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Abstract

Little consideration has been given to environmental DNA (eDNA) sampling strategies for rare species. The certainty of
species detection relies on understanding false positive and false negative error rates. We used artificial ponds together with
logistic regression models to assess the detection of African jewelfish eDNA at varying fish densities (0, 0.32, 1.75, and 5.25
fish/m3). Our objectives were to determine the most effective water stratum for eDNA detection, estimate true and false
positive eDNA detection rates, and assess the number of water samples necessary to minimize the risk of false negatives.
There were 28 eDNA detections in 324, 1-L, water samples collected from four experimental ponds. The best-approximating
model indicated that the per-L-sample probability of eDNA detection was 4.86 times more likely for every 2.53 fish/m3 (1
SD) increase in fish density and 1.67 times less likely for every 1.02 C (1 SD) increase in water temperature. The best section
of the water column to detect eDNA was the surface and to a lesser extent the bottom. Although no false positives were
detected, the estimated likely number of false positives in samples from ponds that contained fish averaged 3.62. At high
densities of African jewelfish, 3–5 L of water provided a .95% probability for the presence/absence of its eDNA. Conversely,
at moderate and low densities, the number of water samples necessary to achieve a .95% probability of eDNA detection
approximated 42–73 and .100 L, respectively. Potential biases associated with incomplete detection of eDNA could be
alleviated via formal estimation of eDNA detection probabilities under an occupancy modeling framework; alternatively, the
filtration of hundreds of liters of water may be required to achieve a high (e.g., 95%) level of certainty that African jewelfish
eDNA will be detected at low densities (i.e., ,0.32 fish/m3 or 1.75 g/m3).
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Introduction

Assessing the distribution, abundance, and dynamics of

populations or species frequently requires the collection and

identification of individuals from sample locations. As such, species

detection is fundamental to scientific disciplines such as phyloge-

netics, conservation biology, and ecology. The idea of a species

being either present or absent from a collection of sites has a long

history in ecology, as it provides the foundation for assessing the

status and dynamics of species at local and landscape scales.

Reliable species detection during sampling, however, can be

difficult to achieve, especially for species that are present in low

abundances such as threatened and endangered taxa and, in some

cases, newly invaded species [1–3].

Recent advances in molecular and forensic methods have

provided innovative tools for detecting marine and aquatic

organisms that may circumvent the aforementioned limitations

[4–6]. One tool that holds particular promise is environmental

DNA (eDNA). Defined as short DNA fragments that an organism

leaves behind in non-living components of the ecosystem (i.e.,

water, air or sediments) [7–8], eDNA can be used to detect the

presence (or absence) of a species through cells or tissues found in

the environment containing the genetic material. In aquatic

systems, genetic material can be collected via water filtration

through a micron screen and tested for presence of the target

species using specific genetic markers via polymerase chain

reaction (PCR), quantitative PCR (qPCR) or direct sequencing

of the PCR product. The basic technique outlined above raises the

possibility to detect and monitor target taxa, particularly rare

species, in aquatic environments while eliminating extraneous

noise generated by the presence of (potentially numerous) non-

target taxa. Consequently, eDNA has garnered increased attention

for use with endangered aquatic organisms [2,6] and aquatic

invasive species [1,9,10].

Recently, there has been increased attention and scrutiny

regarding eDNA detection methodologies [11–13]; yet, little

consideration has been given to the utility and accuracy of eDNA

presence/absence data with respect to rare or difficult-to-detect

taxa [14,15]. For example, what is the certainty of a species being

detected via eDNA methods (i.e., what is the false positive error

rate); in contrast, if a species fails to be detected using eDNA, then

is it truly absent or is it present but simply not detected (i.e., what is
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the false negative error rate)? The latter, which is termed Process

Type II Error [16], characterizes the imperfect detection of species

and is of particular concern when using presence/absence data to

make inferences regarding the predominant factors influencing the

status, distribution, and dynamics of species. The confounded

nature of non-detection and true absence imposes a fundamental

problem when using eDNA presence/absence data, and failing to

explicitly account for incomplete detection in a study design or

analysis could lead to biased results and potentially unreliable

inferences [17].

Occupancy modeling approaches are widely used in ecological

research and management because they can effectively and

efficiently account for potential biases associated with imperfect

detection [18] and misidentification [19] of species. Occupancy

models use records of species detections and non-detections during

repeated surveys at a given location, and the resulting capture

histories can be used to estimate model parameters of interest (e.g.,

detectability or occupancy). It follows that there is great potential

for applying occupancy modeling approaches to eDNA detection/

non-detection data [14,17]. Incorporating such an approach into

eDNA experimental designs could allow researchers to account for

sources of bias such as false-negative [20] and false positive [19]

measurement errors.

The African jewelfish (Hemichromis letourneuxi) is an aquatic

invasive species that has spread throughout southern Florida since

its introduction in 1965 [21]. More recently African jewelfish has

spread into coastal river systems of west-central and southwest

Florida and canals and wetlands along the Atlantic Coast from

Cape Canaveral south [22]. Continued spread inland and

northward in peninsular Florida is occurring (Hill, unpublished

data). The species has the potential to compete with native [23,24]

and non-native species [25] and reduces survival of native fishes in

seasonal refuges of short hydroperiod wetlands of the Florida

Everglades [26], making its introduction and spread a threat to

native ichthyofauna of Florida. In an effort to detect and monitor

the spread of African jewelfish, eDNA markers have been

established for the species [27]. Aquarium experiments using

African jewelfish have shown a positive correlation between eDNA

detection and fish density [27], with limited detection of eDNA

(1 L water sample) occurring at densities less than 13 fish/m3.

Difficulties associated with the detection of African jewelfish

eDNA when densities are less than 13 fish/m3 is concerning given

that the spread or introduction of this species could transpire at

densities much lower than the observed value [28,29]. Further, the

issue of incomplete detection and the complexities of abiotic and

biotic factors influencing eDNA detection raise more general

questions regarding appropriate eDNA sampling strategies for

monitoring programs focused on rare species and for understand-

ing the spatial distribution of eDNA.

The goal of our study was to assess the detection of African

jewelfish eDNA in a controlled lentic system at varying fish

densities. Our specific objectives were to 1) determine the most

effective water stratum for the detection of eDNA, 2) estimate true

and false positive eDNA detection rates at varying fish densities,

and 3) assess the number of water samples necessary to minimize

the risk of false negative errors when developing eDNA sampling

protocols.

Materials and Methods

Experimental Design
We used four artificial ponds as mesocosms to estimate and

compare detection probabilities of the African jewelfish at differing

densities. The four earthen ponds were located at the University of

Florida’s Tropical Aquaculture Laboratory, in Ruskin, Florida.

The dimensions of each pond were approximately 18 m67.5 m,

with an average depth of 1.4 m. On June 10, 2013, 30 days prior

to the introduction of fish, ponds were drained, pond bottoms and

banks pressure washed, and remaining excess debris removed.

Hydrated lime (CaOH) was then applied at a rate of 22.6 kg/pond

to ensure that there were no remaining live fish in each pond.

Over the course of 72 hrs, ponds were allowed to fill naturally

from ground water. Once ponds were full, pH, dissolved oxygen,

and temperature were monitored weekly. Three, 1-L eDNA water

samples were taken from each pond 15 days before the

introduction of the fish to check for any potential contamination.

Samples were processed as outlined below, and African jewelfish

DNA was absent in each pond of the study system before the fish

introduction.

To begin the experiment, each of the four study ponds was

stocked with a known number of fish (average TL = 69.92 mm;

average wt. = 5.36 g): pond I contained 0 fish (control), pond II

contained 60 fish (low density: 0.32 fish/m3 or 1.7 g/m3), pond III

contained 330 fish (moderate density: 1.75 fish/m3 or 9.35 g/m3),

and pond IV contained 990 fish (high density: 5.24 fish/m3 or

28.08 g/m3; Table 1). Note that all animal research was approved

by the University of Florida, Institute of Food and Agriculture

Sciences, Animal Research Committee (Approval # 002-13RUS).

We stratified each pond into nine transects, three of which were

located in one third of the pond (section 1), three in the middle

third (section 2), and three in the remaining third (section 3).

Three sample locations were then selected along each transect and

randomly assigned one of three water column positions to each

sample: surface, middle, or bottom. Following the first 24 hrs (i.e.,

day 1), 27 1-L water samples were collected from each pond at the

specified locations using a Van Dorm collection bottle to ensure

adequate coverage (depth and surface area). A kayak was used to

move between transects and quadrants and was cleaned between

ponds with Alconox detergent (1:100 dilution, Alconox, Inc) to

avoid contamination. This protocol was repeated on days 5 and

10, for a total of 81 samples in each pond and 324 samples total.

On each sampling day, pond temperature was recorded.

Molecular methods
Each water sample was treated with 1 mL of 3M sodium acetate

(pH 5.2) and 33 mL 95% non-denature ethanol for DNA/tissue

preservation and refrigerated on site until filtration. Each water

sample was filtered on site and filter paper frozen until extraction

date. DNA was extracted following the protocol of Dı́az-Ferguson

et al. [27], however; the MOBIO Power Water DNA Isolation kit

was substituted for the Rapid Water Isolation kit. Final DNA

templates were eluted in 45 uL of buffer provided with the kit and

then an ethanol precipitation was conducted to improve quality

and concentration of the yielded DNA.

Taqman qPCR assays were employed to detect the presence of

African jewelfish eDNA in each water sample collected from the

four experimental ponds using primers AJFq3 and AJFRq2 and

probe Pr028373859 designed for the target species (Dı́az-Ferguson

et al. 2014). Taqman assays were optimized for 20 uL reactions

using DNA normalized to a concentration of 25 ng/uL and

Taqman core reagents as follows: 2.0 uL of 56Taq reaction buffer

(Applied Biosystems, Inc), 2.5 uL MgCl2 (25 mM), 0.5 uL of each

dNTP (1 mM), 1 uL of each primer (10 uM each), 0.20 uL probe

Pr028373859 (10 uM), 0.5 uL AmpErase (Uracil-N-glycosylase),

and 0.20 uL Amplitaq Gold Taq polymerase (5 U/uL, Applied

Biosystems, Inc).

All assays were conducted using the following thermal profile:

60 C (1 min), initial denaturation at 95uC for 10 min., followed by
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35 cycles of 95 C (15 s) and 60 C (1 min.) Detection of DNA from

each sample was performed using a 7500 Fast Real Time PCR

machine (Applied Biosystems, Inc.). Taqman assay quality controls

consisted of repetition of all qPCR results and inclusion of two

negative qPCR controls (substitution of distilled water for DNA)

and a positive qPCR inhibition control for each qPCR plate. The

positive control consisted of a water sample taken from each pond,

spiked with 5–10 mg/uL lyophilized tissue from H. letourneuxi,
filtered, DNA extracted, and DNA used as a positive confirmation

that our qPCR reactions were working correctly in the presence of

potential inhibitors. In addition, we sequenced 25% of the positive

Taqman assays (following the protocol outlined by Dı́az-Ferguson

et al. 2014) for confirmation that the qPCR product was truly that

of African jewelfish. All sequences were imported into GEN-

EIOUS v4.8.5 alignment editor (Biomatters, available from

http://www.geneious.com/), ends trimmed, aligned by eye, and

compared for base pair composition and similarity with other

African jewelfish sequences previously deposited in the GenBank.

Statistical analyses
Our primary interest was to assess per-sample eDNA detection

rates (i.e., prevalence of false-negative errors); however, we also

evaluated the prevalence of false positive errors in the sample data.

False-negative errors represented instances where, for a given 1 L

water sample, qPCR DNA amplification failed to detect African

jewelfish when it was known to be present in a pond. In contrast,

false-positive errors represented instances where the species was

detected when it was known to be absent from a pond (i.e., the

control pond). To estimate eDNA detection probabilities, we fitted

logistic regression models [30] relating eDNA detection/non-

detection data to two pond-level factors, fish density and water

temperature, and one sample-level factor, position in the water

column. Water temperatures varied among ponds and time

periods; however, there was a general decline in temperature

across all ponds over the 10-day study period owing to a cold front

that moved through the region. We assumed that fish density

remained constant over the course of the study. We observed no

fish mortality in any pond over the 10-day period; hence, we

believe that the assumption of constant fish density was valid. For

both data types, the dependent variable was the detection or non-

detection (binary coded) of eDNA from individual water samples.

Note that we excluded control pond data from the analysis of

eDNA detection because the pond did not contain fish.

Conversely, only the control pond data were used to estimate

false positive error rates, because any positive eDNA detections in

the control pond were, by definition, false positives.

Regular logistic regression cannot account for dependence (i.e.,

autocorrelation) among repeated samples, and we suspected that

repeated water samples taken from particular sections and

transects were dependent [31]. For example, it was possible that

individuals, and hence their eDNA, were concentrated in

particular areas of each pond, which would tend to inflate false

negative errors as eDNA would not be present in some areas and,

hence, unavailable for detection. To account for dependence

among samples, we fitted hierarchical logistic regression models to

the DNA detection/non-detection data [32]. For our study, the

log-odds of eDNA detection, ghijk, was modeled as:

ghijk~b0zbQhkXQhkzm0izm1j

where b0 was the intercept, bQ was the effect of pond- (h) or

sample-level (k) factors (fish density, water temperature, and water

column position) XQ on eDNA detection, and m0i and m1j were the
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section- (i) and transect (j)-level random effects, respectively, that

were assumed to be normally distributed with mean of zero and

random effect-specific variance [33]. The random components u0i

and u1j represented unique effects associated with sections and

transects, respectively, that were unexplained by pond- and

sample-level covariates. Because there were no DNA detections

in the control pond (see Results), it was not possible to model false

positive errors as a function of covariates. Thus, we fit a single

‘‘intercept only’’ logistic regression model (i.e., the log-odds of false

positive errors, ghijk~b0) to estimate the false positive error rates

and estimated the likely number of false positive errors in the false

negative data (i.e., data from ponds with fish) assuming a sample

size of 243. We used Markov Chain Monte Carlo (MCMC) as

implemented in OpenBUGS software, version 3.2.1 [34] to fit

candidate hierarchical logistic regression models. All models were

fit using 200,000 iterations, a 50,000 iteration burn in (i.e., the first

50,000 MCMC iterations were dropped), and diffuse priors.

We used an information-theoretic approach [35] to evaluate the

relative fit of candidate models relating pond- and sample-level

characteristics to eDNA detection/non-detection data. For data

from the three ponds that were stocked with fish, we developed 16

models representing relations between various combinations of

pond- and sample-specific predictors and eDNA detection. The

pond temperature predictor represented the measured tempera-

ture at the surface, middle, and bottom of each pond during each

sample day, which resulted in three temperature measurements

per pond on days 1, 5, and 10 of the study; the fish density

predictor represented the known density of fish in each pond (low,

moderate, high); and the water column position predictors

included ‘middle’ and ‘bottom’, with ‘surface’ samples serving as

the statistical baseline. The categorical water column position

predictors were binary coded as 0 (surface) or 1 (middle and

bottom). To facilitate model-fitting, we standardized both contin-

uous predictors, water temperature and fish density, with mean of

zero and standard deviation of one.

Prior to fitting candidate models, we evaluated the relative-fit of

four different variance structures using the global (all predictors)

model by fitting models that contained several combinations of

random effects for sections and transects. The four variance

structures included (1) no random effects, (2) a random intercept

associated with individual sections, (3) a random intercept

associated with individual transects, and (4) a random intercept

associated with individual sections and transects. The best

approximating variance structure was identified using the Devi-

ance Information Criterion (DIC). The DIC is a Bayesian measure

of model fit or adequacy, with smaller DIC indicating a better

approximating model [36]. We then evaluated the relative fit of

the 16 candidate models using DIC and calculated DIC weights

following Link and Barker [37], which range from 0–1 with the

best approximating candidate model having the highest weight.

We considered the most plausible models to be those with DIC

weights within 10% of the best-approximating model, which is

similar to Royall’s general rule-of-thumb of 1/8 or 12% for

evaluating strength of evidence [38].

We assessed the precision of parameter estimates for each model

by calculating 95% Bayesian credible intervals [39], which are

analogous to 95% confidence intervals. To facilitate interpretation,

we also calculated odds ratios (OR) for each fixed-effect pond- and

sample-level predictor variable [40]. We assessed MCMC

convergence for each model in the confidence set using the

diagnostics detailed by Gelman and Rubin [41]. Lastly, we

assessed the adequacy of the global model (Goodness of fit) by

calculating a Bayesian p-value using the discrepancy measure

method [42]. Extreme Bayesian p-values (i.e., #0.05 or $0.95)

indicate that a model does not adequately describe the data.

Using parameter estimates from the best-approximating model,

we also calculated cumulative detection probabilities to evaluate

the number of 1-L water samples required to achieve a specified

level of certainty that low, moderate, and high density African

jewelfish populations would be detected at least once. We also

calculated per-sample detection probabilities as a function of fish

density.

Results

A total of 28 detections of African jewelfish eDNA were made

across 324 individual 1-L water samples collected from the four

experimental ponds (Table 1). Sequence confirmation of qPCR

fragments showed between 83–89% query coverage (percent of

the query sequence that overlaps the subject sequence) and a

percent sequence similarity between 92–96% that corresponded to

Hemichromis (GenBank accession numbers: KJ553580.1,

JQ667546.1, JN026744, GU817297.1, AY662793.1,

KJ553529.1).

Excluding 81 water samples collected from the control pond

(i.e., no fish present), there were 28 detections across the 243

collections taken from ponds that contained varying densities of

fish, which corresponded to an overall eDNA detection rate of

,12%. The detection of eDNA was more prevalent on the surface

and bottom (each with 39% of the detections) when compared to

the middle of the water column. Notably, there were no false

positive detections among the 81 control samples.

The best-approximating error structure for the logistic regres-

sion models relating eDNA detection/non-detection data to pond-

and sample-level covariates included no random effects associated

model intercepts and slopes, indicating no substantial dependence

among pond transects or quadrants. The assessment of model

adequacy using the discrepancy measure method indicated that

the global model provided an adequate description of the data,

with a Bayesian p-value of 0.58. The confidence model set

consisted of four models that contained various combinations fish

density, water temperature, and sample position in the water

column (Table 2). The best-approximating model contained

density, temperature, and middle and was 1.44, 2.44, 3.54, and

5.57 times more plausible than the next best-approximating

models in the confidence set (Table 2).

Parameter estimates from best-approximating model indicated

that the per-sample probability of eDNA detection was strongly

and positively related to fish density and negatively related to

water temperature (Table 3). Odds ratios (OR) indicated that

African jewelfish were 4.86 time more likely to be detected for

every 1 SD (2.53 fish/m3) increase in fish density, whereas the

species was 1.67 times less likely to be detected for every 1 SD

(1.02 C) increase in pond temperature (Table 3). Parameter

estimates for the remaining covariates in the confidence model set,

bottom and middle, indicated that per-sample detection was

highest in collections taken from the surface (i.e., detection was

negatively related to middle and bottom); however, the parameter

estimates were considered imprecise as the 95% credible intervals

contained zero (Table 3).

Although there were no false positive errors associated with the

control data in this study, it was still possible to estimate the

probability and number of false positive errors under the

assumption of binomially distributed data with a sample size of

81 (i.e., the number of 1-L water samples in the control pond). The

parameter estimate from the logistic regression model fit to the

control data indicated that false positive errors were very unlikely,

eDNA Detection in Lentic Systems
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with an estimated per-sample probability of 0.014 (Table 4).

Across the 243 1-L water samples conducted in the three stocked

ponds, the per-sample false-positive error rate estimate of 0.014

suggested that the likely number of false positives averaged 3.62

and ranged from 0–12.

Using parameter estimates from the best-approximating model,

the number of 1-L water samples required to achieve a specified

level of certainty varied considerably depending on the density of

African jewelfish aggregates (Figure 1). Per-sample detection

probabilities plotted as a function of fish density demonstrated

that although the per-sample probability of detection increased

with fish density, the relationship was nonlinear across the range of

densities used in this study (Figure 2).

Note that our best-approximating model included temperature

and not time; yet, we expected a positive relationship between time

and eDNA detection. Unfortunately it was difficult to differentiate

the effects of temperature and time because temperature declined

over the 10-day period in the entire system (Table 1). To address

this, we constructed a model that included time instead of

temperature. We observed a weak positive relationship (i.e., for

every 1 day increase, the log-odds of detection increased by 0.10;

Table 4) and based on the DIC (130.76 vs. 129.39), the time

model had less support than the temperature model in explaining

eDNA detection. Given our findings and that the time since

invasion is rarely known, we opted to use temperature in the

models because it was more relevant to our study objective.

Discussion

The ability to detect individuals at low densities in aquatic

habitats is critical for successful control and management of

invasive species [43] and for the conservation of threatened and

endangered organisms [3,44]. Unfortunately, rarity typically

presents problems when dealing with both spatial sampling and

detectability [44]. This issue is not new and like traditional

sampling methods designed to detect rare or elusive species, eDNA

sampling methods will suffer the same biases and problems.

Table 2. Deviance, effective number of parameters (pd), deviance information criterion (DIC), DDIC, DIC weights (wi), and Bayesian
p-values (p-value) for the confidence set of logistic regression models relating African jewelfish eDNA detections to pond- and
sample-level factors.

Model Deviance pd DIC DDIC wi p-value

Intercept, middle, density, temperature 125.70 3.69 129.39 0.00 0.39 0.60

Intercept, density, temperature 127.20 2.95 130.15 0.75 0.27 0.60

Intercept, middle, bottom, density, temperature 126.50 4.63 131.13 1.74 0.16 0.58

Intercept, bottom, density, temperature 127.90 3.94 131.84 2.45 0.11 0.58

Intercept, middle, density 130.00 2.71 132.71 3.32 0.07 0.57

doi:10.1371/journal.pone.0103767.t002

Table 3. Parameter estimates (Mean), standard deviations (SD), 95% credible intervals, and odds ratios (OR) from the confidence
set of logistic regression models relating African jewelfish eDNA detections to pond- and sample-level factors.

Model Parameter Mean SD Lower 95% Upper 95% OR

Best

Intercept 22.78 0.39 23.62 22.08

Middle 20.81 0.50 21.83 0.14 0.44

Density 1.58 0.30 1.04 2.22 4.86

Temperature 20.51 0.23 20.97 20.07 0.60

2nd best

Intercept 22.98 0.38 23.78 22.31 0.05

Density 1.56 0.30 1.02 2.19 4.75

Temperature 20.51 0.23 20.96 20.08 0.60

3rd best

Intercept 22.70 0.45 23.64 21.88

Middle 20.91 0.55 22.01 0.15 0.40

Bottom 20.23 0.50 21.21 0.74 0.80

Density 1.60 0.30 1.05 2.23 4.93

Temperature 20.53 0.23 21.00 20.08 0.59

False positive

Intercept 24.20 0.78 25.91 22.86

Also reported is the single parameter estimate (intercept) associated with the logistic regression model fit to the control data to estimate the probability of false positive
errors.
doi:10.1371/journal.pone.0103767.t003

eDNA Detection in Lentic Systems

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e103767



Therefore the development of methods and models that properly

account for imperfect detection of eDNA should be a vital first step

in designing and implementing detection and monitoring surveys

for rare organisms that rely on eDNA methods [16,17,45].

While our study and numerous others have illustrated a positive

and often significant relationship between organismal density and

eDNA detection [14,17,27,46], our basic understanding of the

biotic and abiotic factors influencing eDNA detection is still in its

infancy [however, see 47], with the majority of studies focusing on

type I and II errors associated with the molecular method itself

[e.g.,3,11,16]. In contrast, the focus of our study was to assess the

false negative error rate termed Process Type II Error by Darling

and Mahon [16]. While Darling and Mahon [16] recognized that

the estimation of false negative and false positive error rates is

important for eDNA assay development, they acknowledged that

few if any studies effectively address this issue. Our study sought to

provide a quantitative approach for estimating and understanding

sampling efficiency for African jewelfish.

Table 4. Parameter estimates (Mean), standard deviations (SD), and 95% credible intervals for the logistic regression model
relating African jewelfish eDNA detections to pond- and sample-level factors.

Parameter Mean SD Lower 95% Upper 95%

Intercept 23.25 0.52 24.33 22.29

Middle 20.86 0.50 21.89 0.08

Density 1.54 0.29 1.01 2.17

Day 0.10 0.06 20.01 0.22

Deviance 126.70 2.853

DIC 130.76

This model is identical to the best approximating model listed in Table 3 but with time (day) substituted for temperature.
doi:10.1371/journal.pone.0103767.t004

Figure 1. Predicted cumulative African jewelfish eDNA detection probability with an increasing number of 1-L water samples.
Detection estimates are based on parameter estimates from the best-approximating hierarchical logistic regression models relating African jewelfish
eDNA detection/non-detection data to pond- and sample-level covariates and were calculated for low density (0.32 fish/m3), moderate density (1.75
fish/m3), and high density (5.24 fish/m3) populations assuming a water temperature of 28 C.
doi:10.1371/journal.pone.0103767.g001
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The eDNA from living macrofauna most likely originates from

urine and feces, epidermal tissues, or other secretions such as

reproductive fluids and reproductive cells. Most of this material is

introduced into the water column as large particles (.1000 um)

that remain at the surface for a limited amount of time before

sinking or breaking apart [13,48]; thus, the surface provides a

logical place to survey for eDNA and it is also relatively efficient to

collect surface samples when compared to soil samples from the

bottom of a lentic system. While eDNA studies have concentrated

sampling efforts near the surface [3,49], none have justified their

sampling approach. Once introduced, African jewelfish seek and

remain on the bottom of an earthen pond (J. Hill personal

observation); therefore, we suspected that samples taken from the

bottom would show a significant increase in eDNA detection. In

contrast, our results indicated that the best section of the water

column to sample and detect eDNA was the surface and to a lesser

extent the bottom. Our findings support the pattern that, at least

in small lentic systems, eDNA remains at the surface level for a

given time period before settling to the bottom or until

degradation occurs.

Elevated temperature can accelerate the rate of eDNA

degradation. Degradation can occur directly by denaturing the

DNA or indirectly by increasing enzymatic activity and microbial

metabolism [47]. Parameter estimates from our best-approximat-

ing model indicated that eDNA detection was negatively related to

water temperature such that the species was 1.67 times less likely

to be detected for every 1 SD (1.02 C) increase in stream

temperature. A similar observation was found for preliminary

eDNA persistence trials of African jewelfish held in aquaria. In

these trials, African jewelfish eDNA was found to degrade between

25 and 33 C (E. Dı́az-Ferguson unpublished data). While the

negative effect of temperature in our study likely reflects the

combined effects of lower degradation rates under lower

temperatures and more eDNA in the system as time progressed,

the influence of time on eDNA detection was assumed minimal – a

finding supported by Dı́az-Ferguson et al. [27] who found a non-

significant relationship between African jewelfish eDNA detection

and time in aquaria held at a constant temperature over a seven

day period. Thus, we believe that temperature was a significant

factor influencing eDNA detection in our study. This finding

suggests that to minimize the negative influence of temperature on

species detection rates, the implementation of eDNA monitoring

programs in the relatively warm waters of the tropics and

subtropics should be cautioned if ambient water temperatures

exceed 29–30 C.

At high densities of African jewelfish (5.24 fish/m3), the

filtration of 3–5 L of water (or the filtration of 3–5, 1-L water

samples) should provide a high degree of confidence (95–100%

probability) to confirm the presence or absence of its eDNA.

However, if only a 1-L water sample was collected from our pond

containing 990 fish, then our ability to detect eDNA would be

approximately 55%. For our ponds that contained 330 and 60 fish,

we had a 7% and a 3% chance of detecting African jewelfish

eDNA if a 1-L water sample was taken. Conversely, at moderate

and low densities, the number of water samples necessary to

achieve a 95–100% probability of eDNA detection would

approximate 42–73 L and .100 L, respectively. Our findings

highlight a well-known and important concept with hypothesis

Figure 2. Predicted per-1-L water sample DNA detection probability with increasing densities of African jewelfish in experimental
ponds. Detection estimates are based on parameter estimates from the best-approximating hierarchical logistic regression models relating African
jewelfish eDNA detection/non-detection data to pond- and sample-level covariates. Filled diamonds represent the low (0.32 fish/m3), moderate (1.75
fish/m3), and high densities (5.24 fish/m3) used in this study.
doi:10.1371/journal.pone.0103767.g002
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testing – statistical power [31]. Scientist and resource managers

using eDNA methods must agree on the level of accepted error

prior to hypothesis testing [16], but depending on the hypothesis

being tested, they will often want to keep both type I and type II

errors small. Clearly, then, the only way to minimize eDNA false

negatives is to improve the power of the test while keeping the

significance level (a) constant. To do so requires increasing the

sensitivity ( = power) of the test either by increasing the sample size

(volume of water tested) or by increasing the sensitivity of the

eDNA marker. Our eDNA marker appears sufficiently sensitive

because the observed theoretical lower limit of qPCR detection

using our eDNA marker was similar to other eDNA studies [27];

therefore, if minimizing type I and type II errors is a priority when

using eDNA to monitor the leading edge of invasion for African

jewelfish, then a large volume of water must be screened.

Our findings raise a vexing problem when designing eDNA

sampling strategies for aquatic species that are rare – the density of

the organism is usually unknown; hence, the amount of water

necessary to detect the organism with a high level of certainty also

will be unknown. Minimizing false negatives (i.e., increasing

detection probability) will come at the cost of filtering more water

(either in the form of more volume or more samples). The filtration

of hundreds of liters of water through a small micron filter tends to

be problematic (filters clog) and often expensive (e.g., filtration of

100, 1-L bottles each through its own filter); alternatively, devices

that maximize water volume such as inline filters or plankton nets,

may prove valuable for eDNA monitoring of rare species [13], but

will be contingent on the particle size of aqueous eDNA being

emitted from the organism of concern [13].

While our study was not specifically designed to address the

issue of taking numerous smaller samples vs. one large sample (e.g.,

50, 1-L water samples vs 1, 50-L water sample), we recommend

the former, especially for rare species in lentic systems. In a lentic

environment, the taxon in question may have specific (patchy)

habitat requirements; thus, stratifying by habitat and conducting

numerous smaller-volume samples would be preferred over taking

one large-volume sample. Furthermore, more habitat and sample-

specific covariates (i.e., all the interesting heterogeneity within the

sampling site) are available for potential use in an occupancy

model when collecting numerous smaller-volume samples vs.

obtaining one large-volume sample.

Finally, our study emphasizes the difficulties of inferring

detection probabilities for an organism inhabiting a natural system

simply from aquarium trials. First, even when one fish is placed in

an aquarium, it is difficult to simulate lower densities necessary for

inferring accurate detection probabilities (i.e., there is a nonlinear

relationship between eDNA detection and density, see Figure 2).

For example, Dı́az-Ferguson et al. [27] used one fish (5.45 g) in a

75.5 L aquarium to simulate their lowest density; however, this

approximated to a density of 13 fish/m3 (or 70.85 g/m3) in our

pond experiment and was a value greater than our highest density

pond. Thus, if the species of concern is rare, then the estimation of

detection probabilities should be conducted in a larger controlled

system that can simulate the rarity of the organism in its natural

setting. For an organism inhabiting a lotic system, the use of

artificial streams [50] or raceways may be necessary. Alternatively,

the estimation of detection probabilities may be unattainable for

an endangered organism due to its rarity; thus, the use of a

surrogate species (e.g., a close congener with similar life history

attributes) may be necessary. Second, aquarium trial experiments

of African jewelfish failed to detect eDNA from a 1-L water sample

at a density of 13 fish/m3 [27]. In the present study, a 1-L water

sample taken at this density should always detect African jewelfish;

thus, aquarium experiments appear to have underestimated the

detection of African jewelfish eDNA. There are a variety of

potential explanations for the discrepancy in detection probabil-

ities including behavioral (antagonistic behavior, increased move-

ment) and environmental (wind/wave action); regardless, our

study demonstrated the complexities of extrapolating eDNA

detection probabilities from a controlled to a natural environment.

Our results and those of Dı́az-Ferguson et al. [27] indicate that

detection probabilities for African jewelfish can be imperfect (i.e.,

,1) and vary spatially or temporally in response to local

environmental conditions. As such, presence-absence data derived

from eDNA-based methods (e.g., the proportion of sites where a

species was detected) where the density of African jewelfish is low

will be negatively biased and could have profound implications

when determining the leading edge of invasion for this species if

imperfect detection is not taken into account. Potential biases

associated with incomplete detection could be alleviated by

formally estimating detection probabilities under an occupancy

modeling framework [51,52]; alternatively, the filtration of

hundreds of liters of water may be required to detect African

jewelfish at low densities (i.e., ,0.32 fish/m3 or 1.7 g/m3) with a

desired level of confidence.
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