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Abstract

The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal
ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of
roughly 0.3–0.4uC per decade over the past 30 years. It is unclear what impact future warming will have on pathogens
currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different
statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted
Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to
high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available
datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the
probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of
characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological
sensitivity exist.
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Introduction

Vibrio spp. bacteria are a threat in many coastal aquatic

ecosystems around the world [1–4]. In the Chesapeake Bay, the

number of annual human Vibrio cases of infection has nearly

doubled in the past decade [5,6]. Furthermore, Vibrio spp. is

frequently detected in shellfish harvested for human consumption

during the warm summer months [7]. In general, this seasonality

correlates with peak incidence of Vibrio disease caused by Vibrio

spp. bacteria in many coastal regions [8–10]. The probability of

finding various Vibrio spp. in the Bay varies spatially and

seasonally, and researchers have modeled these probability

patterns as a statistical function of surface water temperature

and salinity [11–16]. These temperature and salinity-based Vibrio

models have demonstrated skill for available datasets in the Bay

and structurally similar statistical models have been applied to

predictions of V. cholerae, V. vulnificus, and V. parahaemolyticus in

other regions [1,4,17,18]. The environmental range of V. vulnificus

can vary by region, but in general the bacteria are found in waters

with salinity between 5 and 25 (practical salinity units) and

temperature above 15uC [12,19–21].

Recent studies show that surface water temperatures in the

Chesapeake Bay have warmed by 0.3–0.4uC per decade over the

past 30 years [22,23]. This trend has resulted in an expansion of

the warm season period during which water temperatures are high

enough to support V. vulnificus growth: the onset of spring time

temperatures (.15uC) has advanced by nearly three weeks [22].

Salinity patterns are also sensitive to climate change, as changes in

springtime flow of the Susquehanna River - the primary

freshwater input to the Bay - can influence salinity throughout

the Bay over the V. vulnificus growth season. The consensus of

climate models is that there will be a rise in winter and spring

precipitation in the northern portion of the watershed [24,25]

implying an increase in January to May Susquehanna River steam

flow. A study by Gibson and Najjar (2000; [26]) showed that an

increase in the January-May Susquehanna stream flow could

potentially decrease winter and springtime salinity values by 7% in

the upper Chesapeake Bay.

Even though there is considerable uncertainty in the magnitude

of projected warming and freshening of the Chesapeake Bay [27],

it is valuable to understand how a temperature and salinity

sensitive pathogen like V. vulnificus might respond to observed and

projected trends in these environmental parameters. Here we

examine three statistical models of V. vulnificus probability of

presence that demonstrate skill in predicting V. vulnificus probabil-

ity of presence in Chesapeake Bay. All three models use water

surface temperature and salinity as the only predictors, but they

differ in their structure and/or in the data used for training and

evaluation. One model is the generalized linear model (GLM) of

Jacobs et al. (2010; [12]) trained on data collected in the

Chesapeake Bay in 2007 and 2008, the second model is also a
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GLM but trained on a 2011 and 2012 data set, while the third

model is generalized additive model (GAM) also trained on the

2011–2012 data. The latter two models are from Urquhart et al.

(2014; [15]), where surface temperature and salinity were used to

model both the probability of presence and concentration Vibrio

spp. in the upper Chesapeake Bay. Here we focus just on

probability models to enable comparison with Jacobs et al. (2010;

[12]), who considered only a probability model. Furthermore, we

can evaluate the effect that these differences in structure and

training data have on modeled estimates of V. vulnificus probability

under current climate conditions, which is relevant for pathogen

risk assessment and early warning, and consider the implications of

these differences for projected V. vulnificus risk under climate

change.

Methods

The Chesapeake Bay Estuary, adjacent to the Maryland,

Delaware, and Virginia coastline, covers an area of approximately

11,500 km2 and is characterized by a sharp north-to-south salinity

gradient. Salinity ranges from 0–6 in the northern Bay to 18–30

near the mouth of the Bay. Surface water temperatures follow a

seasonal cycle, ranging from local wintertime temperatures of

20.5uC to summertime temperatures of 31uC [28]. The

Susquehanna River, the largest and northernmost tributary,

accounts for roughly 45% of the yearly freshwater inflow into

the Bay. This paper focuses on the upper portion of Chesapeake

Bay (Fig. 1). The upper region of the Bay was selected to avoid

model predictions outside of the original training data salinity

range (salinity .14).

The climatological analysis presented here used historical

environmental data collected by the Chesapeake Bay Data

Program [29]. Bi-monthly surface water temperature, salinity,

and chlorophyll a data were obtained for 16 main stem and

tributary monitoring stations (Fig. 1) collected from 1985 through

2013. For salinity, the absolute difference between observed

salinity and the V. vulnificus optimal salinity value of 11.5 [12] was

calculated, and use of deviation from this was used as an

explanatory covariate. The 16 monitoring stations were selected

based on their geographic location serving as a representation of

the upper Chesapeake Bay. In situ data were used to delineate

three different salinity zones: upper-upper Bay (hereafter: ’’upper

region’’), middle-upper Bay (hereafter: ’’mid region’’), and lower-

upper Bay (hereafter: ’’lower region’’). These stations cover the

upper main-stem Bay as well as tributary locations, with six

stations in the upper region, five stations in the mid region, and

five stations in the lower region. Observational data were averaged

at monthly intervals for each zone resulting in 337 data records for

the upper region and 342 data records for both the mid and lower

regions.

These salinity and temperature data were applied to the three

statistical V. vulnificus probability models available for Chesapeake

Bay:

1. NOAA_GLM: The generalized linear model (GLM) of Jacobs

et al. (2010; [12]): [z(V.v) = b0 + b1Temp + b3|SalnOpt|, where

b0 is the intercept, bn is the regression coefficient for the

independent covariates, Temp is daily surface temperature, and

|SalnOpt| is the absolute distance from optimal salinity of 11.5],

which was trained using 235 V. vulnificus samples collected

during the months of July and October of 2007, and April,

July, and October of 2008 and were analyzed by the NOAA

Chesapeake Bay Office.

2. JHU_GLM: The GLM of Urquhart et al., (2014; [15]) of the

same structural form as the NOAA_GLM [z(V.v) = b0 +
b1Temp + b3|SalnOpt|] trained using 148 V. vulnificus, surface

temperature, and surface salinity samples collected in the upper

Chesapeake Bay during the months of July and September of

2011 and March through June of 2012 (Table S1; [15]).

Samples were collected by The Johns Hopkins University

(JHU) in collaboration with the Maryland Department of the

Environment and NASA and were processed at the University

of Maryland College Park.

3. JHU_GAM: A generalized additive model (GAM; [30]) trained

and evaluated using the same data that were used for

JHU_GLM: [z(V.v) = b0+s1(Temp)+ s2(Saln), where si(xi) is a

parameter of the smoothing function, and Saln is the salinity

value].

We included a GAM in addition to the two structurally identical

GLMs because GAM models allow a more flexible regression

modeling of the transformed response that combine the predictor

variables in a nonparametric manner [31]. The NOAA_GLM and

JHU_GLM models have the same structure but vary in the

training data, whereas the JHU_GLM and JHU_GAM models

use the same training data but vary in the structure of model. All

models were implemented in logistic form using a ‘‘logit’’ link

function for an optimal prediction point and were trained using

observational bacteria data transformed to binary presence/

absence. Probability of V. vulnificus presence was calculated using

p = ez/(1+ez). Diagnostics for each model were performed using

Akaike’s Information Criterion (AIC) and accuracy (ACC) in an

out-of-bag (OOB) cross validation [32]. ACC is defined as ACC

= (TP+TN)/(P+N) where TP is true positive, TN is true negative,

P is the number of presence instances, and N is the number of

absence instances.

To explore sensitivity of the V. vulnificus models to temperature

and salinity, we used a range of surface water temperature (0–

40uC) and surface salinity (0–13) values as independent model

input. Here the range of model input extends past the range of the

in situ temperature (8–31uC) observations, and is constrained to

the range of the surface salinity (0–14) observations that were used

Figure 1. Map of the study area, showing contours of average
surface water salinity. Dark markers represent in situ monitoring
stations used for each of the subregions in this study: upper (star), mid
(circle), and lower (square).
doi:10.1371/journal.pone.0098256.g001
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in the training of the two JHU models. Additionally, historical

temperature and salinity data were tested as model input, enabling

identification of V. vulnificus climatology and seasonal trends. To

further assess the geographic distribution of the predicted V.

vulnificus probability for each method, geospatially-interpolated

satellite-derived surface temperature and surface salinity [33,34]

were used to map spatially complete estimates of probability

throughout the upper Bay. Interpolated satellite estimates were

developed using monthly, level-2 Moderate Resolution Imaging

Spectroradiometer (MODIS) surface water temperature (MOD

28) and ocean color (Rrs 412–678) products.

All statistical computations were carried out in the R Statistical

Environment version 2.14, using the ‘mgcv’ and ‘stats’ packages,

on an Intel Xeon W3580 Processor, 3.33 GHz machine with 12

GB RAM. Computation time for all statistical models was less

than one minute.

Results and Discussion

For model evaluation, goodness of fit and predictive skill for the

JHU models were determined using AIC and ACC indices. AIC

results indicated that the JHU GAM (145.9) offered better model

fit than the JHU GLM (160.4), but performance differences

between models were small relative to measurement uncertainty.

NOAA GLM model fit using the NOAA training dataset yielded

an AIC of 164.3 [12]). A direct comparison of model fit of could

not be calculated due to lack of access to NOAA GLM training

data. We stress that the difference in training data between the

NOAA and JHU models is the primary reason for differences

between NOAA_GLM and JHU_GLM, as the models are

structurally identical. To predict bacterial presence, selection of

an optimal prediction point was required. Rather than setting a

prediction point at 0.5 arbitrarily, the prediction point was based

on three performance indices: true positive rate, true negative rate,

and ACC, yielding an optimal threshold of 0.4 for V. vulnificus. To

determine the prediction skill of each model, ACC was calculated

using the JHU validation dataset (ACC: 0.47, for NOAA GLM,

0.59 for JHU GLM, and 0.60 for JHU GAM). The AIC and ACC

values indicated that the JHU models performed significantly

better than a null model that only included seasonality as a

predictor.

Figure 2 shows the relationship between temperature, salinity,

and the mean estimate of predicted V. vulnificus probability for each

of the tested models, with likelihood levels plotted as contour

curves. NOAA GLM (Fig. 2a) exhibits a sharp increase in V.

vulnificus probability with increasing temperatures along the axis of

optimal salinity (11.5). Similarly, JHU GLM (Fig. 2b) exhibits a

steady increase in probability with higher temperatures, though

the rate of change with temperature is less steep than NOAA

GLM. In contrast to the GLMs, JHU GAM (Fig. 2c) shows a

probability maximum dependent on temperature, indicating a

temperature optimum V. vulnificus growth above which probability

gradually declines. Figure 2d offers an alternative view of

predicted V. vulnificus probability with temperature, at optimal

salinity, including temperature observations during in situ bacteria

collection. Furthermore, the wide range of observed temperatures

Figure 2. Contour plots of V. vulnificus probability with temperature and salinity for (a) NOAA GLM, (b) JHU GLM, and (c) JHU GAM.
Black dots represent monthly average (April-July) of in situ conditions; black lines represents in situ trend line, and dashed line represents shift in
present day temperature and salinity, (d) Plot of temperature regressed against V.vulnificus probability at 11.5 salinity for each empirical method.
Green circles represent the range of temperature observations during bacterium sampling.
doi:10.1371/journal.pone.0098256.g002
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confirms that the declining GAM probability above optimal

temperature is a valid model response and not an issue of limited

observations at high temperature.

These differences in model response also have implications for

retrospective or near real-time estimation of risk of V. vulnificus

presence. Using a 27-year in situ record of temperature and

salinity in the upper Chesapeake Bay, we estimated V. vulnificus

monthly probability of presence according to each statistical

model. Fig. 3 shows the climatology of surface water temperature

and mean estimate model predictions in each region of the upper

Bay for March through November. A southward increase in

predicted probabilities for all statistical methods during summer

months suggests that distance from optimal salinity plays a role in

the spatial distribution of V. vulnificus presence. Predicted

probabilities are likely lower in the upper region due to decreased

salinity and larger deviation from optimal salinity. Seasonal

patterns in all regions indicate that NOAA_GLM and JHU_GLM

predict highest probabilities during the warmest summertime

months. JHU_GAM exhibits a bimodal seasonal pattern with

peaks in early and late summer across all regions. These

Figure 3. Monthly climatology of temperature and V. vulnificus probability for each method in the upper (a), mid (b), and lower (c)
regions of the Chesapeake Bay. Peak temperature observations by year versus V. vulnificus probability for each method in the upper (d), mid (e),
and lower (f) regions of the Chesapeake Bay. Trend lines are included for each method’s observations.
doi:10.1371/journal.pone.0098256.g003
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JHU_GAM results are consistent with the temperature depen-

dency shown in Fig. 2c.

The difference in model sensitivity to temperature has

implications for characterizing interannual variability in risk.

Fig. 3d–f show mean predicted V. vulnificus probability for the

upper, middle, and lower portions of the study area plotted against

annual peak monthly SST for the available historical record. In all

three subregions, NOAA_GLM predicts that peak probabilities

were highest in warmer years, while JHU_GAM predicts the

opposite and JHU_GLM falls in between. We emphasize that

these are the mean probability estimates for each model, and that

there may not be statistically significant differences between model

predictions in any given year. Nevertheless, mean estimates are

commonly used to communicate risk and to project trends, so the

fact that two comparably high performing models – NOAA_GLM

and JHU_GAM – yield opposite mean estimates of the

relationship between warm summers and V. vulnificus probability

is relevant.

The differences in these model response surfaces also have clear

implications for projections of V. vulnificus probability under

climate change. As a simple demonstration, we consider the

consensus prediction of warming and freshening of the Bay

(dashed line in Figure 2 a–c). NOAA_GLM projects steady or

increasing probabilities: freshening moves conditions away from

the salinity optimum but this effect is offset by increases in

predicted probability with rising water temperatures. The

JHU_GLM shows a similar pattern but with lower sensitivity to

changing environmental conditions. In contrast, warming only

increases predicted probability of V. vulnificus presence in

JHU_GAM for relatively cool temperatures, representative of

spring or fall conditions. Peak summertime temperatures are

already above the temperature optimum in this model, so further

warming results in a predicted decline in peak summertime V.

vulnificus probability.

While we cannot presently determine which sensitivity pattern is

correct—the JHU_GLM and NOAA_GLM increase with higher

temperatures or the JHU_GAM decline under warmest condi-

tions—the JHU_GAM behavior might indicate that present-day

summertime water temperatures are already above the optimal

temperature for V. vulnificus growth in Chesapeake Bay. Alterna-

tively, the result might be understood in the context of previous

studies that have shown Vibrio dependence on zooplankton due to

attachment and/or Vibrio’s chitinoclastic activity [35,36]. Unfor-

tunately we do not have adequate co-located measurements of

zooplankton and V. vulnificus to include zooplankton in a predictive

model. However, we do find that the climatology of Chesapeake

Bay Program in situ chlorophyll a concentrations, which generally

correlate with zooplankton presence, exhibits a bimodal seasonal

pattern with a slight lead over the JHU GAM predicted V. vulnificus

peaks (Fig. 4).

To examine the geographic extent of each methods’ predicted

V. vulnificus probability, monthly interpolated satellite surface water

temperature and surface salinity products were used to create

spatially complete probability hind-casts for 2012 in the upper Bay

(Fig. 5). Consistent with results shown in Fig. 3, these maps show

highest predicted probability towards the south of the analysis

region, where salinity values are closest to optimum.

NOAA_GLM and JHU_GLM both show the most widespread

zones of high probability in the warmest summer months, while

JHU_GAM predicts higher probabilities at the beginning and end

of the warm season. Interesting spatial structures are also apparent

in these maps. For example, NOAA_GLM predicts slightly

Figure 4. Monthly climatology of Chlorophyll a and V. vulnificus probability for each method averaged over the entire upper
Chesapeake Bay.
doi:10.1371/journal.pone.0098256.g004
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elevated V. vulnificus probabilities in the eastern waters of the

Chesapeake Bay during warmer months, while JHU_GAM

predicts high probability zones in the western Bay during months

with lower overall probability (Fig. 5). These patterns likely reflect

the Bay’s two-layer physical circulation scheme in which we see

fresher surface waters along the western shore and saltier waters

along the eastern shore of the Bay. The predictions of statistical V.

vulnificus probability models compared in this study clearly differ in

the implied relationships between the structure of this circulation

and the location of high V. vulnificus risk areas.

Conclusions

In summary, this study presents a comparison of three statistical

ecological habit models for estimating the probability of V.

vulnificus presence in the upper Chesapeake Bay. We examined

individual model sensitivity to climatic variability and change

within the upper Bay by assessing model response to a range of

temperature and salinity values. We find that the three models

differ systematically in the predicted response of V. vulnificus

probability to high temperatures in the upper Chesapeake Bay.

These results indicate that more data are required to constrain

estimates of climate sensitivity of V. vulnificus in Chesapeake Bay:

statistical models are limited by the paucity of publicly available

data from V. vulnificus collections and co-located measurements of

ecologically relevant variables, and process-based models would

require further research on the V. vulnificus life cycle in the Bay.

Our results also caution against predicting or projecting climate-

based changes in V. vulnificus exposure risk on the basis of the mean

predictions of existing statistical models, as skillful and statistically

indistinguishable models differ systematically in predicted V.

vulnificus sensitivity to rising surface water temperature, even

within the range of environmental conditions under which the

models were trained.

The challenges facing V. vulnificus modeling in Chesapeake Bay

are not unique. Indeed, predictive capabilities for climate

sensitivity of many pathogens are limited to statistical models

based on scarce data. Other recent studies [37–38] emphasize that

the inadequacy of available data hamper climate change

projections for a diversity of waterborne pathogen systems in

many regions. In the case of V. vulnificus in Chesapeake Bay we

have a specific example of closely related modeling efforts that

suggest systematically different impacts of climate change due to

differences in model structure—i.e., the difference between

JHU_GLM and JHU_GAM—and training data—i.e., the differ-

ence between JHU_GLM and NOAA_GLM. These kinds of

structural comparisons of statistical models, however, are not

always performed in studies of climate sensitivity in ecological

systems. The results of this study suggest that such model

comparisons can be quite important when evaluating uncertainty

in climate-based predictions and projections.

Supporting Information

Table S1 In situ training dataset used for JHU_GLM and

JHU_GAM likelihood models.
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