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Abstract

Heliotropic leaf movement or leaf ‘solar tracking’ occurs for a wide variety of plants, including many desert species and
some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason,
monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should
account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert,
Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of
the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation
increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile
position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a
positive NDVI difference between morning and midday (DNDVImo-mi) and between winter and summer (DNDVIW-S). In this
paper, we showed that the DNDVImo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the
DNDVIW-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the
effects of water stress caused by groundwater depletion can be assessed and monitored using DNDVImo-mi and DNDVIW-S.
For an 11-year time series without rainfall events, Landsat DNDVIW-S of Tamarugo stands showed a positive linear
relationship with cumulative groundwater depletion. We conclude that both DNDVImo-mi and DNDVIW-S have potential to
detect early water stress of paraheliotropic vegetation.
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Copyright: � 2014 Chávez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been funded by the CONICYT (Chile)-Wageningen University scholarship (Res. Ex. N. 281/2009). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: roberto.chavez@wur.nl

Introduction

Heliotropism or ‘solar tracking’ is the ability of many desert

plant species and crops to move leaves and flowers as a response to

changes in the position of the sun throughout the day [1]. There

are two types of heliotropic movements: diaheliotropic movements

in which leaves adjust the leaf lamina to face direct solar

irradiation, and paraheliotropic movements, in which leaves

adjust to avoid facing incoming radiation by contraction of

pulvinar structures located at the base of leaves [1–3]. Parahelio-

tropic movements are triggered by directional solar irradiation and

allow partial regulation of the incident irradiance on the leaves.

For desert species, the regulation of the solar irradiation intensity

on the leaves is an important adaptation to avoid photosynthesis

saturation (photoinhibition) and to enhance the water use

efficiency [4–6].

Diurnal paraheliotropic movements have a direct impact on the

canopy reflectance properties of vegetation [7–9]. Therefore,

spectral vegetation indices derived from remote sensing data, like

the normalized difference vegetation index (NDVI), can signifi-

cantly vary during the day and during the year due to leaf

movement as solar irradiation changes. Nevertheless, no studies

have quantified the effects of solar tracking by plants on the NDVI

signal recorded from satellites. Diurnal leaf movements of

Tamarugo plants (Prosopis tamarugo Phil.) were first described

by Chávez et al. [9] under laboratory conditions, and later by

Chávez et al. [8] for adult trees in the field. These diurnal leaf

movements corresponded to paraheliotropic movements since the

leaves moved to an erectophyle leaf distribution (facing away from

the sun) around midday when solar irradiation was maximum.

The paper of Chávez et al. [8] showed that leaf pulvinar

movements caused diurnal changes of Tamarugo’s canopy spectral

reflectance and NDVI signal, which was negatively correlated to

diurnal solar irradiation values.

In the present study, we hypothesize that the effects of

Tamarugo’s diurnal leaf pulvinar movements on the NDVI can

also be recorded by remote sensors from space, since the

acquisition time of the different sensors differ. A high solar

irradiation at midday is assumed to cause a lower NDVI than in

the morning as indicated in Figure 1a. In this context the MODIS

(Moderate Resolution Imaging Spectroradiometer) sensor seems to

be especially suitable to capture this difference in NDVI between

morning (low solar irradiation, high NDVI) and midday (high

solar irradiation, low NDVI), since the MODIS sensor on board of

the Terra satellite acquires data for the study site at 10 a.m. (local
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time) and the MODIS sensor on board of the Aqua satellite

acquires data at 1.30 p.m. (local time). Thus, the NDVI difference

between morning and midday (DNDVImo-mi) can be calculated as

the difference between the NDVI MODIS Terra and the NDVI

MODIS Aqua.

Considering the negative correlation between diurnal NDVI

measurements and solar irradiation reported by Chávez et al. [8],

we expect also seasonal NDVI variations associated with seasonal

changes in solar irradiation with peaks in winter when the solar

irradiation is the lowest. We hypothesize that this effect can also be

recorded by sensors from space as indicated in Figure 1b. In this

case, the Landsat TM (Thematic Mapper) and ETM (Enhanced

Thematic Mapper) catalogue seems to be very suitable for

studying NDVI seasonal variations since it offers one of the

longest existing time series of systematically recorded satellite data

worldwide [10]. Besides, the Landsat catalogue is considered the

most relevant satellite dataset for ecological applications and

environmental monitoring [11,12]. MODIS data might also be

used to study seasonal effects of the pulvinar movements on the

NDVI signal, providing images with a coarser spatial resolution

(250 meters vs the 30 meters of Landsat), but with a higher

temporal resolution (daily) enabling near real time vegetation

monitoring [13]. However, the MODIS time series is considerably

shorter than the Landsat time series (only since 2000).

Tamarugo is an endemic tree of the hyper-arid Atacama Desert,

Northern Chile, a location considered among the most extreme

environments for life [14,15]. The Tamarugo forest, locally known

as Pampa del Tamarugal, sustains a biodiversity of about 40

species of plants and animals, some of them endemic for this

particular ecosystem [16–19]. Precipitation events are very rare

and the only source of water supply for vegetation is the

groundwater (GW), from which Tamarugo is completely depen-

dent. However, not only Tamarugo trees are demanding water:

the main economic activity in Atacama is mining, which is also

demanding water for human consumption and for many industrial

processes. This has led to an overexploitation of the GW sources

and a progressive depletion of the GW over the whole Pampa del

Tamarugal [20].

The natural Tamarugo forest was almost extinct in the 19th

century and during the 1970’s an enormous reforestation effort

was carried out by the Chilean government and 13,000 hectares of

Tamarugo were planted in the Pampa del Tamarugal basin [21].

Currently, the Pampa del Tamarugal is under threat due to GW

overexploitation. Chilean policy makers, scientists and private

companies have debated intensively about defining environmen-

tally safe GW extractions. To achieve this, good indicators of the

Tamarugo water condition are needed and remote sensing, and

specifically the NDVI, has proved to be useful for assessing

Tamarugo’s water condition [8,9]. Nevertheless, time series of

NDVI have not been directly related to GW depletion yet and to

do so, the effect of the leaf pulvinar movements must be

considered to understand a) the natural NDVI dynamic in the

absence of water stress, and b) how this dynamic may be altered by

GW depletion. In this paper, we use MODIS and Landsat NDVI

time series to study both the natural and the altered NDVI

dynamics of Tamarugo stands located in the Pampa del

Tamarugal basin. Furthermore, we explore other biological

(phenology) and environmental factors (precipitation) with poten-

tial effects on the NDVI signal.

Material and methods

2.1 Species description
Tamarugo is a phreatophytic desert tree that is highly

specialized to survive the hyper-arid conditions of the Atacama

Desert. This species belongs to the Leguminoseae family,

Mimosaceae subfamily and it can reach up to 25 meters height,

20–30 meters crown size and 2 meters stem diameter [22,23]. The

branches are arched and twigs flexuous with composite leaves,

often bipinnate with 6–15 pairs of folioles (Figure 2b, c, f) [24].

The Tamarugo petioles have a distinctive structure of motor cells

in the pulvinus, responsible for the leaf paraheliotropic movements

(Figure 2d, e, f). Differential turgor changes of the pulvinus cells

make the leaves to stand up and orientate the leaf lamina parallel

to the incoming sun rays. The composite leaves of Tamarugo have

three levels of pulvinar structures: the first at the base of the

Figure 1. Conceptual diagram of the effect of leaf pulvinar movement on the NDVI signal. (A) NDVI difference between morning and
midday (DNDVImo-mi) occuring as solar irradiation changes during the day, and (B) NDVI difference between winter and summer (DNDVIW-S) occuring
as solar irradiation varies between seasons. The time at which the Landsat (5–7), MODIS-Terra, and MODIS-Aqua satellites acquire data is displayed to
illustrate the impact of pulvinar movements on the NDVI retrieved from these platforms.
doi:10.1371/journal.pone.0106613.g001
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bipinna, the second at the base of each pinna, and the third at the

base of each of the folioles. This pulvinar mechanism at the three

levels allows the Tamarugo canopy to adjust its internal structure

to avoid facing excessive solar irradiation. Tamarugos are

phreatophytic species [25,26] presenting a dual root system

consisting of a deep taping root and a dense superficial root mat

[27]. This dual system would allow Tamarugos to move water

from the deep groundwater table to the superficial root mat layer

during the night to ensure water supply during the growing season

when the water demand at the capillary fringe increases [26].

2.2 Study area
The study area is located in the Atacama Desert (Northern

Chile), specifically in the southern part of the Pampa del

Tamarugal basin, where most of the remaining Tamarugo

population is concentrated (Figure 3). The Tamarugo forest is

practically the only ecosystem of the Absolute Desert eco-region

[16], and it is characterized by almost null precipitation, high day-

night temperature oscillation, and high potential evapotranspira-

tion [28,29]. Most of the plantation stands (Pintados and

Bellavista) are in the southern part of the basin and within the

study area. Just little natural patches of Tamarugo remain in the

Figure 2. Pulvinar structures of Prosopis tamarugo leaves. (A) Tamarugo trees, (B) leaf angle randomly distributed during the morning when
the solar radiation is low, (C) leaf angle in erectophyle position to avoid facing high solar irradiation at midday, (D) transversal section of a closed
pulvinus (empty of water) during the morning, (E) transversal section of an open pulvinus (filled with water), which allows leaves to stand up and
reach the erectophyle position, and (F) detail of the base of a Tamrugo pinna showing the three levels of pulvinar structures (at the base of the
bipinna, of each pinna and each foliole).
doi:10.1371/journal.pone.0106613.g002
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northern portion of the Pintados plantation (Figure 3). Although

the oldest plantation stands were established as early as 1936, most

of the existing plantation stands were planted between 1968 and

1972 [30]. The plantation scheme consisted of squared 161

kilometres stands and trees separated 10610 meters. Besides

Tamarugo plantations, there are plantations of other Prosopis
species, sometimes mixed with Tamarugo. Only pure Tamarugo

plantation stands and some natural forest patches were considered

in this study and they can be identified in Figure 3 as the green

areas highlighted in black.

2.3 Landsat and MODIS NDVI time series
We used all available Landsat 5 TM and Landsat 7 ETM data

(referred from here onwards in the text as ‘Landsat’ data) as well as

MODIS-Terra and MODIS-Aqua data of the study area covering

the period 1989–2012. We selected this time frame since this is the

period of time with available GW depth records for most of the

monitoring wells located in the study area (Figure 3). For the

Landsat NDVI time series we used cloud free L1T images of 30

meters pixel resolution (471 scenes) corresponding to path 1 and

row 34 and pre-processed using the Landsat Ecosystem Distur-

bance Adaptive Processing System (LEDAPS) to obtain surface

reflectance values for all spectral bands [31]. Finally, we used the

surface reflectance values of red and NIR to compute the NDVI

for each date as follows: NDVI = (NIR-Red)/(NIR+Red). For the

MODIS-Terra and MODIS-Aqua NDVI time series we used the

MODIS 16-day composites at 250 meters pixel resolution

(MOD13Q1 and MYD13Q1 data products). MODIS pixel

reliability showed that 85% of the observations can be used with

confidence (reliability = 0) and 15% were considered useful

(reliability = 1) of which MODIS vegetation index quality indicat-

ed average aerosol quantity. MODIS pixels with reliability 0 and 1

were considered in this study and showed consistent values for the

NDVI time series of all forest stands. Both MODIS and Landsat

data were downloaded from the USGS Earth Explorer website.

Complementary, we used a panchromatic WorldView2 image of

Figure 3. Landsat NDVI image showing the location of the Tamarugo stands (Winter 2007).
doi:10.1371/journal.pone.0106613.g003
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0.6 meters pixel resolution to quantify the tree coverage of each

plantation stand. This was carried out by using object-based image

classification and the eCognition software following the procedure

used by Chávez et al. [8].

2.4 Groundwater and climatic data
GW records were obtained from the monitoring network of the

Dirección General de Aguas (DGA), the Chilean Water Service.

From this network, seven wells were close to the Tamarugo stands

and had enough records to establish a direct relationship between

the groundwater table and the forest status (Figure 3). We

averaged the (three to twelve) records of each year to obtain

annual values of groundwater depth for the seven monitoring

wells. Figure 3 shows the location of the monitoring wells used in

this study as well as the forest stands located close to each well.

Basic data of each monitoring well are provided in Table 1. This

way we obtained representative groundwater data for six

Tamarugo stands for the period 1989–2012. In the case of stands

B1 and B2, the groundwater depth was estimated using an inverse

distance weighted interpolation of records from three wells (see

Table 1).

Although groundwater is the main water source of the

Tamarugo forest, sporadic precipitation may occur in the

Atacama Desert, having a positive impact on the water status of

the trees and the NDVI signal. For this reason, we included in our

analysis precipitation records from the DGA meteorological

station Huara en Fuerte Baquedano (20u07’51’’S, 69u44’59’’W)

located about 30 km north from the study area and at a similar

altitude (1,100 m). Solar irradiation records were obtained from

the Canchones Experimental Station of the Universidad Arturo

Prat (Chile), located next to the Tamarugo stand P1 in the

northern part of the study area (Figure 3).

2.5 Data analysis
2.5.1 NDVI signal in the absence of water stress (natural

dynamic). Finding Tamarugo vegetation without nearby GW

depletion in the Atacama Desert was a difficult task. We identified

a Tamarugo forest stand (B1) and a time frame (2005-2008) with

almost null GW depletion and no precipitation events in the

southern part of the study area (see Figure 3, Bellavista stand). We

assumed the NDVI time series of this three year period was not

strongly influenced by the growth of trees. The Landsat, MODIS-

Terra and MODIS-Aqua NDVI time series for the stand B1 were

calculated using the median value of the pixels inside the 161 km

stand. This aggregation enabled direct comparison of Landsat and

MODIS NDVI time series. In the case of the Landsat time series

we excluded pixels with NDVI values lower than 0.13, which were

considered as no forest pixels. This threshold was set by

considering the NDVI values observed outside the plantation

stands, which correspond to completely bare areas (Figure 3). We

first analysed the time series without any level of temporal

aggregation, and then we aggregated the values to monthly

averages in order to study the relationship between the NDVI and

the monthly mean solar irradiation. For the latter purpose we used

simple linear regression.

2.5.2 NDVI signal under water stress. After studying the

natural dynamic of the NDVI time series for the three satellite

sensors, we analysed the relationship between the average annual

records of GW depletion and different metrics derived from the

NDVI signal. To achieve this we used simple linear regression

between the cumulative GW depletion and the NDVI derived

metrics of the period between 1997 and 2007 with no precipitation.

For the Landsat NDVI time series, these metrics were: annual

NDVI average (NDVIav), NDVI in winter (NDVIW), and the NDVI

difference between winter and summer (DNDVIW-S). For MODIS

NDVI time series, these metrics were the DNDVIW-S and the NDVI

difference between morning and midday (DNDVImo-mi). We

calculated DNDVIW-S and DNDVImo-mi for each year as follows:

1) MODIS D NDVIW{S~MODIS Terra NDVIW {MODIS Terra NDVIS ,

2) Landsat D NDVIW{S~Landsat NDVIW {Landsat NDVIS , and

3) D NDVImo{mi~MODIS Terra NDVIW {MODIS Aqua NDVIW .

Where:

NDVIW

~average of all NDVI scenes of May, June, July winterð Þ

Table 1. Plantation stands close to monitoring wells in the Pampa del Tamarugal basin.

Groundwater depth (m)

Stand Plantation year
Canopy
coverage (%)

Closest monitoring
well (DGA code)

Distance to
well (km) 1989 1997 2007 2012

B1 1968–1969 17 017000-74-8 4.7 10.99* 11.19* 11.64* 11.90*

017000-26-8 9.5

017000-24-1 10.1

B2 1968–1969 21 017000-74-8 9.3 14.75* 14.87* 15.45* 15.82*

017000-26-8 3.4

017000-24-1 12.8

P1 unknown 22 017000-63-2 0.4 7.97 9.03 9.93 10.26

P2 1972 25 017000-80-2 1.6 9.90 11.91 12.97 13.11

P3 1972 27 017000-69-1 1.7 5.70 6.26 6.87 6.89

P4 1972 11 017000-34-9 1.9 7.93 8.65 9.54 9.55

(*)Groundwater depth and depletion estimated using inverse distance weighted interpolation of 3 neighbouring wells.
doi:10.1371/journal.pone.0106613.t001
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NDVIS

~average of all NDVI scenes of November, December, January summerð Þ

In the case of the Landsat NDVI time series, we considered a

minimum of three scenes for the summer and winter period to

obtain a representative value of the respective season. For all

Landsat and MODIS NDVI scenes we used the median value of

the pixels inside the 161 km stands.

Results

3.1 Leaf pulvinar movement and the NDVI natural
dynamic

In the absence of GW extraction or precipitation events, the

NDVI signal of the Tamarugo stand B1 presented a strong

seasonal variation for the period 2005–2008, mainly explained by

the seasonal variation of the monthly average solar irradiation

(Figure 4) influencing the pulvinar movement of paraheliotropic

plants (Figure 1). The R2 for the linear relationship between

NDVI and solar irradiation was 0.66 for the Landsat NDVI time

series, 0.65 for the MODIS-Terra NDVI, and 0.41 for the

MODIS-Aqua NDVI. Partial foliage loss during the period May-

September and the peak of the vegetative period occurring around

October seemed to have only a marginal effect on the NDVI time

series, noticeable as a small drop followed by a peak around

October (green arrows in Figure 4). Overall, the seasonal variation

is the main feature of the annual NDVI signal, and therefore the

DNDVIW-S may be used to detect the leaf pulvinar movement

occurring in the Tamarugo canopy under natural conditions.

Besides the seasonal variation, the MODIS-Terra and MODIS-

Aqua NDVI time series allowed to identify the DNDVImo-mi

reported by Chávez et al. [8] on single Tamarugo trees, for

instance for the Tamarugo stand B1 (Figure 4b). Although the

DNDVImo-mi was clearly noticeable during winter, it was close to

zero in summer. This was expected since both the morning and

midday solar irradiation in the Atacama Desert are much higher

in summer than in winter. For example, the average solar

irradiation of June 2007 (winter) was 0.21 kW/m2 at 10.00 hours

and 0.62 kW/m2 at 13.30 hours while the average of December

2006 (summer) was 0.87 kW/m2 at 10.00 hours and 0.94 kW/m2

at 13.30 hours. As a result, in winter the leaves will only have an

erectophile position at midday, but in summer this occurs already

half way the morning (yielding a small DNDVImo-mi). Based on

what we observed in Figure 4 for a Tamarugo stand without water

stress we can expect that it has a positive DNDVImo-mi in winter as

well as a positive DNDVIW-S. Both NDVI derived metrics can be

quantified and mapped using Landsat and MODIS images as

shown in Figure 5.

Figure 5 displays the NDVI values at pixel level of all Bellavista

plantation stands (including the stand B1) in the winter of 2007

(first row), the summer of 2006–2007 (second row), and the

DNDVIW-S of 2007 (third row) obtained from Landsat images (first

column), MODIS-Terra images (second column), and MODIS-

Aqua images (third column). The fourth column corresponds to

the DNDVImo-mi in winter (Figure 5d) and summer (Figure 5h)

based on Terra (morning) and Aqua (midday). This figure

confirms that the DNDVImo-mi in winter and the DNDVIW-S of

2007 was positive for the forested area. On the other hand, the

DNDVImo-mi in summer was zero or close to zero. In a similar

way, and as a consequence of the diurnal pulvinar movements, the

DNDVIW-S was higher when using MODIS-Terra images than

when using MODIS-Aqua images. Thus, the most promising

indicators of pulvinar movement seemed to be the DNDVImo-mi in

winter and the DNDVIW-S in the morning (MODIS-Terra). When

using the NDVI as a potential indicator of Tamarugo’s water

status, the signal in winter was stronger. The canopy coverage can

also play an important role in the strength of the NDVI signal and

its effect has to be considered when using these NDVI derived

metrics for monitoring purposes. We will discuss this issue further

in the next section where more Tamarugo stands, with different

canopy coverage, were analysed.

3.2 Groundwater depletion: the NDVI signal under water
stress

Figure 6 displays the annual time series of GW depth and the

Landsat NDVIW and DNDVIW-S for the six Tamarugo stands

analysed in this study. The precipitation events are indicated with

arrows. Only four precipitation events were recorded in the 24

years period analysed: 3.0 mm in 1996, 1.8 mm in 2008, 7.9 mm

in 2011, and 2.2 mm in 2012, three of them during the last five

years. The Landsat NDVIW signal reacted to the precipitation

event of 1996 by showing a short recovering phase (about one

year) and quickly returned to the general decreasing trend. For the

precipitation events in the last years this effect was difficult to

observe since they occurred close to each other in time. These

precipitation events did not have any impact on the groundwater

table, so we assumed this water was only available for the trees in

the superficial soil layers. Although these precipitation events

contributed little water to the basin, we assume the moisture added

Figure 4. Time series of solar irradiation and NDVI for the B1
site (low groundwater depletion). (A) Solar irradiation, (B) MODIS
16 days composite NDVI, and (C) Landsat NDVI of the B1 site. Arrows
indicate the peak of Tamarugo’s vegetative period. S = summer,
W = winter.
doi:10.1371/journal.pone.0106613.g004
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to the superficial root mat of Tamarugo trees temporally had a

positive impact on the growth of the trees. Apart from the

precipitation events, the analysed NDVI metrics seemed to follow

the GW depth trend for all stands. To quantify this relationship,

we calculated the R2 for the linear regression between each of the

NDVI metrics and the cumulative GW depletion for the period

without precipitation (1997–2007). We also included in this

analysis the Landsat annual NDVIav values to check whether

the NDVIW was a better indicator than the simple annual NDVI

average. The results are given in Table 2.

The Bellavista Tamarugo stands (B1 and B2) are located in the

southern part of the basin and far from the area where the

pumping wells are concentrated, which is towards the north and

east of the Pintados stands (Figure 3). For this reason, the GW

depletion in the stands B1 and B2 was less in comparison to the

stands of the Pintados sector (P stands), especially in the case of P2.

The stand B1 showed the lowest cumulative depletion (0.45 m) for

the period 1997–2007 as well as the lowest R2 (,0.1) for the

relationship between Landsat NDVIav and GW depletion.

Furthermore, the R2 of the GW depletion - Landsat NDVIW

relationship was also the lowest, but higher than the GW depletion

- Landsat NDVIav relationship. In fact, this was the case for almost

all stands. Thus, the Landsat NDVIW was more sensitive to

changes in GW depth than the Landsat NDVIav. This was also the

case when comparing Landsat NDVIW with Landsat DNDVIW-S.

Only for the stand B1, the R2 of the Landsat DNDVIW-S - GW

depletion relationship was higher than for the NDVIW - GW

depletion relationship.

The rest of the stands showed GW depletions between 0.58 and

1.06 meters between 1997 and 2007 and R2 values for the Landsat

NDVIW - GW depletion relationship higher than 0.75 except for

the stand P2 with an R2 of 0.29. The stand P2 is located close to

the pumping area, and therefore the GW depletion could have

been influenced by short-term changes of the pumping rate. If the

intra-annual GW values fluctuated too rapidly, the depletion may

not have had an effect on the NDVI signal. However, this is

difficult to detect in annually averaged records. Overall the

Landsat NDVIW was the most sensitive NDVI derived metric to

the 11-year changes in GW depletion.

In the case of the MODIS NDVI derived metrics, the R2 values

presented in Table 2 were difficult to interpret since the time series

without precipitation events was very short (2003–2007). We

found R2 values as high as 0.70 when using the MODIS

DNDVIW-S (stand B2) and the MODIS DNDVImo-mi (stand P2),

but also ,0.1 (stands P1 and P4) for DNDVIW-S or DNDVImo-mi

(stand P3).

3.3 Mapping water stress using Landsat DNDVIW-S

The NDVIW and DNDVIW-S showed good potential to assess

the effect of GW depletion on the water status of Tamarugo trees.

Figure 5. DNDVI morning-midday and DNDVI winter-summer of the Bellavista plantation in 2007. Winter 2007: (A) Landsat NDVI, (B)
MODIS-Terra NDVI (morning), (C) MODIS-Aqua NDVI (midday), (D) DNDVImo-mi = B–C; Summer 2006–07: (E) Landsat NDVI, (F) MODIS-Terra NDVI
(morning), (G) MODIS-Aqua NDVI (midday), and (H) DNDVImo-mi = F–G. Graphs I, J and K display the DNDVIW-S 2007, where (I) Landsat DNDVIW-S =
A–E, (J) MODIS-Terra DNDVIW-S = B–F, and (K) the MODIS-Terra DNDVIW-S = C–G.
doi:10.1371/journal.pone.0106613.g005
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Figure 6. Time series of groundwater depth, Landsat NDVIW, and Landsat DNDVIW-S for six Tamarugo plantation stands. Blue arrows
indicate precipitation events.
doi:10.1371/journal.pone.0106613.g006
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We selected the Landsat DNDVIW-S to map this effect in the study

area because we believe it senses water stress earlier than NDVIw

(see Discussion section for more details). We mapped the

DNDVIW-S for three different years: 1997, 2007, and 2011 as

shown in Figure 7 averaged to a 161 km grid. The DNDVIW-S

difference between 1997 and 2007 can be explained by

groundwater depletion since no precipitation events occurred in

this period. For most of the stands, the DNDVIW-S values in 2011

showed a recovery of the forest after the precipitation event of

2011 (7.9 mm), the most intense rain recorded in the last 25 years

in Pampa del Tamarugal. The stands with more stable DNDVIW-S

through time were those located at the west border of the

Bellavista plantation, close to the well W24-1, which reported very

shallow GW depths in 1997 (2.6 m), 2007 (3.0 m), and 2011

(3.1 m). Furthermore, a DNDVIW-S gradient can be observed in

the Bellavista sector from east to west, showing a good spatial

agreement with the increasing GW depletion towards the east

(GW depth in well W26-8 was about 19.6 m in 1997, 20.3 m in

2007, and 21 m in 2011).

Discussion

Early stages of water stress in plants are associated with a lower

leaf water potential, reduction in transpiration rate, and foliage

water loss while late stages are associated with pigment degrada-

tion, biomass loss, and finally dying plants [32–34]. Although

Tamarugo trees are naturally adapted to the predominant water

scarcity of the Atacama desert, they can be affected by water stress

due to GW depletion as shown in this paper. From previous papers

[8,9], we know that Tamarugos show the typical water stress

symptoms of most plants, but additionally water stress limits the

normal functioning of the leaf pulvinar mechanism. These

pulvinar movements are typical for heliotropic species. Further-

more, we have shown that leaf pulvinar movement can be

remotely sensed by different metrics derived from the NDVI

signal, allowing to understand both the temporal natural dynamic

of the Tamarugo forest and the effects of GW depletion. In

Table 3 we give an overview of the water stress symptoms of

Tamarugo trees, the temporal scale at which they occur, and the

NDVI derived metrics we can use to study these symptoms.

Diurnal leaf movements can be studied using DNDVImo-mi from

MODIS Terra and Aqua satellites as shown in this paper. No

significant differences have been found for the MODIS NDVI

Terra and Aqua for other non-solar tracker vegetation [35,36].

Since these two satellites acquire data on a daily basis, it would be

possible to map the DNDVImo-mi of the Pampa del Tamarugal

basin every day at a spatial resolution of 2506250 m. This way,

the effects of an abrupt GW depletion could be identified using

MODIS data if the forest is dense enough to provide a sufficiently

strong signal as well as large enough to cover one or more MODIS

pixels [37,38]. In this paper we analysed averaged DNDVImo-mi

values for the winter seasons and its relationship with annual

records of GW depth. This time series was rather short, sometimes

resulting in low R2 values. Perhaps better results can be achieved

when using the full temporal resolution (daily or 16 days) of the

MODIS NDVI products and more detailed records of the water

availability. This is an interesting topic for further research and not

only for Tamarugo plants, but also for detecting short-term water

stress in, e.g., bean crops, which also have documented

paraheliotropic behaviour [5,6].

Seasonal differences of leaf pulvinar adjustments of Tamarugo

vegetation can be studied at a large scale using the DNDVIW-S as

measured from Landsat (Figure 7) and MODIS Terra satellites.

The advantage of using Landsat images is the possibility to map

this variable at 30 meters pixel resolution and the disadvantage is

that these satellites (Landsat 5, 7 and 8) have a revisit time of 16

days, increasing the chance of missing dates due to cloud cover.

Although cloud cover is not such as problem in deserts, missing

data can have an important impact on the calculation of the

DNDVIW-S if the NDVI values of winter or summer are not well

represented by sufficient images. In this paper, we considered a

minimum of three Landsat scenes for calculating a representative

value of the summer or winter period. The NDVI signal of

Tamarugo showed a strong seasonality (Figure 4c) and, for

example, a calculation of the NDVIW using one or two images

in May and a calculation of the NDVIS using one or two images in

December may lead to a serious underestimation of the DNDVIW-

S. This is not a problem for MODIS 16-day composites, which

provide five or six images for the winter and summer period

systematically distributed within the three months’ timeframe.

Therefore, there is a trade-off between temporal and spatial

resolution when choosing Landsat or MODIS to detect the

DNDVIW-S.

If the water stress persists, Tamarugo trees will react by

selectively shutting down leaves, twigs and entire branches to

reduce the transpiration surface while keeping the remaining

foliage green with hydric parameters within normal ranges [8].

Foliage loss has been successfully assessed using NDVI for a wide

range of vegetation types and it is especially accurate for LAI

values ,2 [39]. Such assessments are usually carried out at the

Table 2. R2 of the linear model of cumulative groundwater depletion v/s NDVIav, NDVIW, DNDVIW-S and DNDVImo-mi for the period
1997–2007 (no precipitation events).

Stand
Cumulative GW
depletion (1997–2007) Landsat NDVIav Landsat NDVIW Landsat DNDVIW-S MODIS DNDVIW-S MODIS DNDVImo-mi

n = 11 n = 10 n = 8 n = 4 n = 5

B1 0.45 ,0.1 0.13 0.44* 0.55 0.29

B2 0.58 0.74*** 0.76*** 0.26 0.76 0.35

P1 0.90 0.58*** 0.75*** 0.60** ,0.1 ,0.1

P2 1.06 0.27* 0.29 0.24 0.70 0.70

P3 0.61 0.82*** 0.90*** 0.70*** 0.66 0.14

P4 0.89 0.77*** 0.85*** 0.74*** ,0.1 0.52

Significative linear relationship with ***P,0,01; **P,0.05, *P,0.1.
av = average; W = winter; W-S = winter-summer; mo-mi = morning-midday.
doi:10.1371/journal.pone.0106613.t002
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peak of the vegetative period, usually in spring. In the case of

Tamarugo the seasonal variation of the NDVI signal is mainly

driven by the pulvinar movements, which are primarily driven by

seasonal changes in solar irradiation. Thus, the ‘pulvinar effect’ on

the NDVI signal is minimum in winter and therefore this is the

best time to retrieve the NDVI for inter annual foliage loss

estimations (Table 3).

The strong relationship between NDVIW and cumulative GW

depletion observed for most of the Tamarugo stands is an

indication that foliage is decreasing in the study area as a

consequence of water extraction, in other words, the forest is

reaching an advanced stage of water stress (Table 3). However, it

was not possible to discriminate whether the decreasing NDVIW

signal was because some trees were dying while others remained

alive (intra species competition) or all trees were losing foliage

gradually. The tree coverage played also an important role in the

absolute value of the NDVIW signal and, therefore, it was not

possible to directly compare different stands at a single point in

time. In order to better interpret the Landat and MODIS NDVIW

signal, we believe that high spatial resolution remote sensing data

can provide complementary information about the actual tree

coverage of the forest as well as the water status of single trees.

This will be the topic for further research.

A recent publication entitled ‘Remote sensing: A green illusion’

[40] has drawn the attention of the scientific community and

policy makers on the issue of the correct interpretation of remote

sensing derived products for environmental applications. The

authors reflected on this issue based on the results of Morton et al.

[41] showing how the apparent canopy greenness of the Amazon

forest, interpreted as a positive response to more sunlight in the

dry season, was caused by a bidirectional reflectance effect. In

other words, it was caused by an optical artefact due to seasonal

changes of the sun-sensor geometry. In this paper, we also

discussed the correct interpretation of remote sensing derived

products, but this time for paraheliotropic vegetation. As shown

for the case of Tamarugo in this study, the seasonal changes in

NDVI were related to leaf pulvinar movements causing a change

in the canopy structure. This change in canopy structure explained

the observed seasonal changes (Figure 4). Three pieces of evidence

support the hypothesis that pulvinar movements are responsible

for NDVI diurnal and seasonal changes of Tamarugo vegetation

and that this is not an optical artefact due to bidirectional

reflectance effects:

i. As shown in a previous paper [9], canopy spectral reflectance

of Tamarugo plants simulated with the Soil-Leaf-Canopy

Figure 7. Landsat DNDVIW-S of all plantation stands in 1997, 2007, and 2011 (after a precipitation event).
doi:10.1371/journal.pone.0106613.g007

Detecting Leaf Pulvinar Movements and Water Stress Using NDVI

PLOS ONE | www.plosone.org 10 September 2014 | Volume 9 | Issue 9 | e106613



(SLC) radiative transfer model showed that the SLC

parameter LIDF (leaf inclination distribution function) could

explain diurnal changes in canopy reflectance measured

empirically with a spectroradiometer under laboratory

conditions (lamp-sensor geometry was fixed). Thus, leaf

movements, set in the SLC simulations as a ‘random’ LIDF

in the morning and as an ‘erectophile’ LIDF after midday,

explained diurnal changes in canopy reflectance in the

absence of water stress.

ii. Another previous paper [8] showed a negative empirical

relationship between diurnal values of NDVI, measured for

single Tamarugo trees with a spectroradiometer, and solar

irradiation under field conditions. In that study, the authors

observed a predominantly erectophyle position of Tamarugo

leaves around midday, corresponding to the diurnal peak of

solar irradiation and the lowest values of NDVI. In the

current paper, we showed a negative empirical relationship

between seasonal NDVI values, measured by Landsat and

MODIS satellites for Tamarugo stands, and solar irradiation

(Figure 4). Furthermore, it is a known botanical fact that

paraheliotropic movements are a response to increasing solar

irradiation on the leaves [1]. Thus, pulvinar movements

activated by changes in solar irradiation govern diurnal and

seasonal changes in the NDVI signal of Tamarugo vegeta-

tion.

iii. This study provided evidence that the amplitude of the

seasonal NDVI trend (DNDVIW-S) of Tamarugo stands

declined with water stress (Figure 6). If the NDVI seasonal

trend measured by satellite remote sensing was governed by a

sun-sensor artefact, there is no reason why water stress would

cause the amplitude of the NDVI signal to decline

significantly.

In the southern hemisphere, more internal shadowing in

satellite images (captured at nadir) is expected to occur in winter

at lower solar elevation, and therefore, the bidirectional reflectance

effect should cause an ‘apparent greening’ towards spring/summer

[41]. However, as shown in Figure 4, the peak of the NDVI signal

of Tamarugo stands does not occur in summer, but in winter.

Although bidirectional reflectance effects may also occur in the

case of Tamarugo vegetation, we believe that such effects are

obscured by the stronger effect of seasonal pulvinar movement.

Conclusions

1. Monthly values of solar irradiation were negatively correlated

to NDVI measured by the MODIS-Terra and Landsat

satellites. Previous studies have shown that pulvinar movement

causes the NDVI signal to drop from morning to midday as

solar irradiation increases, and therefore, in the absence of

water stress the seasonal variation of NDVI is also expected to

be controlled by pulvinar movement.

2. The NDVI difference between midday and morning

(DNDVImo-mi), as measured by the difference of the NDVI

signal from the MODIS Terra and Aqua satellites, can be used

to detect the diurnal leaf pulvinar movement of Tamarugo

plantation stands. This has not been reported in literature

before, and therefore, this paper constitutes a proof of concept

that MODIS images can be used to detect diurnal movements

of paraheliotropic vegetation.

3. Similarly, the NDVI difference between winter and summer

(DNDVIW-S), as measured by the Landsat or the MODIS

Terra satellites, can be used to detect differences in seasonal

pulvinar movements, associated to photoinhibition regulation.

4. Leaf pulvinar movements are triggered by changes in cell

turgor and they can be limited by water stress. Thus, water

stress in Tamarugo vegetation caused by groundwater

overexploitation can be assessed and monitored using

DNDVImo-mi and DNDVIW-S. For long time series (more than

10 years), Landsat DNDVIW-S of Tamarugo stands showed a

positive linear relationship with cumulative groundwater

depletion.

5. Under water stress, a limitation of the pulvinar movement

occurs in Tamarugo trees before they start losing foliage. For

this reason, changes in DNDVImo-mi and DNDVIW-S are

expected to occur before NDVI decreases due to foliage loss,

and therefore, DNDVImo-mi and DNDVIW-S have potential for

early water stress detection.
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