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Remotely sensed resilience of tropical forests
Jan Verbesselt1*, Nikolaus Umlauf2, Marina Hirota3,4,5, Milena Holmgren6, Egbert H. Van Nes3,
Martin Herold1, Achim Zeileis2 and Marten Sche�er3*
Recent work suggests that episodes of drought and heat can
bring forests across climate zones to a threshold for massive
tree mortality1. As complex systems approach a threshold for
collapse they tend to exhibit a loss of resilience, as reflected in
declining recovery rates from perturbations2. Trees may be no
exception, as at the verge of drought-induced death, trees are
found to be weakened in multiple ways, a�ecting their ability
to recover from stress3,4. Here we use worldwide time series
of satellite images to show that temporal autocorrelation, an
indicator of slow recovery rates5, rises steeply as mean annual
precipitation declines to levels known to be critical for tropical
forests. This implies independent support for the idea that
such forests may have a tipping point for collapse at drying
conditions. Moreover, the demonstration that reduced rates of
recovery (slowing down) may be detected from satellite data
suggests a novel way to monitor resilience of tropical forests,
aswell as other ecosystemsknown to be vulnerable to collapse.

An overview of tree mortality events across continents and
climate zones suggests that drought and elevated temperatures can
bring forests to a threshold for massive die-off1. For tropical forests,
there is an extra dimension to such mortality events, as they could
tip forests into a fire-dominated savannah state fromwhich recovery
is difficult. Different lines of evidence point to such a scenario. First,
evidence for bistability of savannah versus forest comes from a series
of recent remote sensing and modelling studies6,7. Second, field
experiments (through throughfall displacement) have confirmed
that drought can invoke mortality among large canopy trees in
Amazonian8,9 and Indonesian forests10. Third, a long-term fire
experiment in the southeastern Amazon recently showed that in
dry years, tree mortality rises sharply, driving the system towards
an alternative self-stabilizing fire-dominated savannah state11.

What precisely causes trees to succumb so massively across the
globe during droughts and heat waves remains a topic of debate12,
but the emerging view is that, rather than studying isolated elements
such as hydraulic failure or carbon starvation, we need a focus
on systemic resilience of trees3. A detailed ground study13 recently
revealed how tree death involves a loss in canopy evaporative area,
sapwood area, carbon uptake and hydraulic capacity, embolism
and hydraulically limited canopy conductance, altogether making
it increasingly difficult to bounce back from the effects of a
drought, as reflected in a loss of recovery rates of foliage after a
drought. This is in line with the finding that in Amazon trees,
drought leads to reduced maintenance and defence investment
undermining resilience4.

This raises the question if we could somehow detect low
resilience as an indicator of the risk of forest mortality. Resilience
can be characterized by the rate at which a system recovers

from perturbations. Experimental perturbations are a good way to
detect such slowness, but are necessarily limited in scale. On the
other hand, natural systems are continuously subject to stochastic
perturbations resulting from fluctuations in the weather and other
factors. The resulting fluctuations in the state of a system can reflect
slowing down through an increase in temporal autocorrelation, in
the sense that the states of the system, on subsequent moments in
time, become more correlated2,5. Such slowing down does not result
in less change (and thus in less variance), but rather in slower change
over time, triggering the increase in temporal autocorrelation2,5.

Slowing down in the vicinity of a critical threshold has been
observed across a wide range of complex systems2,14–17. To see if
there is evidence of slowing down in forests as conditions become
critical, we analysed patterns of temporal autocorrelation in satellite
data from intact evergreen tropical forests in South America, Africa
and Southeast Asia. We do not aim to detect change in slowness
over time, as this requires very long time series covering a period of
gradual environmental change18. Instead, we analyse spatial patterns
of inferred slowness. As an indicator of the state of the forest
we used Normalized Difference Vegetation Index (NDVI). The
NDVI is commonly used as a proxy of plant activity, biomass and
cover to assess vegetation dynamics from space19. We used viewing-
angle-correctedmeasurements and selected data tominimize cloud-
and haze-induced errors. Also, as an independent indicator of the
condition of forests we analysed patterns in the Vegetation Optical
Depth (VOD), a measure of water content in aboveground biomass
derived from remotely sensed RADAR data20. As an indicator of
slowing downwemeasured temporal autocorrelation frommonthly
NDVI and VOD time series after removing the seasonal cycle
and trends. We used additive regression models to simultaneously
assess the relationship of temporal autocorrelation to mean
annual precipitation, mean annual temperature and soil quality,
as well as potential confounding factors (tree cover, seasonality of
vegetation, temporal autocorrelation of precipitation, percentage
of missing data due to cloudiness) and spatial coordinates (to
account for potential unobserved spatially correlated drivers). A
detailed description of the methods and the data is given in the
Supplementary Information.

We find that temporal autocorrelation in NDVI and VOD
on all three continents increases markedly when mean annual
precipitation falls below around 1,500mm (Fig. 1). Interpreting
temporal autocorrelation as an indicator of critical slowing down2,
this is consistent with the idea that under such conditions the tall
canopy trees of intact forests approach a tipping point for mortality.
The relationship between mean annual precipitation and apparent
slowness we find is closely in line with the relationship between
resilience and rainfall inferred indirectly from the global probability
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Figure 1 | Slowness of dynamics of intact tropical forest as a function of mean annual precipitation on di�erent continents. Slowness is reflected by
temporal autocorrelation of NDVI (MODIS 2000–2011) and mean annual precipitation (MAP) from TRMM data of 2000–2011. The black solid lines
represent the mean curve from an ensemble of six curves (that is, three detrending methods and two indicators of temporal autocorrelation, see
supplements). The grey shaded area highlights the range of the six individual ensemble members. The distribution of the available MAP observations is
indicated by the density of the vertical lines above the x-axis.

density of forests6. The probability of finding tropical forest drops
steeply around a mean annual precipitation of 1,500mm (refs 6,21),
and regrowth rates of secondary neotropical forests fall around the
same threshold22.

Temporal autocorrelation of NDVI and VOD also tends to
increase with mean annual temperature (the only exception being
the NDVI pattern for Africa, Supplementary Figs 4 and 5). These
patterns suggest that resilience of tropical forest may be reduced at
higher temperatures, consistent with the finding that higher daily
minimum temperatures are associated to decelerating growth rates
in tropical forest trees23. Indeed, worldwide cases of massive tree
mortality are associated systematically not only to drought but also
to elevated temperatures1.

In contrast to these striking patterns of temporal autocorrelation
across continents, we find no consistent relationships between
precipitation levels or temperature and the standard deviation
of NDVI and VOD fluctuations (instead standard deviation is
mainly linked to seasonality, see Supplementary Figs 6 and 7). This
may seem at odds with the idea that slowing down can cause
variance to increase2, but is consistent with the observation that,
unlike temporal autocorrelation, variance is highly sensitive to other
mechanisms that cause variance to either rise or decrease towards a
tipping point24.

There are a few obvious candidates for potential confounding
factors that could provide alternative explanations for the increase
of temporal autocorrelation of NDVI under dry conditions. First,
temporal autocorrelation in precipitation could cause temporal
autocorrelation in NDVI; second, cloudiness or haze could cause
observation error with a time signature; and third, although we
selected only evergreen forests, imperfect seasonal detrending of
foliage variation in drier areas could affect temporal autocorrelation
in NDVI and VOD. Temporal autocorrelation of precipitation as
a driver can be excluded, as it was not correlated to temporal

autocorrelation in NDVI (Supplementary Fig. 3). For filtering out
cloudiness, and detrending and removing seasonality effects, we
explored a range of methods (see Supplementary Information). The
uncertainty ranges produced by this ensemble approach indicate
that the results are robust (grey bands in Fig. 1 and Supplementary
Figs 4–7). More importantly, our analysis is based on additive
regression models, and the sharp rise of temporal autocorrelation
below 1,500mm mean annual precipitation (Fig. 1) arises despite
the fact that we included tree cover, the seasonal amplitude
of NDVI, the percentage of missing data due to cloudiness,
and the temporal autocorrelation of precipitation in the models
(Supplementary Fig. 3). This makes it unlikely that the rise of
temporal autocorrelation at low rainfall (or at higher temperatures)
is an artefact of these factors.

The robustness of our results suggests that the elevated temporal
autocorrelation of NDVI we detect may indeed reflect slowness.
Such slowness could be due to intrinsic differences in forest
composition, such as dominance by species that react more slowly
to variations in rainfall. Although we limited our analysis to
evergreen tropical forests it is possible that vegetation composition
plays a role in patterns of slowness. On the other hand, the
field evidence for slowing down of foliage recovery in trees at
elevated risk of dying13 supports the view that critical slowing
down related to the proximity of a tipping point is a plausible
contributing factor. This suggests that we may interpret temporal
autocorrelation as an independent indicator of fragility of tropical
forest (Fig. 2). Obviously, the true distance to a tipping point
for these forests remains in fact unknown, as there is no ‘gold
standard’ indicator. The prediction of resilience based on the
empirical relationship between the distribution of forest and mean
annual precipitation6 seems reasonable as a first approximation,
but forest resilience will be mediated by other environmental
factors and species traits that affect plant growth rates and capacity
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Figure 2 | Distribution of tropical forest cover (top), mean annual precipitation (middle) and remotely sensed slowness (bottom) across continents.
Distribution of tropical forests is represented by the 2010 MODIS tree cover, mean annual precipitation (MAP (mm yr−1)) is based on TRMM 2000–2011,
and slowness is indicated by the temporal autocorrelation (TAC, mean estimation derived from an ensemble of di�erent methods) derived from MODIS
NDVI time series.

to recover from perturbations. By contrast, our remotely sensed
slowness (temporal autocorrelation) is potentially a direct indicator
of resilience, since it actuallymeasures properties of the forest, rather
than predicting them from environmental conditions. Therefore,
temporal autocorrelation might help detecting areas where forests
could have a low resilience even if annual precipitation is high.

Indeed, elevated temporal autocorrelation is sometimes found in
places where one would not necessarily expect low resilience based
on mean annual precipitation alone (Fig. 2). For example, in Asia,
temporal autocorrelation is particularly high on Sumatra and East
Kalimantan, suggesting that these (intact) forests might be close to
the fire-related tipping point to savannah despite the relatively high
rainfall. This is in line with the fact that these are precisely the areas
hit by massive spreading fires during droughts related to El Niño
over the past years25. There are also differences between the con-
tinents. For instance, temporal autocorrelation of NDVI and VOD
is lower in Africa than in the Amazon at comparable rainfall levels
(Fig. 2 and Supplementary Table 4). This could be due to various fac-
tors, but one interpretation could be that, compared to the Amazon,
African forests might be relatively more resilient, which resonates
with the finding that the forests of central Africa have a lower
sensitivity to drought events, as inferred from canopy responses
measured by microwave scatterometer data26, and also with palaeo-
ecological evidence that tropical forests in Africa recovered faster
from past disturbance events than forests in Asia and South Amer-
ica27. One possibility is that long-term historical drought events
and other frequent disturbances promoted the adaptive capacity of
African forests by selecting for stress-tolerant tree species27,28.

Obviously, systems may also become slower for other reasons
than critical slowing down at a tipping point. Despite all efforts to
exclude competing explanations, our results remain correlational.

To obtain a more detailed insight into the causes of the remotely
sensed slowness, it would be good to have long-term field study
sites along a gradient of rainfall conditions, where the physiological
response of key species to natural climate variation is carefully
monitored. Ideally, replicated perturbation experiments would
be added to tell whether remotely inferred slowing down is
indeed a reasonable indicator of the proximity of a tipping point
in intact tropical forest. Such information would be invaluable,
although clearly this kind of long-term field research is challenging.
Meanwhile, results from two relevant field experiments that we
are aware of are consistent with our hypothesis. First, a recent
comparison of two comparable long-term drought experiments
in the Amazon revealed a marked difference in tree mortality9,
consistent with what would be expected on the basis of differences
in resilience between the sites as inferred from temporal correlation.
Specifically, the higher rate of tree mortality at the Tapajós
long-term throughfall exclusion experiment when compared to
the Caxiuanã experiment9 corresponds to a higher measured
temporal autocorrelation (mean ACF 0.17 for Tapajós versus 0.12
for Caxiuanã). Second, a long-term experiment in southeastern
Amazon, where we find the highest temporal autocorrelation
(Fig. 2), suggests proximity to a tipping point where tree mortality
rises sharply, driving the system towards an alternative self-
stabilizing fire-dominated savannah state11.

While such experimental evidence remains rare, the fact that on
all three continents we see the rise of temporal autocorrelation at the
1,500mm precipitation level known to be critical for tropical forest
suggests that such remotely sensed autocorrelation may capture the
signal of slowing down at the tipping point for forest collapse. This
is further supported by the fact that some eye-catching deviations
from the patterns expected from precipitation levels are consistent

1030

© Macmillan Publishers Limited . All rights reserved

NATURE CLIMATE CHANGE | VOL 6 | NOVEMBER 2016 | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate3108
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3108 LETTERS
with independent indicators of resilience, such as the tolerance of
African forests to droughts. Also, our results are in line with the
emerging insight that drought combined with heat23 may bring
forests worldwide to tipping points for massive tree mortality1.
Perhaps most importantly, the idea that slowing down may indicate
the proximity of a tipping point for forest die-off is well in line
with detailed on-the-ground studies suggesting that a compromised
systemic potential to recover from stress, as reflected for instance
in slower foliage recovery during drought, may be key to predicting
tree death3,13.

The future resilience of tropical forests will depend
on simultaneous changes in climate, atmospheric carbon
concentration, and land use29. Models predict an increase in
tropical forest biomass worldwide during the twenty-first century30,
consistent with field observations suggesting that mature tropical
forests are currently gaining biomass31. On the other hand,
these positive effects could in some regions be off-set by the
combination of increases in temperature23, rainfall variability32,
and fire frequency and intensity11. At the same time, reduction
of tree cover by logging poses a formidable threat to tropical
forests. Apart from the direct loss of forest from logging, removal
of trees increases the risk of triggering an irreversible shift to a
fire-dominated savannah-like system33. Our findings suggest that
despite the challenging complexity of the mechanisms that regulate
resilience, the proximity of a tipping point for collapse may be
monitored through remotely sensed slowing down.

Our results also hint at the possibility that time series of satellite
data might be used to map resilience in a broader range of
systems that are suspected to have tipping points for catastrophic
change, such as boreal ecosystems, tundra, lakes and dry lands34.
As climatic change and other drivers are likely to affect ecosystems
worldwide, it is an exciting prospect that increasingly available
high-resolution satellite data might offer possibilities to monitor
resilience of such systems globally using generic indicators such as
critical slowing down.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Here we provide a summary of the methods used for this study. The technical
details are explained together with additional results (figures, and tables) in the
Supplementary Methods.

We processed MODIS Normalized Difference Vegetation Index (NDVI,
2000–2011) and Vegetation Optic Depth (VOD, 2002–2011) data for the global
tropical forests (35◦ S and 15◦ N) (Supplementary Information 1). We limited our
analysis to intact forest by combining the World Intact Forest Landscape map and
the Global Land Cover 2000map and by eliminating areas with a tree cover lower
than 60% based on the MODIS percentage tree cover product. Mean Annual
Precipitation was derived from the latest global rainfall data available at the
Climatic Research Unit (CRU) and Tropical Rainfall Measuring Mission (TRMM)

data sets (see Supplementary Fig. 1). Soil fertility was derived from the
Harmonized World Soil Database. We used generalized additive regression models
(GAM) to assess the relationship between temporal autocorrelation and mean
annual precipitation, tree canopy cover, seasonality, mean annual temperature, soil
fertility, temporal autocorrelation in precipitation, cloud cover and geographical
location (Supplementary Information 3 and 4). Before analysis, NDVI time series
were detrended and deseasonalized using a range of methods (Supplementary
Information 2), and multiple methods were applied to characterize temporal
autocorrelation (Supplementary Information 2). Models are fitted for all
combinations of detrending and temporal autocorrelation (TAC) methods, and the
uncertainty arising from these different methodologies is reflected by the grey
bands in ensemble result figures.
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