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Abstract

Context: Systematic conservation planning is increasingly used to identify priority areas for protection in marine systems.
However, ecosystem-based approaches typically use density estimates as surrogates for animal presence and spatial
modeling to identify areas for protection and may not take into account daily or seasonal movements of animals.
Additionally, sympatric and inter-related species are often managed separately, which may not be cost-effective. This study
aims to demonstrate an evidence-based method to inform the biological basis for co-management of two sympatric
species, dugongs and green sea turtles. This approach can then be used in conservation planning to delineate areas to
maximize species protection.

Methodology/Results: Fast-acquisition satellite telemetry was used to track eleven dugongs and ten green turtles at two
geographically distinct foraging locations in Queensland, Australia to evaluate the inter- and intra-species spatial
relationships and assess the efficacy of existing protection zones. Home-range analysis and bathymetric modeling were
used to determine spatial use and compared with existing protection areas using GIS. Dugong and green turtle home-
ranges significantly overlapped in both locations. However, both species used different core areas and differences existed
between regions in depth zone use and home-range size, especially for dugongs. Both species used existing protection
areas in Shoalwater Bay, but only a single tracked dugong used the existing protection area in Torres Strait.

Conclusions/Significance:: Fast-acquisition satellite telemetry can provide evidence-based information on individual animal
movements to delineate relationships between dugongs and green turtles in regions where they co-occur. This information
can be used to increase the efficacy of conservation planning and complement more broadly based survey information.
These species also use similar habitats, making complimentary co-management possible, but important differences exist
between locations making it essential to customize management. This methodology could be applied on a broader scale to
include other sympatric and inter-related species.
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Introduction

Understanding how animals use space can be fundamental to

identifying the components necessary for the conservation of a

species [1]. These components may include key resources, critical

habitats, movement patterns, and distributions; all of which can be

used to determine the spatial dynamics of a population [2–4].

Such knowledge has the potential to play a key role in the

designation of marine protected areas (MPAs), guiding manage-

ment decisions, predicting the effects of environmental change,

and aiding in the calculation of population estimates [5–7].

Knowledge of these components is especially important as the

human population continues to grow and anthropogenic influ-

ences become more widespread throughout the natural environ-

ment [8].

MPAs are being increasingly used to protect marine species and

environments [9,10], especially as the number of marine species

listed as threatened increases [11]. However, single species

approaches to MPA design are the subject of increased scrutiny

with ecosystem-based approaches being increasingly favored [12–

15]. Contemporary ecosystem-based approaches depend on using

acceptable surrogates for the presence of species or species groups

in conjunction with sighting records, density estimates, and
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appropriate modeling techniques [9,16]. All of these factors rely

on assumptions that are vulnerable to errors of commission and

omission as well as sampling bias which can affect MPA efficacy

[16,17]. These concerns are exacerbated when designing MPAs to

conserve species that are mobile and/or dependent on benthic

habitats of variable quality.

The use of MPAs to protect mobile marine species, such as

marine megavertebrates (e.g., sea turtles, marine mammals, and

elasmobranchs), can be difficult as their ranges may encompass

significant portions of coastlines and even entire ocean basins

[9,18–20] (but see [21]). Additionally, a diverse range of cultural,

economic, political, and legal obstacles can impede the establish-

ment and enforcement of large reserves, especially transnational

reserves [22,23]. However, many mobile marine megavertebrates

display strong site fidelity to specific regions on a seasonal or yearly

basis allowing the protection of key areas using permanent or

seasonal spatial closures [9,20,24]. This protection can be

particularly important for marine megavertebrates as many species

display life-history characteristics (e.g., long lived, low fecundity,

high adult survivorship) [25–27] that increase their vulnerability to

human-induced mortality and destruction of critical habitat.

Using a systematic conservation planning approach to designate

high conservation value areas to conserve marine megavertebrates

has increased over the past decade [10,15,20,28]. This planning

methodology was a key driver in the implementation of

conservation areas for dugongs (Dugong dugon) and green sea turtles

(Chelonia mydas) in the rezoning of the Great Barrier Reef Marine

Park (GBRMP), Australia in 2003 and has been suggested for use

in implementing reserves in Torres Strait, Australia [10,29]. These

regions both contain globally significant populations of dugongs

and green sea turtles, with Torres Strait being home to the World’s

largest dugong population (.12,000 individuals) [26] while the

Great Barrier Reef (GBR) and Torres Strait region contain some

of the most important nesting grounds for the largest population of

green sea turtles [30]. The rezoning of the GBR in 2003 increased

the level of protection of high conservation value foraging grounds

in no-take zones for dugongs from 17% to 42% and green turtles

from 0.03% to 13% of the total area of occupancy identified for

each species [10,31,32]. The areas for protection built on the pre-

2003 management arrangements including the Dugong Protection

Areas (DPAs) [33] and were predominantly identified using expert

opinion and data from aerial surveys, seagrass mapping, and

sighting records [31,32,34]. Such approaches may not satisfy

stakeholders [35] who can better identify with information on

individual animals.

Dugongs and green turtles are often found together, sometimes

at high densities [26], and thus may be managed together (e.g.,

‘‘Go-slow’’ areas in Moreton Bay near Brisbane, www.nprsr.qld.

gov.au/parks/moreton-bay/about.html). However, a comprehen-

sive understanding of the comparative ecology of dugongs and

green turtles is required to optimize management because a

comparative study on the stomach contents of dugongs and green

turtles in Torres Strait found that dugongs fed exclusively on

seagrasses whereas turtles consumed both seagrasses and macro-

algae [36]. Thus a detailed and concurrent study of the

movements of both species is required.

We used fast-acquisition GPS satellite telemetry to quantify the

fine-scale distributions of sympatric dugongs and green turtles to

enhance their management by tracking them at two locations of

high conservation value in northeastern Australia (Shoalwater Bay

and Torres Strait). Home-range analysis and bathymetric model-

ing were then used to compare spatial use within and between

species and within and between geographic areas. Our objectives

were to: (1) determine the spatial relationships between dugongs

and green turtles in regions where they co-occur and between

different locations; (2) assess the biological appropriateness of

developing techniques to co-manage these two species; (3) evaluate

the efficacy of the existing protection zones at our study locations.

We also discuss how the management of dugongs and green sea

turtles and other sympatric, mobile marine megafauna can be

enhanced by detailed studies of the movements of individual

animals.

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described study.

The animal use protocol for this research was approved by the

James Cook University Animal Ethics Committee and Queens-

land Parks and Wildlife. All protected species were handled in

strict accordance with local and international regulations. The

dugong research was conducted under James Cook University

Animal Ethics Committee Permits A1498 and A1683 and

Queensland Parks and Wildlife Scientific Purpose Permit

WISP006774410. The turtle research was conducted under James

Cook University Animal Ethics Committee Permits A1229 and

A1683 and Queensland Parks and Wildlife Scientific Purpose

Permits WISP02742310 and WISP09469711.

Satellite Transmitter Attachment and Tracking
Raw, unfiltered tracking data were collected using fast-

acquisition GPS satellite transmitters attached to six dugongs

(three females and three males) and four adult female green sea

turtles near Mabuiag Island, Torres Strait, Australia (9u 57’S, 142u
10’E) in July 2009 and September 2010, and five dugongs (four

females and one male) and six female green sea turtles (five adults

and one prepubescent) in Shoalwater Bay, Australia (22u 259S,

150u 259E) in June/July 2012 (Table 1).

The dugongs were captured using the dermal holdfast technique

[39] in Torres Strait and the standard rodeo technique in

Shoalwater Bay [40]. At both locations, the dugongs were fitted

with Telonics Gen 4 GPS/ARGOS marine units attached to a

3 m tether linked to a padded tailstock harness (for details see

[41]).

The green turtles were captured using the standard rodeo

technique [42], brought to Mabuiag Island (Torres Strait) or

MacDonald Point (Shoalwater Bay), and fitted with one of four

types of satellite transmitters (Sirtrack F4G 291A, Wildlife

Computers SPLASH10 BF-273A and Splash10 BF-273C, or

SMRU SRDL 9000x). Each transmitter was attached to the

carapace using the methods described in Shimada et al. (2012)

[43]. Each turtle was released from shore the day after capture.

Dugong units were programmed to collect a GPS position

hourly; turtle units every 30 minutes. All units were programmed

with a five minute repeat in case a signal was not received when

the animal surfaced.

Data Processing
All raw data were transmitted via the ARGOS network,

downloaded from ARGOS via the transmitter manufacturer

supplied software, converted to the Universal Transverse Mercator

(UTM) coordinate system, filtered, and processed.

Dugong location data were used from the time of release until a

transmitter stopped transmitting or detached. Post-release loca-

tions were not removed from the dataset as previous studies

indicated no behavioral changes after capture and handling [44].

Transmitter detachments were identified by: (1) acquisition of

successive succeeded GPS location classes at consistent time
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intervals (e.g., on the hour, every hour), (2) prolonged straight line

movement, or (3) signals from one location for an extended period

of time (e.g., days).

The location data for turtles were not used in our analysis until

the target animal returned to its capture location or exhibited

foraging behavior. Foraging behavior was identified by non-

directed movement (i.e., tortuous, short distance movements) for a

minimum of three consecutive days after an initial directed

movement (i.e., straight-line movement covering a significant

distance over a short period of time) [45]. The tortuosity of

individual movements was evaluated through visual inspection of

connecting lines between consecutive location points using GIS.

Straight-line movement was defined by the trajectory between two

locations being less than 45u off to either side from the extension of

the previous two locations [45].

Different filtering techniques were required for each type of

transmitter because of differences between transmitters, locational

accuracy, and species life-history characteristics. The Telonics

units used for dugongs employed a Quick Fix Pseudoranging

(QFP) alternative when a GPS location could not be acquired.

QFP locations were categorized by locational accuracy into three

categories: resolved QFP, resolved QFP (uncertain), and unre-

solved QFP. Telonics (2012) [46] states that 98.4% of resolved

QFP positions are within 30 m of the actual position, resolved

QFP (uncertain) positions are generally within 75 m, and

unresolved QFP positions are within several hundred meters.

Because the use of QFP technology in animal tracking is relatively

new, objective filtering techniques were developed to maintain

accuracy of acquired locations. For fine-scale analysis, data were

initially filtered by location class, using only succeeded GPS,

resolved QFP, and resolved QFP (uncertain) location classes to

maintain accuracy #75 m. After initial filtering, over-speed errors

were removed; these were identified by the distance and time

between successive fixes necessitating speeds beyond the maxi-

mum sustained swimming speed for dugongs of 10 km hr-1 [47].

Locations more than 30 m inland were also removed as this is the

error estimate for the most precise QFP locations.

For turtles, all units used fast-acquisition GPS technology and

were filtered in two ways. First, following the manufacturer’s

instructions, initial filtering used the residual error and number of

satellite uplinks used for each location. Locations with a residual

error greater than 30 or with fewer than four satellite uplinks were

Table 1. Information on the dugongs and green sea turtles tagged in Shoalwater Bay, Australia in 2012 and Torres Strait, Australia
in 2009 and 2010.

Individual Date tagged Sex Maturity Length (cm)* Days+ Tag type

Shoalwater Bay

Dugongs

652631A 01 July 2012 M Unknown 262 141 Telonics

652636A 30 June 2012 F Adult 288 51 Telonics

652640A 01 July 2012 F Unknown 252 6 Telonics

652642A 01 July 2012 F Immature 179 34 Telonics

652643A 30 June 2012 F Immature 229 54 Telonics

Turtles

96777 01 July 2012 F Adult 96.1 145 Sirtrack

96780 03 July 2012 F Adult 97.3 121 Sirtrack

108469 29 June 2012 F Adult 104.5 147 SMRU

108472 29 June 2012 F Adult 100.5 148 SMRU

120640 30 June 2012 F Prepubescent 102.1 137 Wildlife Computers

120641 01 July 2012 F Adult 95.5 131 Wildlife Computers

Torres Strait

Dugongs

641060A 18 September 2010 F Adult 250 69 Telonics

641058A 13 September 2010 F Likely Adult 224 33 Telonics

641052A 22 September 2010 M Large Juvenile 182 79 Telonics

641054A 22 September 2010 M Likely Adult 224 30 Telonics

641057A 14 September 2010 F Adult 335 22 Telonics

641055A 14 September 2010 M Likely Adult 223 7 Telonics

Turtles

70455 22 September 2010 F Adult 118 134 Sirtrack

95889 25 July 2009 F Adult 98 27 Sirtrack

95891 25 July 2009 F Adult 102.1 28 Sirtrack

95892 21 September 2010 F Adult 105.6 47 Sirtrack

*Dugong length was measured as straight total length [37], turtle length was measured as curved carapace length (CCL) [38].
+Total days tracked while foraging.
doi:10.1371/journal.pone.0098944.t001
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excluded [48]. Second, data were filtered using the data-driven

method described by Shimada et al. (2012) [43], which removes

locations for which speeds between successive locations exceed the

maximum linear speed (Vmax) of an animal or if all of the following

apply: (a) the number of source satellites is four, (b) the inner angle

is acute, and (c) the speed either from or to a subsequent location

exceeds a maximum ‘‘loop-trip’’ speed (Vlp) calculated for an

animal [43]. Vmax for green sea turtles was determined to be

9.9 km hr-1 and Vlp was 2.0 km hr21 (for details on how Vmax and

Vlp were calculated see [43]). Our calculated Vmax for green turtles

is consistent with maximum speeds calculated by Heithaus et al.

(2002) [49] (median: 11 km hr21; inter-quartile range: 10–12 km

hr21). Finally, locations were compared with Landsat imagery and

digital elevation models to determine if locations found on land

were accessible to a basking turtle and implausible locations were

removed.

After filtering, the location data from each dugong or turtle

were standardized by dividing the remaining location points into

3 hour duty-cycles and selecting the most accurate location within

each duty-cycle. This duration was chosen to retain as many

location points as possible while minimizing differences in the

number of location points per day per animal. In addition, duty-

cycles were used in an effort to reduce the effects of autocorre-

lation and effects resulting from differences in transmitter

performance. These measures were necessary as sample size has

been shown to significantly affect home-range estimates [50,51].

The best location was chosen using two criteria: (1) the location

with the greatest number of satellite uplinks, and (2) if multiple

locations had the same number of uplinks, the final choice was the

location with the lowest residual error (Sirtrack, Wildlife Com-

puters, and SMRU units) or the lowest positional dilution of

precision error (Telonics units). In the event multiple locations had

the same error value, the location closest to the median time point

within each duty-cycle was chosen.

Home-range Estimation and Spatial Use
Home-ranges were calculated using fixed kernel density

estimation with bandwidths selected by likelihood cross-validation

(CVh) [52]. The fixed kernel method was selected over the

adaptive kernel method because it has been shown to produce

more accurate and precise home-range estimates that are less

sensitive to autocorrelation [51,53]. While least-squares cross-

validation (LSCV) has been suggested as the best bandwidth

selector by many studies [51,54], we found that it produced

elongated ranges that were skewed along a single axis; a by-

product of the layout of the locational data of animals within this

study and most likely a misrepresentation of each animal’s actual

use of space. After testing and interpreting the ecological/

behavioral relevance of several other bandwidth selectors, CVh

was found to produce ranges which were not skewed and the most

ecologically appropriate. Hemson et al. (2005) [55] and Horne &

Garton (2006) [56] also found that this method sometimes

performs better than LSCV.

Kernel densities and bandwidths were calculated using the

Geospatial Modelling Environment (GME), an extension to

ArcGIS [57,58], with a resolution of 50 m. This resolution was

selected because the mean accuracy of filtered fast-acquisition

GPS locations is within 50 m of the true location [43] and the

majority of filtered Telonics locations in this study were classified

as resolved QFP or higher (mean = 83.5, SE = 5.3%, n = 11).

GME was also used to generate 95% and 50% contour polygons

from the calculated kernel densities in vector format. 95% home-

range and 50% core range areas were calculated in ArcMap 10

[59] from the 95% and 50% contour polygons. Regions of contour

polygons that overlapped land were removed before final areas

were calculated. A core area was defined as the area in which an

individual is predicted to be 50% of the time.

Home-ranges were calculated for each animal using data from

the entire period in which they were tracked. We plotted days

tracked versus range size to determine if there was a relationship

and found no significant correlation between days tracked and

range size with the majority of animals showing range stabilization

at or near 20 days of tracking (Figure S1; Table S1). Diurnal

comparisons were made by calculating two home-ranges for each

animal using all filtered data, recorded during the day (0600–

1800 hours) or night (1800–0600 hours). Differences between day

and night ranges were determined in two ways: (1) visual

determination of differences in location of animal movements

(e.g., distance from geographic features) and (2) differences in

estimated range size. Combined home-ranges were calculated for

each species by merging the 95% and 50% ranges of all individuals

to determine the total area covered.

Depth Zone Distribution
Bathymetry layers of each region were used to determine the

depth zones used by each tracked animal. The Torres Strait layer

was developed in 2008 at a resolution of 110 m [60] and the

Shoalwater Bay layer was developed in 2010 at 100 m resolution

[61]. Depths were measured at mean sea level and depth profiles

were calculated by interpolation of data points from a variety of

survey methods [60,61]. Each layer was stored in raster format,

reclassified into 5 m depth zones and converted to vector format to

allow overlay operations with home-range vector polygons. Total

individual ranges and the diurnal ranges of each individual (both

95% home-ranges and 50% core areas) were then overlaid on the

reclassified bathymetry layer and the total area over each depth

zone was calculated for each individual.

Results

Tracking Duration and Location Points
The dugongs were tracked for between 6 and 141 days (mean

= 47.8 days, SE = 11.7 days, n = 11) and foraging female turtles

were tracked between 27 and 148 days (mean = 106.5 days, SE

= 16.1 days, n = 10) (Table 1). Unfiltered data points ranged

between 100 and 2846 locations (median: 465 locations) for

dugongs and 196 and 2471 locations (median: 521 locations) for

turtles. After data filtering, dugong transmitters provided a per-

dugong median of 193 locations (range: 41–965 locations) and

turtle transmitters provided a per-turtle median of 210 locations

(range: 118–732 locations) over the total tracking time for each

individual. All transmitters provided roughly an equal number of

locations during the day and night after data filtering (Table S2).

One dugong from Shoalwater Bay (652642A – female) became

stranded during tracking with the transmitter unit still attached.

Location fixes and time-depth recorder (TDR) data suggested the

dugong started drifting with the current after 33 tracking days. All

location points after the approximate time of death were excluded

from the analysis. Inspection of the dugong carcass and photos of

the stranded animal did not reveal any apparent cause of death.

Home-ranges and Core Areas - Shoalwater Bay
Four of the five dugongs used relatively small ranges with 95%

home-range areas ranging from 15.9 km2 to 72.8 km2 (median:

49.5 km2) and 50% core areas ranging between 2.6 km2 and

21.3 km2 (median: 4.2 km2), encompassing a total area of

123.7 km2 (95%) and 28.5 km2 (50%) (Figure 1; Table S2). The

fifth individual (652636A – female) had a significantly larger range
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with a 95% home-range of 1444.6 km2 and 50% core area of

114.4 km2 and exhibited behavior consistent with a transient

animal.

All five dugongs were individualistic in their movements. The

four dugongs with small 95% home-ranges (,75 km2) were

resident within the northwest portion of Shoalwater Bay between

Clara Island and MacDonald Point for most of the tracking period

(Figure 2B,C). One of these dugongs (652631A – male, 141 days)

relocated approximately 90 km to the west near Clairview on 26

September 2012 (after two days at large) and spent the remainder

of its tracking time at this location.

Four dugongs used the existing Dugong Protection Area (DPA

[restrictions of gill netting; [33]]) and Great Barrier Reef Marine

Park (GBRMP) marine national park zone (green zone [all fishing

banned]) within Shoalwater Bay. Two of these animals (652643A

– female and 652642A- female) spent their entire tracked time

within the DPA and green zone, one relocated (652631A – male)

from the Shoalwater Bay DPA (some restrictions of gill netting

[33]) and green zone directly to the Clairview Bluff – Carmilla

Creek DPA and GBRMP conservation park zone (yellow zone),

thus all of its presumed foraging range was within the boundaries

of these zones. The fourth dugong (652636A – female) made

several large-scale movements around the region, moving

throughout Shoalwater Bay and making an exploratory loop-trip

90 km to the west to Carmilla and then back into Shoalwater Bay

over three days (Figure 2A). This animal spent two days in Port

Clinton, 75 km away along the eastern side of the Warginburra

Peninsula, before returning to Shoalwater Bay. Despite making

this larger scale movement, this dugong had a preferred core area

located at the northwest edge of Shoalwater Bay near Stanage

Point and most (60%) of its 95% home-range and core areas fell

outside DPA and GBRMP protection zones.

Five of the six green turtles tracked in Shoalwater Bay had very

small coastal ranges that were closer to shore than those of the

dugongs (Figure 2D,E,F). The sixth turtle (120641) was much

more mobile than the others and had a significantly larger range

(95%: 18.6 km2, 50%: 3.6 km2). This animal showed space use

similar to that of dugongs within the area (Figure 2F). Combined

turtle 95% home-range areas ranged from 1.4 km2 to 18.6 km2

(median: 3.5 km2) and 50% core areas ranged between 0.1 km2

and 3.6 km2 (median: 0.4 km2), encompassing a total area of

25.5 km2 (95%) and 5.1 km2 (50%) (Figure 1; Table S2). All six

individuals remained near the coast in the northwest portion of

Shoalwater Bay between MacDonald Point and Clara Island, close

to their points of capture. Each turtle displayed strong site fidelity

and had its own distinct core areas with very little overlap between

other individuals’ core areas. Four individuals (96777, 96780,

108469, and 108472) used mangrove areas and travelled up

coastal streams with all but one of these individuals (108469)

having core areas within these habitats. Location points along the

Figure 1. Home-range and core area size of tracked dugongs and green turtles. Comparison of 95% home-ranges (left) and 50% core areas
(right) between Shoalwater Bay, Australia dugongs (n = 5), green sea turtles (n = 6) and a transient dugong (n = 1) (top) with Torres Strait, Australia
dugongs (n = 6), reef associated green sea turtles (n = 3), and a transient green sea turtle (n = 1) (bottom) over the total tracking time of each animal.
Lines within boxes represent the median, boxes represent interquartile range, whiskers represent minimum and maximum values, and dots indicate
values for each individual. Note differences in scale on y axes.
doi:10.1371/journal.pone.0098944.g001
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shoreline suggested that all the turtles basked on land. One

individual (108469) spent 2.5 weeks near Sun Island before

relocating to the coast south of MacDonald Point. All turtles

stayed within the Shoalwater Bay DPA and green zone and only a

single turtle (108469) had a range that crossed outside of the DPA

boundary, but this only accounted for ,5% of this individuals

Figure 2. Shoalwater Bay dugong and green turtle spatial use. Dugong and green sea turtle tracking and foraging home-ranges within
Shoalwater Bay, Australia using the total tracking duration of each animal. Blue features indicate dugongs and red features indicate green sea turtles.
(A) Tracking locations and migratory path of the transient dugong (652636A). (B and C) Example home-ranges of dugongs (B: 652642A, C: 652640A
(left) and 652643A (right)). (D and E) Example home-ranges of green sea turtles (D: 96780 (left), 108469 (middle), and 120640 (right); E: 120641). (F)
Comparison of dugong and green sea turtle 50% core areas in northwestern Shoalwater Bay. Gray box indicates region displayed in maps B-F. For
maps with multiple individuals plotted, each individual’s 95% home-range is delineated by hatching at a different angle. Note differences in scale for
each map.
doi:10.1371/journal.pone.0098944.g002
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95% home-range and was still within the GBRMP green zone

boundary. For both the dugongs and the green turtles, spatial use

did not significantly differ in relation to geographic areas or

between species on a monthly basis (Figure S2).

Home-ranges and Core Areas – Torres Strait
The six dugongs tracked in Torres Strait used 95% home-

ranges ranging from 264.3 km2 to 1269.2 km2 (median:

1042.9 km2) and 50% core areas ranging between 54.3 km2 and

222.8 km2 (median: 112.6 km2), encompassing a total area of

3861.9 km2 (95%) and 640.9 km2 (50%) (Figure 1; Table S2).

These ranges were significantly larger than four of the Shoalwater

Bay dugongs, but not the transient dugong (652636A – female).

As in Shoalwater Bay, the movements of the Torres Strait

dugongs were individualistic with multiple core areas. Most

animals spent a proportion of their time at a foraging site between

Mabuiag and Buru Islands known as the Yarral Gumi Maza

region, which is generally over 5 meters deep (Figure 3A,D). Two

animals (641052A – male and 611057A – female) made

movements towards the southeast boundary of the Torres Strait

Protected Zone Joint Authority (PZJA) region, one individual

(641054A – male) spent the majority of its time around the Orman

Reefs, another animal (641055A – male) moved north to the coast

of Papua New Guinea (Figure 3E), and the remaining two dugongs

(641060A – female and 641058A – female) remained within the

Yarral Gumi Maza region. Only one dugong (641054A – male)

ventured over the reef flat and lagoon of the Orman Reefs, but this

animal spent the majority of its time away from reefs in deeper-

water areas and relocated off the east coast of Moa Island on 16

October 2010 where it remained for the remainder of the time it

was tracked (Figure 3D). A single dugong (641058A – female)

crossed into the existing Dugong Sanctuary; however, 85% of its

range was outside of the Sanctuary. One individual (641052A –

male) made an exploratory loop-trip of 80 km south to the Cape

York Peninsula and northern GBR over a period of two days. This

individual did not enter the GBRMP.

Three Torres Strait turtles used space very similarly to the

Shoalwater Bay turtles with 95% ranges between 4.8 km2 and

16.2 km2 (median: 5.6 km2) and 50% core areas between 0.6 and

1.6 km2 (median: 0.7 km2), encompassing a total area of 25.0 km2

(95%) and 2.9 km2 (50%) (Figure 1; Table S2). Similar to the

Shoalwater Bay turtles, the Torres Strait turtles showed strong site

fidelity; each individual had its own distinct core areas. However,

unlike turtles in Shoalwater Bay, which preferred coastal areas,

Torres Strait turtles were reef associated with three of four turtles

inhabiting the Orman Reefs and two of these individuals (70455

and 95892) remained on the northern side of Gariar Reef over

almost the entire tracking period. These turtles only made short

excursions (,1 km) over the reef flat and into the lagoon, spending

most of their time near the reef crest and reef slope (Figure 3C). A

single turtle (95889) was classified as transient, having a 95% range

of 749.1 km2 and 50% core area of 127.4 km2, similar to the

ranges of the Torres Strait dugongs (Figure 1). The transient turtle

(95889) also spent a significant portion of time within the Yarral

Gumi Maza region and northwest portion of Torres Strait towards

Papua New Guinea (Figure 3B). No turtles crossed into the

Dugong Sanctuary. For both the dugongs and the green turtles,

spatial use did not significantly differ in relation to geographic

areas or between species on a monthly basis (Figure S3).

Diurnal Comparisons
There was no overall trend in differences in the size of dugong

95% home-ranges and 50% core areas between day and night.

Conversely, green turtles in Shoalwater Bay and reef associated

turtles in Torres Strait had more restricted ranges during the

night, with significant decreases of up to 76% in nighttime home-

ranges and core areas (Table S2). Dugongs and turtles in both

regions did not show major differences in the geographic locations

of their home-ranges and core areas between day and night.

Depth Zone Distributions - Shoalwater Bay
Within Shoalwater Bay, the tracked dugongs and turtles

frequented shallow water areas between 0–5 m (Figure 4). Turtles

were found almost exclusively in intertidal areas with all core areas

found in depth zones less than 5 m and over tidal flats, within

mangrove zones, or up tidal creeks (Figure 2D,F). Only three

turtles (108469, 108472, and 120641) had 95% home-ranges

extending over regions .5 m in depth and these deeper areas

accounted for only a small percentage of their ranges (mean

= 8.3%, SE = 4.6%). No turtles were found in waters .10 m

deep. Resident dugongs were found predominantly in subtidal

zones with around 80% of their 95% and 50% ranges found in

depth zones between 0–5 m (Figure 4). The remainder of the

dugong ranges were in the 5–10 m zone; some individuals

occasionally ventured over deeper areas up to a maximum of

20 m in depth. The transient dugong (652636A – female) was

found over a range of depth zones between 0–20 m, with roughly

equal portions of its range found over each 5 m depth zone

(Figure 4). None of the dugongs had core areas over the tidal flats

preferred by turtles (Figure 2F). There were no diurnal differences

in the depth preferences of dugongs or turtles in Shoalwater Bay.

Depth Zone Distributions - Torres Strait
Torres Strait dugongs and the transient turtle had similar

distributions over depth zones. Animals were found mostly over

deeper-water areas with depths of 5-15 m. Core areas were

centered around the 5-10 m depth zone with 75% of each

individual’s range lying within these depths. Over half of the 95%

home-range of two dugongs (641057A – female and 641052A –

male) were over depths .10 m, with a maximum depth of 25 m.

Reef associated turtles showed preference for regions with depths

between 0–10 m, with .90% of their 95% ranges over these

depths (Figure 4). All Torres Strait animals displayed significantly

different depth zone preferences to animals in Shoalwater Bay

with dugongs and turtles found over deeper depth zones in Torres

Strait. Diurnal comparisons showed no differences in the depth

preferences of dugongs, reef associated turtles, or the transient

turtle.

Discussion

This study is the first to simultaneously track dugongs and green

sea turtles within their foraging grounds to compare the habitat

use of these two sympatric megaherbivores. Fast-acquisition GPS

tracking of dugongs and green turtles confirmed that they use

similar areas in two separate regions where they co-occur with a

significant amount of overlap in their ranges, despite most of the

turtles using much smaller areas than the dugongs. However, at

both locations some turtles showed patterns of space use similar to

the dugongs. These results suggest that spatial management could

be systematically designed to co-manage these species using fine-

scale satellite tracking to identify key areas of habitat use to

supplement survey data. Satellite tracking also showed that

management plans may need to be designed to accommodate

specific differences in range sizes and usage of different depth

zones specific to each region.
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Spatial Relationships and Regional Comparisons
Dugong range sizes and depth zone preferences differed

between localities with dugong ranges in Torres Strait being

much larger than those in Shoalwater Bay and other regions

where they have been tracked (e.g., Hervey Bay and Cleveland

Bay, Australia; Lease Islands, Indonesia), by several orders of

Figure 3. Torres Strait dugong and green turtle spatial use. Dugong and green sea turtle tracking and foraging home-ranges within Torres
Strait, between the northern tip of Australia and Papua New Guinea using the total tracking duration of each animal. Blue features indicate dugongs
and red features indicate green sea turtles. (A) Comparison of dugong and green sea turtle 50% core areas in Torres Strait. (B) Home-range of the
transient turtle (95889). (C) Home-ranges of reef associated turtles (inset is a close up of Gariar Reef where two turtles were resident (70455 and
95892). (D) Example home-ranges of dugongs (left: 641058A, middle: 641054A, right: 641052A). (E) Tracking locations and migratory path of the
dugong that traveled to Papua New Guinea (641055A). PZJA = Protected Zone Joint Authority. For maps with multiple individuals plotted, each
individual’s 95% home-range is delineated by hatching at a different angle. Note differences in scale for each map.
doi:10.1371/journal.pone.0098944.g003
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magnitude (average range from other regions: 24.0–63.6 km2; this

study: Torres Strait; median = 942.6 km2, Shoalwater Bay;

median = 60.6 km2) [41,62,63]. Dugongs in Torres Strait also

preferred deeper-water habitats (.5 m), rather than the tidal and

shallow sub-tidal habitats observed in Shoalwater Bay (this study)

and other areas (e.g., Moreton Bay, Shark Bay, and Hervey Bay,

Australia) [64,65].

In contrast, most of the green sea turtles (n = 8) we tracked used

small, restricted ranges in relatively shallow water, with high site

fidelity, and limited nighttime ranges; a result similar to green

turtles in other regions [66–68]. However, the presence of green

turtles displaying behavior similar to dugongs (n = 2) in both

regions suggests that some green turtles may be influenced by

environmental factors and geographic features in a similar way to

dugongs. These differences and similarities between species and

regions may be associated with the relative availability of deeper-

water and shallow-water habitat, the presence of reefs, the location

and size of available seagrass meadows, and the regional dugong

and turtle population sizes.

Torres Strait provides considerable areas of deeper-water

habitat between 5 and 15 m in depth with shallow-water areas

accounting for only a small percentage of available area which is

primarily restricted to reef-top zones [60]. Additionally, most

seagrass in Torres Strait is found within these deeper-water zones,

which support an estimated 13,425 km2 to 17,500 km2 of seagrass

habitat, the largest continuous seagrass area in Australia [69–71].

Reef-top areas also support productive seagrass pastures, but at a

significantly smaller scale (e.g., ,95 km2 at the Orman Reefs)

[72,73]. Dugong access to reef-top seagrass meadows is limited by

tides [74–76] whereas the deeper-water seagrass is continuously

available.

In contrast, along the coastline of eastern Australia south of

Cooktown, which includes Shoalwater Bay, most seagrass

meadows are much smaller (range: 55–1843 km2), primarily

restricted to coastal tidal and sub-tidal flats [77] in shallow,

sheltered bays, and thus fragmented into multiple, disjunct

pastures, creating a much smaller area of available habitat for

dugongs and turtles. Shoalwater Bay supports the largest area of

seagrass (130 km2) in the southern GBR [77,78]. This pattern of

seagrass distribution may explain the smaller range sizes of the

dugongs tracked in Shoalwater Bay and in other studies [41] along

with the shallower depths used by both species.

Spatial Zoning and Regional Management
The regional differences in the spatial patterns of dugongs and

green sea turtles within Torres Strait and Shoalwater Bay have

significant implications for the management and conservation of

these two species. In Torres Strait, dugongs and green sea turtles

cross jurisdictional boundaries, and they cross these boundaries in

all directions. This situation requires management to be co-

developed with neighboring regions to enable protection through-

out each species’ range. This approach should be used to extend

the community based management planning, currently developed

only at the scale of the sea-country of individual communities [29].

In contrast, dugongs and green turtles along the GBR have much

more restricted ranges and do not cross international boundaries

while on their feeding grounds. Thus, coordinated management

decisions at state and federal levels are appropriate for most of the

life cycles of both species. However, because some GBR green

turtles cross international boundaries during breeding migrations

[79] and dugongs occasionally make individualistic large-scale

movements to foraging grounds outside the GBR [41], manage-

Figure 4. Depth zone use of tracked dugongs and green turtles. Depth comparison of 95% home-ranges and 50% core areas between
Shoalwater Bay, Australia dugongs (n = 5), green sea turtles (n = 6), and a transient dugong (n = 1) (top) with Torres Strait, Australia dugongs (n = 6),
reef associated green sea turtles (n = 3), and a transient green sea turtle (n = 1) (bottom).
doi:10.1371/journal.pone.0098944.g004
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ment plans also need to incorporate the likelihood of cross-

jurisdictional movements.

The overlap in the home-ranges of dugongs and green turtles

shows that protection measures, such as MPAs, no-take reserves,

and seasonal spatial closures, could be developed for either species

and, by default, spatial protection would encompass at least a

portion of the range of the other. However, focusing conservation

efforts on the space use of both species in a coordinated

management scheme may be a more cost-effective approach as

dugongs and green turtles appear to have different preferences for

core areas and depth zones which need to be taken into account

when designating protection zones. Also, co-management of

dugongs and green turtles may act as an umbrella for many other

species that share these habitats within the GBR/Queensland

coast and Torres Strait.

Under current Australian national legislation, green turtles are

listed as threatened species, while dugongs are not. Because of this,

the triggers for significant impact are easier to meet for green

turtles than they are for dugongs. This difference enables dugong

management to be triggered by green turtle management.

Alternatively, the broad-scale spatial distribution of dugongs is

much better known than for green turtles [80] as dugongs being

larger are more reliably detected using aerial-surveys than turtles,

which are also difficult to identify species from the air. Thus,

marine spatial management in Australia is generally better

developed for dugongs than it is for green turtles. Through

complimentary co-management of both species aided by satellite

tracking of individual animals, dugong spatial management could

be used to designate regions for protection that are important to

both species, while green turtles may act as a catalyst for setting

other conservation and environmental management plans into

action.

Efficacy of Existing Protection Zones
The efficacy of current protection zones also appears to differ

among regions, although our conclusion is tentative because of our

small sample sizes of tracked animals. The existing Torres Strait

Dugong Sanctuary was only used by a single tracked dugong and

accounted for less than 15% of this individual’s total range. This

lack of spatial use of the Dugong Sanctuary by our tracked turtles

and dugongs _ENREF_57supports conclusions based on extensive

aerial surveys that the Sanctuary should be extended [29]. Spatial

closures for dugongs and green turtles in the Torres Strait region

would be more effective if the current Dugong Sanctuary also

protected green turtles and sanctuary areas were extended;

negotiations are currently progressing to this end.

In contrast, existing protection areas in Shoalwater Bay appear

to be adequate for the protection of dugongs and turtles within the

region, with all tracked turtles and the majority of dugongs found

within protection zone boundaries. However, the effectiveness of

these reserves is unknown if the geographic distribution of food

resources changes due to environmental and anthropogenic factors

or if local dugong and turtle populations increase. Adaptive

management of the region in addition to combined management

of terrestrial and marine systems will be required to maintain the

effectiveness of these protected areas, especially as the human

population increases in Australia. Additionally, identification of

migratory corridors, dugong breeding grounds, and source/sink

habitats will further increase the efficacy of protection.

More broadly, these results show that fine-scale tracking of

individual animals can provide important information on where

animals travel and where their preferred habitats lie. This

information can then aid in the delineation of MPA boundaries

and assess the efficacy of existing MPAs that were created using

other approaches such as density surveys, habitat mapping, and

expert opinion.

Conclusions

We have demonstrated the potential of fine-scale satellite

tracking for improving species co-management, increasing the

efficacy of existing MPAs and other protected zones, and

identifying new areas for protection. Our results are preliminary

and cannot be applied at the population level as sample sizes for

both species were low, only two turtles classified as transient were

tracked, and animals were only tracked during a single season in

each location. Distribution patterns may be markedly different

between seasons and/or years, especially in relation to changes in

seagrass and algae distributions. Continued monitoring and larger

sample sizes are required to further inform this evidence-based

approach. It should also be noted that range sizes for individuals

with tracking durations less than 20 days may be slightly larger or

smaller than what we have shown due to fluctuations in range size

correlated with tracking durations. However, the general areas

they inhabit can be captured with short tracking periods providing

useful information for comparisons between species. The findings

of the present study have broad implications for the management

of other sympatric species, mobile species dependent on benthic

environments of variable quality, and predator-prey relationships.

Examples of other co-occurring species that may benefit from this

approach include manatees and green turtles; tiger sharks,

dugongs, and sea turtles; and dolphin species which form mixed-

species assemblages.
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