplified using Euk1A (59-CTGGTTGATCCTGC-

CAG-39) as the forward primer and Euk516R (59- ACGGGGG-

GACCAGACTTGCCCTCC-39) as the reverse primer [21]. The

hipervariable regions from V4 to V6 for the Archaeal rRNA were

amplified using the 16S Archaea-specific rRNA pair of S-D-Arch-

0519-a-S-15 (59-CAGCMGCCGCGGTAA-39) as the forward

primer and S-D-Arch-1041-a-A-18 (59-GGCCATG-

CACCWCCTCTC-39) as the reverse primer [22]. The PCR

products were subjected to agarose gel electrophoresis. Correctly

sized fragments were retrieved from the gel and DNA was

extracted using the Wizard SV Gel and PCR Clean-Up System

(Promega, WI, USA). The final DNA concentration was measured

using Invitrogen Quant-iT PicoGreen sDNA Reagent and Kits

(Invitrogen, CA, USA). Correct dilutions were performed using

Milli-Q water. The sequencing library for HTS was prepared

using the GS Junior Titanium emPCR kit (Lib-L) (454 Life

Sciences, CT, USA) by following the provided protocol. The

library was read by a GS Junior sequencer following standard

operating procedures.

The obtained reads from each GS Junior run were treated using

QIIME software [23]. We followed the ‘‘454 Overview Tutorial:

de novo OTU picking and diversity analyses using 454 data’’

(http://qiime.org/tutorials/tutorial.html) using default settings,

with the following exceptions: de novo chimera detection and

Trie pre-filtering in the OTU picking step [24]; uclust_ref as the

clustering method [25]; SILVA 108 of the SILVA rRNA database

Figure 1. Schematic representation for the Biogeochemical Typing (BGC typing). Yellow box: steps for collection and pre-processing the
samples. Orange box: steps for data acquisition and formatting for BGC typing. Red box: steps for BGC typing as the integrated statistical analyses.
doi:10.1371/journal.pone.0110723.g001
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as a sequence reference [26]. The aligned sequences were assigned

against the SILVA rRNA database. OTUs represented by a single

read over all sampling points were filtered out to decrease

computational demand, since our correlation method used would

not be able to show any trend for a sequence read only once.

OTUs generated by one set of primers (e.g., Archaea) that were

aligned to other domains (e.g., Eukaryota) were also filtered out to

prevent overrepresentation of organisms. To compare quantified

information of each OTU amongst the sampling sites, the number

of reads for each OTU was divided by the total number of reads

for its sampling point in order to find the relative abundance for

each OTU. This step was separately performed to the three

domains studied. The resulting tables of OTUs against sampling

points for Archaea rRNA, 16S rRNA, and 18S rRNA were fused

to one matrix (matrix community). Although the aim of this study

is not building an ultimate phylogenetic tree, neither this dataset

allows such task, an emulation of a phylogenetic tree was built in

QIIME [23,27] and exported to R to plot a more visually

informative tree [28]. Observing the resultant tree with mixed

Bacteria and Archaea domains, we opted to reassign the 16S

rRNA and Archaeal OTUs according to data from the Ribosomal

Database Project (RDP) [29]. The trees were built once again after

the BGC typing for comparison and the 16S rRNA, 18S rRNA,

and Archaeal OTUs appeared fairly distinguished.

Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES)

For the preparation to the analysis, we suspended in Milli-Q

water each freeze-dried sample to recreate the same 50 mL initial

volume. Three dilutions were prepared–1:1, 1:10, and 1:100-for 6-

mL aliquots in 15-mL plastic tubes. For the dilutions, elemental

analysis was performed using SII model SPS 5510 CCD

simultaneous ICP-OES (SII NanoTechnology Inc., Chiba, Japan)

equipped with an SPS-3 auto-sampler (SII NanoTechnology Inc.)

and using ICP Expert software (SII NanoTechnology Inc.). We

used the Multi-Element Calibration Standards 3, 4, and 5

acquired from PerkinElmer (PerkinElmer Japan Co., Ltd.,

Yokohama, Japan) to calibrate the machine. A concentration of

1 mg L21 of each standard dilution was used for this step. We

quantified 27 chemical elements: Al, B, Ba, Be, Ca, Cd, Cr, Cs,

Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Se, Si, Sn,

Sr and Zn. Three emission wavelengths of each element were

chosen to satisfy both the achievement of maximum intensities and

the elimination or minimization of the interference effect for

discrimination of each element in the samples. The ICP-OES

operating conditions were as follows: power 1.2 kW, plasma gas

flow 15 L min21, auxiliary gas flow 1.5 L min21, nebulizer gas

flow 0.75 L min21, and peristaltic pump speed 15 rpm. From the

obtained data, a matrix was built using the concentration in ppm

Figure 2. Schematic representation for the sampling location. Shadow map showing Kanto region (Japan). Grey area is Saitama prefecture.
The rectangle indicates where the samples were taken. Magnified area is schematic map for the sampling site. At right side, schematic figure: Ara
River was sampled in two points (ara1 and ara2) as well as paddy fields located within the area between these two river sampling points. Three
independent paddy fields (paddy field 1, 2, 3) were selected and three samples were taken from each paddy field (p1f1-3, p2f1-3 and p3f1-3). These
paddy fields were connected with Ara River through independent collector streams which were also sampled (p1s, p2s, p3s), respectively for each
paddy field. Blue arrows indicate flow direction of Ara river and light brown arrows indicate each sampling points. Gaps in Ara River indicate bridges.
doi:10.1371/journal.pone.0110723.g002

Biogeochemical Typing of Paddy Field Environment

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e110723



for each element against the sampling points from the average

result of the optimal dilution with the optimal wavelengths.

Attenuated Total Reflectance Fourier Transformed
Infrared (FT-IR) Spectroscopy

The freeze-dried samples were pressed directly on the crystal of

Nicolet 6700 FT-IR spectrometer using the ATR smart iTR

accessory with a high-pressure clamp (Thermo Scientific) to

measure the absorbance from 4,000 to 650 cm21 at a resolution of

8 cm21. The peaks were annotated according to the absorbance

wavelength. Distinguishable peaks consisting of regions with

overlapping chemical bond signals were annotated by more than

one chemical bond (i.e., as many as needed). The region of interest

(ROI) was integrated for each assigned peak using an interval with

no observed overlap. From 1,200 to 849 cm21 the signals for the

chemical bonds were permitted to overlap, such that the peaks

were assigned to more than one chemical bond candidate. The

region over the interval from 847 to 650 cm21 was not used for

annotation due to visually present but indistinguishable peaks. The

spectra were integrated using Thermo OMIC software (USA). A

matrix was built by assigning the sum of the integration values to a

distinct part for each assigned peak as its relative amount.

Proton Nuclear Magnetic Resonance (1H-NMR)
Each freeze-dried sample was dissolved individually in a

proportion of 1/9 (m/v) in 100 mM 95% deuterated phosphate

buffer (100 mM KH2PO4 in 99% D2O, pH 7.0) with 1 mM

sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) as the inter-

nal standard. The solution was sonicated for 5 min at room

temperature in a Bioruptor Diagenode (USA). Following sonica-

tion, centrifugation was performed at 8 krpm and supernatant was

transferred to a 5-mm ø NMR tube.

All spectra were recorded at 298 K on a Bruker DRU-700

spectrometer (Germany) equipped with a 1H inverse cryogenic

probe with triple-axis gradients operating at 700.15 MHz.

The 1H-NMR spectra were recorded at 32,768 points over 256

scans using the Watergate pulse sequence [30]. The J-resolved

spectra were recorded in 32 scans per f1 increment with a total of

32 complex f1 and 16,384 complex f2 points.

The spectra were manually phased and calibrated in the Bruker

Top Spin program. Integration of spectra was performed in

advanced bucketing mode in Bruker AMIX 3.5 software on

manually picked peaks using bucket widths equal to 0.02 ppm to

find the integration value for each peak. Two broad peaks from

3.48 to 0.78 ppm were integrated by the sum of the integration for

each bucket with no visible sharp peak for the region.

The peaks of the J-resolved spectra were assigned according to

the Birmingham Metabolite Library [31]. The peaks for 1H-NMR

spectra were assigned with the help of SpinAssign [32,33,34]. Both

assigned tables were transposed to the 1H-NMR bucketed table

(table for the integrated peaks) based on the chemical shifts. Broad

peaks were assigned to proteins, whose presence was supported by

positive Bradford protein assay results. 1D-STOCSY also was

performed to the annotated bins correlated to the BGC types [35].

A column for the broad peak was added to the 1H-NMR assigned

table to complete the 1H-NMR matrix.

Results and Discussion

HTS
HTS generated 100,641 sequences for the small-subunit

Archaea rRNA primers, 302,974 sequences for the small-subunit

16S rRNA general primers, and 314,632 sequences for the small-

subunit 18S rRNA general primers. The sequences repeated were

collapsed and then assigned with similarity $97%, generating

5,688 OTUs for Archaea rRNA, 24,633 OTUs for 16S rRNA (no

Archaeal OTU was found among universal 16S rRNA amplicons),

and 9,355 OTUs for 18S rRNA. The rarefaction analysis showed

a good coverage for the organismal community (Table S1, S2, S3,

Fig. S1, S2, S3).

After filtering out the reads to OTUs appearing only once over

the 14 sampling points, the respective totals for retrieved OTUs

were 4,019, 14,942, and 6,391. Performing BGC typing as

correlation filtering process, we retrieved 854 OTUs for Archaea

rRNA, 1,743 OTUs for 16S rRNA and 815 OTUs for 18S rRNA.

For each BGC type, we used QIIME to build an emulation of a

phylogenetic tree and software R to plot and compare how the

sequences were separated amongst the products retrieved from

Archaea rRNA, 16S rRNA and 18S rRNA. The result displayed a

fairly distinguished distribution of the OTUs (Fig. S4, S5, S6, S7).

ICP-OES
We tested for 27 elements and detected 15 in our samples.

Aluminium was detected in all samples with a lower concentration

in paddy field waters than in the river. It is known that pH affects

the concentration of elements; however, no clear trend between

elemental concentration and pH was observed in the current study

(Table S4).

FT-IR
We retrieved 10 distinguishable peaks and annotated accord-

ingly [36]. The peaks annotated to NH2 and N-C = O follow the

same pattern, suggesting that they are intrinsically linked as

moieties of amino acids (Fig. 3). These peaks displayed the highest

intensities at the two sampling points from the Ara River (ara1;

ara2) and the one from the collector stream for paddy field 3 (p3s).

Also, we annotated on the spectra peaks as C-H and as O-H,

suggesting organic energy available since molecules with aliphatic

and alcohol bonds are prone to be oxidized by many organisms

(Table S5).

1H-NMR
e integrated 161 individual peaks for 1H-NMR plus an

integration for the two broad peaks, for a total of 162 1H-NMR

variables. The soluble organic compounds detected by this

technique exhibited a clear pattern of samples from the Ara River

having poorer concentrations (Fig. 3). Assignment of all peaks on

the 1H-NMR spectra was difficult due to low concentrations of

extractable compounds and to limited sensitivity insufficient to

extend analysis to 1H-13C correlation experiments. However, J-

resolved 1H-NMR analysis allowed us to annotate a total of 60

buckets (Fig. S8).

These annotations constituted molecular residue information

from the chemical compounds, amino acids, or organic products

present in our samples. A fraction of the peaks correlated to the

BGC types was evaluated by one-dimensional statistical total

correlation spectroscopy (1D-STOCSY) to verify the degree of

support for the annotation [37]. The tallest peak in the spectra was

assigned to lactate with good support from 1D-STOCSY plot and

direct comparison against the spectrum for the pure compound

provided on the Bruker AMIX database (Table S6, Fig. S9, S10).

The two broad peaks observed in the spectra had the sum of

their approximated area integrated discounting the buckets with

sharp peaks. These broad peaks possessed characteristic patterns

of proteins [38,39]. The Bradford assay [40] was performed on the

samples with the largest broad peaks for each paddy field – p1f3,

p2f3, and p3f2- with respective results of 18.1 (sd = 1.2), 29.8 (0.4),

and 43.0 (0.2) mg mL21 of protein. Additionally, 1D-STOCSY

Biogeochemical Typing of Paddy Field Environment
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showed a correlation between protein concentrations against the

large broad peaks in the 1H-NMR spectra, suggesting that soluble

protein produced these peaks (Fig. S11).

Biogeochemical typing (BGC Typing)
We constructed two independent matrices arranged by our

sampling points, the matrix community and the matrix chemicals.

We characterized four different groups composed by the

correlated organismal and chemical profiles. We propose this

statistical treatment as BGC typing.

Once the dataset is built, in this case using multi-omics

approach, we applied the statistical process of BGC typing which

can be divided into three main steps: 1) Filtration, 2) Organization

and 3) Description.

1) Filtration. The matrices formed by the OTUs retrieved

from Archaea rRNA, 16S rRNA and 18S rRNA sequencing were

fused in one table as being the matrix community.The matrices

from ICP-OES, FT-IR, and 1H-NMR were fused into a single

matrix termed chemicals. Using R software [41], Spearman

correlation was performed between the community and chemicals

matrices. The resulting correlation matrix was then imported to

Microsoft Excel to extract all OTUs with coefficients equal to or

higher than |0.70|.

2) Organization. To evaluate the appropriate number of

BGC types representing the sub-systems, we used the least square

structuring testing up to 15 groups [42,43]. The curve inflexion

indicated four as the optimal number of BGC types (Fig. 4) [15].

The correlation matrix was then divided within the principal

component analysis (PCA) into four BGC types by the k-means

clustering method [16] and plotted [44]. The BGC types were

distributed in a cross-like fashion: two oriented horizontally

according to the axis of principal component 1 (PC1) and two

oriented vertically according to the axis of principal component 2

(PC2) (Fig. 5).

A table of the OTUs from each BGC type was built. For the

community distribution analysis, we plotted the sum of all relative

abundances along the sampling points for each BGC type (Fig. 6).

To analyse the community structure, the OTUs were collapsed to

the class level or beyond according to the next divergence on the

taxon presented. The resulting matrices were used to find the

percentage of abundance for the groups of organisms in each BGC

type. To visualize the differences among chemical profiles

presented by the different BGC types, we built a table and plotted

(Fig. 7).

A table of the chemical profile for each BGC type was built by

using the average correlation index for all the chemical variables

for each chemical variable from the BGC type and the loadings for

Figure 3. Chemical profiles for the sampling points. A) ICP-OES heatmap. X-axis: elements. Y-axis: sampling points. Red colour intensity
corresponds to elemental concentration normalized by element. B) FT-IR spectra. X-axis: wavelength number. Y-axis: absorbance intensity. C) 1H-NMR
spectra. X-axis: chemical shift. Y-axis: intensity.
doi:10.1371/journal.pone.0110723.g003
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PC1 or PC2 according to the one that better explains the BGC

type. In order to facilitate the comparison, the tables were scaled

by unity of variance without centring (Fig. 8).

The PC which better explains each BGC type had the loadings

compared against the average correlations from each chemical

variable using the standard deviation of a population (STDEVP).

Chemical variables with STDEVP of 0.20 and over were extracted

to build the table of the chemical profile for each BGC type

(Table 1).

3) Description. According the structure presented by each

BGC type regarding the organismal community and chemical

profiles along the sampling points, we analysed the features that

individualize them and searched for the literature that could bring

sense to the sub-systems exposed.

Organismal community distribution
Organisms of BGC type I had a scattered distribution over the

sampling points, with a tendency to be less present in the lotic

waters ara1, p2s, p3s and ara2 with exception of p1s. BGC type II

presented a scattered distribution over the paddy field and

collector streams. BGC types I and II appeared to be minimally

present in the Ara River (ara1, ara2).

Organisms in BGC type III were distributed predominantly on

the lotic waters and had minimum presence in the lentic waters on

the paddy fields. The organisms for BGC type IV were distributed

predominantly on the lentic waters from the paddy fields.

Conversely, BGC type IV had a minimal distribution on the

river and collector streams, the lotic waters. When we summed the

three domains for each paddy field data, a gradual increase was

observed from paddy 1 to paddy 3, although none of the paddies

was directly connected. The organismal community distribution

over the sampling points can be visualized in Fig. 6.

Organismal community structures
The retrieved Archaeal community profile was dominated by

the phylum Euryarchaeota, mostly composed of the classes

Methanomicrobia, Thermoplasmata and Methanobacteria. In ad-

dition, Euryarchaeota exhibited the largest abundance in three out

of the four BGC types, being the dominant phylum on the paddy

floodwaters and the collection streams for BGC types I, II and IV.

The mentioned classes tend to be directly involved in methane

production [45,46,47]. BGC type III, which was predominantly

distributed over the lotic waters of the Ara River and the collector

streams, had the phylum Crenarchaeota, class Thermoprotei as the

most abundant kind of Archaea. Crenarchaeota is suggested to

take part in primary production by active involvement in the

Figure 4. Finding the optimal number of BGC types. X-axis:
number of clusters. Y-axis: sum of squared distances from each variable
to the centroid within the BGC type.
doi:10.1371/journal.pone.0110723.g004

Figure 5. Delimiting BGC types. Plot of PCA scores for the extracted OTU matrix correlated with chemical profile. Four BGC types were delimited
by k-means clustering. X-axis: PC1. Y-axis: PC2. BGC I: area enclosed in red with cross symbols, BGC II: area enclosed in blue with x symbols, BGC III:
area enclosed in green with circular signals, BGC IV: area enclosed in pink with triangular signals. Arrows indicate the axes separating the BGC types;
the quasi-horizontal arrow separates BGC III from BGC IV along the PC1 axis; the quasi-vertical arrow separates BGC I from BGC II along the PC2.
doi:10.1371/journal.pone.0110723.g005
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Figure 6. Community distributions of the BGC types over the sampling points. Distributions of relative abundances of communities
identified as Archaea, 16S rRNA and 18S rRNA for the BGC types along the sampling points. X-axis: sampling points, Y-axis: relative abundance. Green
shadows indicate sampling points on lentic waters and blue shadows indicate the sampling points over lotic waters. Below: a schematic drawing for
the sampling points.
doi:10.1371/journal.pone.0110723.g006
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ammonia-oxidizing process of the nitrogen cycle and in autotro-

phic carbon assimilation [48,49,50]. This phylum has also been

suggested to be dominant in fresh-water systems [51], which is in

accordance with our findings for the distribution of BGC type III.

However, such a pattern was clearly not mirrored in the paddy

floodwaters, where the profile resembled that of soil [52] or a

suboxic freshwater pond [53]. The BGC types distributed over the

paddy fields and collector streams encompassed methanogenic

candidates along with organisms that thrive in a wide range of

aerobic conditions. Some of the associations might be possible by

the formation of anoxic microzones in aggregates [54], although

Archaea methanogens can survive in aerobic environments [55]

(Fig. S12, S13, S14, S15).

Figure 7. Heatmap for the Spearman correlations of extracted OTUs against chemical profiles. X-axis, in order: chemical elements (ICP-
OES), wavelength number (FT-IR), chemical shifts (H-NMR). Y-axis: OTUs arranged from BGC type I (upper) to IV (bottom). BGC types are indicated on
the left. The meaning of the colours is indicated in the legend at the bottom.
doi:10.1371/journal.pone.0110723.g007

Figure 8. Comparison of the average correlations for each BGC type against PCA loadings. X-axis in order: chemical elements (ICP-OES),
wavelength number (FT-IR), chemical shifts (H-NMR) (legend omitted). Y-axis: scaled scores. Average correlations from top to bottom are cluster 1
against PC2, cluster 2 against PC2, cluster 3 against PC1, and cluster 4 against PC1. Values are scaled by unity of variance.
doi:10.1371/journal.pone.0110723.g008
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The community identified by amplifying the 16S rRNA showed

the ubiquitous class Actinobacteria to present the largest

abundance (,38%) and indeed as one of the four most abundant

classes across all BGC types. It prevailed in abundance even over

the ,26% of the higher-taxon Proteobacteria phylum. Actinobac-
teria possess versatile metabolism, exemplified by their ability to

decompose lignocellulose [56,57] or to produce bioactive metab-

olites as antibiotics. The high abundance of Actinobacteria in BGC

types II and IV in particular mirrored studies of both soil and

aquatic ecosystems where this phylum often appears as an

important component of the community alongside Proteobacteria
[58,59,60]. Besides Actinobacteria, BGC types I and III shared

Proteobacteria, Flavobacteria and Sphingobacteria as significant

elements of the community. The bacteria detected in this study

were largely from aerobic or facultative anaerobic taxa, suggesting

aerobic or a micro-aerobic conditions (Fig. S16,S17, S18, S19).

The community identified amplifying the 18S rRNA, the

Eukaryota fraction was dominated by chemoheterotrophic phyla

such as Metazoa (with the classes Gastrotricha and Rotifera being

first- and second-largest, respectively) and Alveolata (with the

Table 1. Chemical profiles.

BGC type I BGC type II BGC type III BGC type IV

ICP-OES K Si Ba

Mn Cu

Ca Fe

P

Zn

FT-IR RC = O
(1722–1647)

C-H (3037–2864)

C = C or C-H or
RS = O (879–849)

O-H (3356–3055)

1H-NMR Phe (7.41, 7.39,
7.37, 7.35, 7.33)

7.94 7.96 protein

Tyr 7.19 7.70 7.84 formate 8.45

Ser (4.00, 3.94,
3.83)

7.56 Phe 7.31

lactate (4.12,
4.10, 1.32, 1.30)

7.04 Ser (4.03, 3.92, 3.80)

Lys or Ala 3.72 pyroglutamate (4.16, 2.50, 2.47, 2.44, 2.34, 2.09, 2.07,
2.04,2.02, 2.00)

Gly 3.55 Ala or Lys 3.69 Lys (3.75, 3.09)

Lys (3.06, 3.04,
3.01, 1.94)

Ala (3.67, 1.44)

pyroglutamate
2.41

Gly (3.58, 3.51)

Ala (1.49, 1.46) ketone (1.59, 1.57)

7.84 amine or formaldehydel or methanol (3.38, 3.34)

7.09 Val (1.10, 1.08)

6.65 8.08 7.94 7.91 7.87 7.817.79 7.56

7.22 7.07 7.04 7.02 4.08 4.06 3.90

3.87 3.78 3.65 3.63 3.60 3.48 3.45

3.42 3.40 3.32 3.28 3.26 3.22 3.20

3.17 3.13 2.99 2.96 2.93 2.91 2.88

2.85 2.81 2.77 2.75 2.69 2.67 2.64

2.62 2.60 2.57 2.54 2.30 2.28 2.26

2.22 2.20 2.16 2.12 1.89 1.86 1.84

1.82 1.80 1.78 1.76 1.74 1.72 1.68

1.66 1.64 1.62 1.53 1.51 1.41 1.39

1.37 1.35 1.28 1.26 1.23 1.21 1.18

1.16 1.13 0.92 0.89 0.87 0.84 0.82

0.80 0.78

The chemical profile for the BGC types were divided by ICP-OES, FT-IR and 1H-NMR variables (omitted groups of variables are those with no high positive statistical
dependence for the BGC type). Variables for ICP-OES are elements. Variables for FT-IR are the integrated area corresponding to the chemical bond in interval of
wavelength (cm21) showed in parentheses. Variables for 1H-NMR are the integrated area for the buckets (chemical shifts) in ppm; values in parentheses are chemical
shifts assigned to the same compound or organic function.
doi:10.1371/journal.pone.0110723.t001
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classes Ciliophora and Apicomplexa being first- and second-largest,

respectively) that may serve as links in energy transfer from lower

to higher trophic levels. The BGC types I, II and IV that were

distributed over the paddy fields all shared this pattern. Jurgens

and Gude [61] suggested that the presence of protozoans and

metazoans might shape the characteristics of the bacterial

community, not just regarding structure and diversity, but also

triggering phenotype changes in response to predation. Similar to

our findings for the Archaea community, BGC type III showed a

different structure from the other BGC types, presenting the

phylum Viridiplantae as the most abundant. Viridiplantae is a

taxon formed by a wide range of terrestrial and aquatic primary

producers that rely on chloroplasts to perform photosynthesis,

which plants are part of this clade [62] (Fig. S20, S21, S22, S23).

Chemical profiles and organismal community structures
The differences in the community distributions for BGC types I

and II were not entirely clear. However, the differences in the

chemical profiles revealed that all four BGC types are indeed

unique. On the PCA score plot, the k-clustering method

segregated four clusters as the BGC types in a cross-like fashion.

This structure translates how each BGC type has its chemical

profile distinguished from the others or, alternatively, its own

environmental condition. In accordance with the results, BGC

types III and IV were more distinct from each other than BGC

types I and II were from each other, as the former were split along

the PC1 axis and the latter along the PC2 axis as seen in Fig. 5. So

that, BGC types III and IV had the average correlations for the

chemical variables compared against PC1 while BGC I and II had

the average correlations for the chemical variables compared

against PC2 as seen in Fig. 8.

The chemical variables with positive correlations were extracted

and assigned to the related BGC type. We listed only variables

with positive correlations for each BGC type, since positivity

implies that the organisms living under those specific environ-

mental conditions are at least tolerant to those conditions. A

negative correlation would not necessarily imply suppression

arising from either side, biological or chemical, since the samples

are from an open system with many variables that were not

measured, such as geographical configuration or even weather

conditions; however, it does imply the absence of a given chemical

variable in the presence of a given organism, and vice-versa.

BGC type I was statistically independent from the elements

tested and from the variation on the FT-IR profile. However, it

presented a positive correlation to buckets on the aromatic side of

the 1H-NMR spectra, including those annotated as phenylalanine,

some annotated as other amino acids, and, most remarkably, to

the largest peak on the 1H-NMR spectra, which was assigned as

lactate. The presence of lactate suggests anoxic conditions where

this molecule could be derived from pyruvate fermentation [63] as

an adaptation of Metazoan organisms to thrive under suboxic

conditions [64]. Despite a suggestion of anoxic conditions for this

BGC type, we found that 20% of the 16S rRNA community were

from chloroplasts. Therefore, we hypothesize that anoxic micro-

zones might buffer the chloroplast-produced oxygen [65]. Another

possibility is that the chloroplasts might even simply constitute

debris, just dead organic material serving as a substrate to other

organisms [66].

BGC type II presented the highest negative correlation to the

buckets assigned to lactate on 1H-NMR. Since BGC types I and II

inhabit the same set of samples to different degrees of colonization,

this finding may suggest either competitive interactions between

them or chemical heterogeneity in the occurrence of microzones

displaying different chemical compositions, and hence a resulting

difference in the kinds of life supported.

Organisms from BGC type III showed a positive correlation

with three elements tested using ICP-OES and with two non-

annotated buckets in the aromatic region of the 1H-NMR. One of

the elements was manganese and it is a key element to, among

other biological functions, photosynthesis [67,68]. The other two

elements were silica and calcium that can be linked to, but not

restricted to, silification and calcification: both are processes

related to increasing physical resistance in organisms as cytoskel-

etons and shells, features which are important in many groups

within algae and microalgae, for example [69]. Indeed, for this

BGC type, the phylum Alveolata within Eukaryota had the class

Dinophyceae as its dominant class, instead of Ciliophora, which

dominated the same phylum in the other BGC types. BGC type

III encompassed the organisms thriving in the environments

poorest in the organic compounds detected by 1H-NMR and FT-

IR. The phyla Viridiplantae and Crenarchaeota would be the

primary sources of organic carbon, with the latter also potentially

serving as a nitrogen source. As the waters from paddy fields can

drain into the river but the opposite is not possible, BGC type III

could not act as a source of organic matter for the other BGC

types. The richness in Crenarchaeota despite poor organic load is

consistent with the findings of Ochsenreiter et al. [70], where the

phylum was found throughout many kinds of environmental soil

and freshwater. Despite poor organic matter content, BGC type

III had the highest abundance of the three domains compared to

all other BGC types, suggesting efficient cycling of photosynthe-

sized compounds.

BGC type IV presented the group of organisms statistically

correlated to more chemical variables than any of the previous

ones. There are correlations to five elements within ICP-OES –

barium, copper, iron, zinc and phosphorous. Sanchez-Moral et al.

[71] suggested that barium precipitation can be bio-induced in

pure cultures of Actinobacteria which was the most abundant class

of bacteria present in this BGC type. Copper, iron and zinc are

some of the trace elements essential for enzymatic activity in

methanogenic systems, and deficiencies are suggested to diminish

such activity [72]. Phosphorous is abundant in several metabolic

pathways, being involved in structural biomolecules and the

energy currency ATP. BGC type IV was also correlated to those

bands of absorbance in FT-IR assigned to be C-H and O-H

bonds: the former may suggest long carbon chains from lipids, and

the latter sugar- or alcohol-related molecules. Both of them are

intrinsically linked to high levels of chemical energy, either

implicated in catabolism or anabolism. Within 1H-NMR, BGC

type IV was correlated to a vast part of the spectra, suggesting a

chemically rich organic environment, with relationships to many

buckets assigned to amino acids and to the broad peaks assigned as

protein. This would suggest nitrogen recycling, meaning the group

presents an organismal community that may be both source and

consumer of the organic compound assigned as protein.

Conclusions

After the evaluation done for each BGC type, we can classify

them roughly to the remarkable features that individualize them.

According to the findings, BGC type I would represent the sub-

system represented by the anoxic/near anoxic microzones by

presenting lactate as an important energy source intermediate (aka

the ‘‘BGC type Anoxic’’). The BGC type II would be the

aerophilic counter part of BGC type I, eventually presenting a

relation energy transfer between them (aka the ‘‘BGC type

Counter Part’’). The BGC type III would represent a sub-system
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of photosynthetic organisms and the related chemical profile (aka

the ‘‘BGC type Photosynthetic’’). The BGC type IV would

represent the most active in the cycling of organic compounds (aka

the ‘‘BGC type Glutton’’).

Hence, we successfully established the BGC typing analysis

pipeline technique and applied to the environment of Japanese

paddy fields bringing forth four unique subset of organismal and

chemical assembles. The technique is flexible and can accept any

biogeochemical or omics measurements, since it operates on

numerical tables of values (e.g., intensity, concentration, number

of reads, etc.) and can contribute to further insights into

biogeochemical cycles in other environments.

This holistic technique will broaden the understanding of

‘‘hidden’’ sub-systems working within the totality of the environ-

ments.

Ethics Statement
There is no specific permission required for all of following

sampling points as they are public places. Also the field does not

host endangered or protected species. The exact location for the

sampling points from Ara River (ara1, ara2) are 36u29320N

139u30980E and 35u560540N 139u329410E respectively, from

paddy field 1 (p1f1–p1f3) are: 36u29230N 139u299510E, from

paddy field 2 (p2f1–p2f3) are: 35u599370N 139u30950E, from

paddy field 3 (p3f1–p3f3) are: 35u589290N 139u309330E, from

collector stream from paddy field 1 (p1s) is: 36u29250N

139u299460E, from collector stream from paddy field 2 (p2s) is:

35u599370N 139u30950E and from collector stream from paddy

field 3 (p3s) is: 35u589290N 139u309320E.

The whole of the sequences retrieved in our study are available

in the DDBJ Sequenced Read Archive under accession number

DRA002437.
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axis: number of readings. Y-axis: number of species (log).
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Figure S2 Rarefaction curve to toatal 16S rRNA OTUs.
Rarefaction curve for 16S rRNA OTUs for all samples. X-axis:
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Figure S3 Rarefaction curve to total 18S rRNA OTUs.
Rarefaction curve for 18S rRNA OTUs for all samples. X-axis:

number of readings. Y-axis: number of species (log).
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Figure S4 Emulation of a phylogenetic tree for BGC
type I. Abundance range indicated by the size of the symbol

indicated at upper right. Symbols indicative of the domain

indicated at middle right. Colour codes for the most abundant

classes indicated at lower right. The number of symbols for each

branch is related to the number of sampling points within the

OTUs present.

(PDF)

Figure S5 Emulation of a phylogenetic tree for BGC
type II. Abundance range indicated by the size of the symbol

indicated at upper right. Symbols indicative of the domain indicated

at middle right. Colour codes for the most abundant classes

indicated at lower right. The number of symbols for each branch is

related to the number of sampling points within the OTUs present.

(PDF)

Figure S6 Emulation of a phylogenetic tree for BGC
type III. Abundance range indicated by the size of the symbol

indicated at upper right. Symbols indicative of the domain

indicated at middle right. Colour codes for the most abundant

classes indicated at lower right. The number of symbols for each

branch is related to the number of sampling points within the

OTUs present.

(PDF)

Figure S7 Emulation of a phylogenetic tree for BGC
type IV. Abundance range indicated by the size of the symbol

indicated at upper right. Symbols indicative of the domain

indicated at middle right. Colour codes for the most abundant

classes indicated at lower right. The number of symbols for each

branch is related to the number of sampling points within the

OTUs present.

(PDF)

Figure S8 J-resolved 1H-NMR with annotations. J-

resolved 1H-NMR analysis for aromatic and non-aromatic regions

of the spectra with annotations.

(PDF)

Figure S9 1D-STOCSY correlation for chemical shift
1.32 ppm. 1D-STOCSY with centroid at 1.32 ppm showing

high correlation with the other chemical shifts from the lactate

assignment. X-axis: chemical shifts. Y-axis: degree of correlation.

Colours simplify visualization: cold colours indicate negative

correlations and hot colours indicate positive correlations.

(TIF)

Figure S10 Comparison between the 1H-NMR spectra against

the Bruker AMIX database for the pure compound lactate (lactic

acid). The 1HNMR spectra with lower baselines are from this

study. The upward-shifted baseline spectrum in orange is the

lactate spectrum provided in Bruker AMIX software. Numbers

indicate chemical shift.

(PDF)

Figure S11 1D-STOCSY correlation for the integration
annotated as protein. 1D-STOCSY with centroid at the

region of interest integrated and annotated as protein showing

high correlation with most of the chemical shifts from the spectra.

X-axis: chemical shifts. Y-axis: degree of correlation. Colours

simplify visualization: cold colours indicate negative correlations

and hot colours indicate positive correlations.

(TIF)

Figure S12 Percentage of Archaea OTUs for BGC type I.
Archaeal OTUs for BGC type I collapsed to the class level or

beyond according to the next divergence on the taxon presented.

The four most abundant taxa are shown, with others collapsed.

(PDF)

Figure S13 Percentage of Archaea OTUs for BGC type
II. Archaeal OTUs for BGC type II collapsed to the class level or

beyond according to the next divergence on the taxon presented.

The four most abundant taxa are shown, with others collapsed.

(PDF)

Figure S14 Percentage of Archaea OTUs for BGC type
III. Archaeal OTUs for BGC type III collapsed to the class level

or beyond according to the next divergence on the taxon

presented. The four most abundant taxa are shown, with others

collapsed.

(PDF)

Figure S15 Percentage of Archaea OTUs for BGC type
IV. Archaeal OTUs for BGC type IV collapsed to the class level
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or beyond according to the next divergence on the taxon presented.

The four most abundant taxa are shown, with others collapsed.

(PDF)

Figure S16 Percentage of 16S rRNA OTUs for BGC type
I. 16S OTUs for BGC type I collapsed to the class level or beyond

according to the next divergence on the taxon presented. The four

most abundant taxa are shown, with others collapsed.

(PDF)

Figure S17 Percentage of 16S rRNA OTUs for BGC type
II. 16S OTUs for BGC type II collapsed to the class level or

beyond according to the next divergence on the taxon presented.

The four most abundant taxa are shown, with others collapsed.

(PDF)

Figure S18 Percentage of 16S rRNA OTUs for BGC type
III. 16S rRNA OTUs for BGC type III collapsed to the class level

or beyond according to the next divergence on the taxon presented.

The four most abundant taxa are shown, with others collapsed.

(PDF)

Figure S19 Percentage of 16S rRNA OTUs for BGC type
IV. 16S rRNA OTUs for BGC type IV collapsed to the class level

or beyond according to the next divergence on the taxon

presented. The four most abundant taxa are shown, with others

collapsed.

(PDF)

Figure S20 Percentage of 18S rRNA OTUs for BGC type
I. 18S OTUs for BGC type I collapsed to the class level or beyond

according to the next divergence on the taxon presented. The four

most abundant taxa are shown, with others collapsed.

(PDF)

Figure S21 Percentage of 18S rRNA OTUs for BGC type
II. 18S OTUs for BGC type II collapsed to the class level or

beyond according to the next divergence on the taxon presented.

The four most abundant taxa are shown, with others collapsed.

(PDF)

Figure S22 Percentage of 18S rRNA OTUs for BGC type
III. 18S rRNA OTUs for BGC type III collapsed to the class level

or beyond according to the next divergence on the taxon

presented. The four most abundant taxa are shown, with others

collapsed.

(PDF)

Figure S23 Percentage of 18S rRNA OTUs for BGC type
IV. 18S rRNA OTUs for BGC type IV collapsed to the class level

or beyond according to the next divergence on the taxon

presented. The four most abundant taxa are shown, with others

collapsed.

(PDF)

Table S1 Archaea OTUs in number of reads along
sampling points. Rows: OTUs. Columns: sampling points.

(XLSX)

Table S2 16S OTUs in number of reads along sampling
points. Rows: OTUs. Columns: sampling points.

(XLSX)
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(XLSX)
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(XLSX)

Table S5 Infrared absorbance along sampling points.
Rows: sampling points. Columns: annotated regions of interest in
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Table S6 1H-NMR along sampling points. Rows: sampling

points. Columns: bins for chemical shifts (ppm) with annotation

where applicable and integration for the broad peaks annotated as

protein.
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