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Abstract

Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion,
light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that
determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has
been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate.
However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater
carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures
of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 matm.
We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations.
We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus
cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2

concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic
carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-
shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of
Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This
would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences
for atmospheric carbon dioxide.
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Introduction

Amongst the most recent (180 Ma [1]) planktonic unicellular

autotrophs of Earth’s Oceans, diatoms exhibit diverse morphol-

ogies and ecological strategies. For instance, diatoms can occur

either as single cells or as colonies, influencing buoyancy, predator

evasion, light absorption and nutrient uptake. The processes by

which adjacent cells in chains establish connections determine

strength and flexibility of the bonds, and their distinct cellular

locations define colony structure. In a constantly changing

environment cells, whether solitary or in colonies, need to be able

to regulate their gene expression, physiology and signalling.

Colonial species such as the diatom Skeletonema costatum (S. costatum),

have been shown to alter chain formation, namely by increasing

chain length with temperature (from 6 to 17uC) and nutrient

availability [2]. Finaly, chain length has been found to be

positively correlated with growth rates [2] and to follow the

inverse trend in senescent populations [3–4].

Adjacent cells in a chain of S. costatum attach by external silica

tubes at the margin of the valves ([4], http://www.protistcentral.

org/index.php/Taxa/get/taxa_id/2843). However, this is not a

unique strategy and other species establish cell-cell connections by

means of mucus, bands or even septa fusion [5]. In the case of the

cosmopolitan Asterionellopsis glacialis (A. glacialis), cells attach at the

valve apices by exuded polysaccharides which form mucilage pads

[1]. Changes in seawater chemistry could influence the binding

strength or secretion of polysaccharides, especially when charged,

and potentially affect chain formation. This in turn may influence

buoyancy, predator or pathogen evasion, light absorption and

nutrient uptake ([6], summarized in Beardall et al. [7]).

Furthermore, cells in a chain such as in spirals of A. glacialis may

develop a microenvironment with lower CO2 concentrations/

higher pH in the centre of the colony during daylight where

photosynthetic removal of CO2 can lead to diffusional limitation

and localized depletion. However, virtually nothing is known

about the effects of varying environmental conditions (e.g. pH) on

chain length of A. glacialis.
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Atmospheric CO2 has been increasing since the industrial era,

reaching values (currently ,400 matm) above those observed in

the last 800 000 years (from ,180 to ,280 matm). In a business as

usual scenario [8] CO2 is projected to continue to increase,

reaching about 750 matm by the year 2100. As CO2 increases in

the atmosphere, it also enters the ocean by air-sea gas exchange,

increasing its average concentration and shifting the carbonate

chemistry to a more acidic environment (termed ocean acidifica-

tion).

Recent studies have revealed that changes in carbonate

chemistry as expected in the future ocean [8] can affect marine

phytoplankton in various ways (e.g. [9–10]). Until now, studies

with diatoms mostly focussed on carbon acquisition [11,12] or

found higher growth, carbon fixation rates and/or increased

efficiency of energy conversion to photosynthesis [13–17] under

high CO2 concentrations. Considering that these silica shielded

planktonic primary producers are thought to account for up to

45% of net primary productivity in the ocean [18], a further

increase in carbon fixation could act as negative feedback for

atmospheric CO2. However, the response of diatoms to increasing

CO2 is still poorly understood and the importance of organization

strategies has been mostly overlooked so far [19]. Here we

investigate whether changing seawater carbonate chemistry affects

the physiology (cell division and organic matter production rates

and element stoichiometry) and colony/chain formation of the

cosmopolitan diatom A. glacialis. Additionally, we provide reason-

ing that the observed response of A. glacialis is driven by distinct

parameters of the carbonate system (carbonation versus pH)

depending on the CO2 concentration to which the cells were being

exposed.

Materials and Methods

Experimental Setup
Freshly isolated monospecific cultures of the cosmopolitan

Asterionellopsis glacialis (strain isolated offshore the Azores

(CCMMG_1, October 2011)) were grown semi-continuously

under varying CO2 levels (between approximately 320 and

3400 matm, pHtotal scale of ,8.15 to 7.24, for more detail see

Table 1) for a minimum of 20 generations before the start of the

experiments. No specific permissions were required for these

location (38u379N27u159W)/activities at the time of collection.

The field studies did not involve endangered or protected species.

All cultures were grown in 0.2 mm sterile filtered North Atlantic

water (salinity of 36) enriched with approximately 4 mmol l21

phosphate and 64 mmol l21 of nitrate and silicate (the increase of

total alkalinity upon addition of Na2SiO3 was compensated for by

HCl addition), and with trace metals and vitamins following f/8

[20] at 20uC, a photon flux density of 220 mmol m22 s21 (supplied

from OSRAM L 18W/840, Lumilux, coolwhite) and a 14/10 h

light/dark cycle.

The media was acclimated to the temperature of the experiment

before inoculation. Cell densities varied on average between 140

and 16000 cell ml21, therefore minimizing changes in seawater

carbonate chemistry (average DIC drawdown of 3.9%). All

cultures were vertically rotated (10 times gently) daily one hour

after the beginning of the light phase to avoid aggregation,

sedimentation and self-shading during the light phase.

Carbonate system
The carbonate system was manipulated by adding calculated

amounts of NaHCO3 and HCl in a closed system following Schulz

et al. [21]. Alkalinity was measured by potentiometric titration

following Dickson et al. [22], using a Metrohm Titrino Plus 848

equipped with a 869 Compact Sample Changer, and calibrated

with certified reference material supplied by A. Dickson. The pH

was measured using a glass electrode (WTW, pH 340i) and

calibrated with a TRIS seawater buffer, supplied by A. Dickson.

Carbonate chemistry was calculated from measured tempera-

ture, salinity, silicate and phosphate concentrations, and pH and

TA using CO2sys [23], with the equilibrium constants determined

by Mehrbach et al. [24] as refitted by Dickson and Millero [25].

Nutrients
Samples for the determination of nutrients at the start and end

of incubations were filtered through a polyethersulfone (PES)

0.2 mm syringe filter and stored at 220uC until being analysed.

Concentrations of nitrate, silicate and phosphate were measured

following Hansen and Koroleff [26], by means of a spectropho-

tometer (Cary 50 Probe, Varian).

Cellular element quotas and dissolved organic carbon
exudation

Samples for cellular particulate organic carbon (POC), nitrogen

(PON) and phosphorus (POP) were gently filtered (200 mbar)

through pre-combusted GF/F filters (6 h, 450uC) and stored at

220uC until analyses. POC and PON samples were then dried

(4 h, 60uC), packed in tin boats and analysed in a gas

chromatograph (EURO EA Elemental Analyser, EUROVEC-

TOR equipped with a thermal conductivity detector and an

element analyzer) following Sharp [27]. POP filters were oxidized

by potassium peroxydisulphate to dissolved inorganic phosphorus

and measured colorimetrically by means of a spectrophotometer

(UV-1202, UV-VIS Spectrophotometer, SHIMADZU) following

Hansen and Koroleff [28]. Daily production rates were calculated

by multiplying cellular quotas (POC, PON, POP per cell

abundances) with the corresponding cell division rates m (see

below).

Dissolved organic carbon was estimated as the difference

between calculated (from TA and pH) inorganic carbon

consumption (DDIC) and net build-up of organic matter (DPOC).

Cell numbers and growth rates
Cell abundances (on average ,800 cells per sample were

counted) and the number of cells in a chain were determined from

samples fixed with Lugol (2% final concentrations) by means of an

inverted microscope (Leica DMIL) at 2006 magnification. Cell

division rate (m) was calculated as:

m~(ln Ce-ln Ci)=Dt ð1Þ

where Ce and Ci refer to end and initial respectively of

concentrations of cells, POP, POC or PON, and Dt to the

duration of the incubation period in days.

The equation used for fitting cell division rates (mtl, tendency

line) based on cell numbers and on all parameters (cell

concentrations, POP, POC and PON) followed a modified

Michaelis Menten kinetic [29], allowing for optimum curve

characteristics, as:

mtl~(axpCO2)=(bzpCO2)-cxpCO2 ð2Þ

in which a (cell 3.35, all parameters 3.46) and b (cell 89.6, all

parameters 93.21) are random fitting parameters, c (cell

0.0006739, all parameters 0.0006819) describes the CO2 sensitiv-

ity and pCO2 (matm) refers to the CO2 level.
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Statistical analysis
Statistical significance of the data was tested for by Anova

(significance determined as 99%, p,0.01), using the program R.

Results

When CO2 was increased from approximately 320 to

3400 matm, the relative number of chains composed of 1 to 6

cells decreased (p,0.01) while longer chains with 7 to 18 cells

increased (7 to 12 cells p,0.01 and 13 to 18 cells p = 0.05, i.e.

significant at a 95% confidence level) (Fig. 1, Fig. 2). Data was

fitted linearly.

Cell division rates based on cell numbers and organic matter

(POC, PON and POP) followed a modified modified Michaelis

Menten curve (R2 all data = 0.69), not varying significantly from

320 to 600 matm, but decreasing with rising CO2 between ,600

to 3400 matm (Fig. 3). In fact, cell division rates based on cell

numbers decreased on average 2.3 fold (p,0.01) with higher CO2

between the interval considered (,600 to 3400 matm). For CO2

levels ranging from ,600 to 1470 matm, the decrease was

associated with an increase by approximately 1.5 fold of the

Table 1. Carbonate chemistry at the beginning, end and through (average) the experiments.

Culture Treatment pCO2 (matm)
Avg pCO2

(matm)
TA (mmol kg-
1) pHt

HCO3
2 (mmol

kg-1)
CO3

22 (mmol
kg-1)

CO2 (mmol
kg-1) DIC (mmol kg-1)

Initial 1 426 2370 8.030 1899 188 13.7 2100.44

2 786 2364 7.799 2062 120 25.3 2207.40

3 1709 2361 7.490 2201 63 54.9 2318.92

4 4637 2351 7.073 2284 25 149.0 2457.91

Final 1 216 321 2397 8.270 1678 289 6.9 1973.72

1 320 373 2302 8.121 1761 215 10.3 1986.71

1 329 377 2385 8.125 1825 225 10.6 2059.96

1 331 378 2365 8.120 1814 221 10.6 2045.79

2 329 558 2392 8.126 1831 226 10.6 2068.19

2 329 558 2386 8.125 1827 225 10.6 2062.94

2 550 668 2370 7.936 1977 158 17.7 2151.83

2 561 674 2366 7.927 1978 155 18.0 2150.59

2 587 687 2370 7.911 1994 150 18.9 2162.75

3 815 1262 2369 7.787 2075 117 26.2 2218.75

3 855 1282 2368 7.767 2085 113 27.5 2225.04

3 1186 1447 2357 7.637 2141 86 38.1 2264.52

3 1191 1450 2353 7.635 2138 85 38.3 2261.76

3 1241 1475 2367 7.621 2157 83 39.9 2279.91

4 2052 3345 2360 7.415 2224 53 65.9 2343.59

4 2072 3354 2359 7.411 2224 53 66.6 2343.96

4 2145 3391 2360 7.397 2229 51 68.9 2348.80

pCO2, HCO3
2, CO3

22, CO2 and dissolved inorganic carbon (DIC) were calculated based on TA and pH using CO2sys.
doi:10.1371/journal.pone.0090749.t001

Figure 1. Chain disposition of Asterionellopsis glacialis visualized at 2006magnification with an inverted microcope (Leica DMIL). The
photographs chosen are representative of chains of different lengths irrespective of the carbon dioxide concentration (photos in red show auto-
fluorescence achieved by using the filter N2.1 green). Note the proximity between cells in the spirals. Scale bars correspond to 10 mm.
doi:10.1371/journal.pone.0090749.g001
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cellular quotas of carbon (C), nitrogen (N), and phosphorus (P)

(Fig. 4). This trend was not maintained at CO2 levels higher than

1470 matm, at which C, N and P quotas decreased. A similar

trend, but now following a modified Michaelis Menten kinetic, to

cellular contents was observed for N, C and P production rates

(Fig. 5).

Despite the observed trends in cellular quotas and production

rates no significant correlation was obtained for organic element

ratios (C to N, C to P and N to P), showing a proportional storage

at all CO2 levels tested (Fig. 6). Finally, associated with the

decrease in cell division rate, there was a ,2 fold increase

(p,0.01) of exudation of carbon in the form of dissolved organic

carbon (DOC) as depicted in the linear increasing difference

between calculated (from TA and pH, except for one value since

TA was not precise) inorganic carbon consumption (DDIC) and

net build-up of organic matter (DPOC) from 1260 to 3400 matm

(range of CO2 levels corresponding to positive values of

exudation). This trend could be pinpointed to increased cellular

exudation (Fig. 7) and was maintained also as cellular exudation

rates (data not shown).

Discussion

Growth response to enhanced CO2/decreased pH
Despite the importance of diatoms in the marine carbon and

silica cycles only a few studies have considered the effects of

varying CO2 concentrations on their physiology. Indeed, diatoms

are thought to be less sensitive to increasing CO2 than other

phytoplankton groups such as coccolithophores. A number of

studies have analysed the influence of CO2 levels on diatom

carbon concentration mechanisms (e.g. [12,30,31,32,33]). Never-

theless, there are only a few studies directly addressing the

potential effects of enhanced CO2 levels on diatoms, with the

majority showing null to little effects (Thalassiosira weissflogii under

36 to 1800 ppmv [12]; Thalassiosira pseudonana under 380 and 760

ppmv [34] and Phaeodactylum tricornutum from ,20 to 800 ppmv

[17]) or positive effects (e.g. enhanced growth rate, carbon fixation

and/or increased efficiency of energy conversion to photosynthe-

sis; as in the case of experiments done with Phaeodactylum tricornutum

(about 380 and 1000 ppmv CO2, [15]), S. costatum (350 and 1000

ppmv CO2, [14]), Thalassiosira pseudonana (,390 to 750 ppmv CO2,

[16])), Asterionellopsis glacialis, Thalassiosira punctigera and Coscinodiscus

wailesii (from ,20 to 800 ppmv [17]) under increasing CO2.

Moreover, studies with natural diatom-rich phytoplankton com-

munities have shown dominance of larger diatoms under

enhanced CO2 concentrations in the Ross Sea [35] and Southern

coast of Korea [36]. The positive response of diatoms is thought a

consequence of an associated down-regulation of carbon concen-

trating mechanisms (CCMs) with increasing CO2 concentration

(e.g. [37–38]), since the energy saved by a down-regulated CCM

operation could be reallocated to carbon fixation and growth.

Indeed both solitary (Phaeodactylum tricornutum and Thalassiosira

pseudonana) and colony forming species (S. costatum and Thalassiosira

weissflogii) have been shown to continue to increase cell division

rates at CO2 levels higher than 600 matm. In the present study the

CO2 threshold isn’t conclusive. However, the tendency line

estimated suggest that A. glacialis cell division rates increased until

,600 matm CO2, potentially driven by the excess energy saved

from the CCM, decreasing at CO2 values higher than 600 matm

probably related to low pH values. The apparent slightly higher

sensitivity of A. glacialis to enhanced CO2 concentrations, for the

CO2 treatments considered, might be species-specific, but an effect

of the colony structure (shaped as star, zigzag and spiral) and the

consequent proximity of sister cells cannot be excluded. Similar to

other colonial phytoplantkon species, such as the cyanobacteria

Anabaena sp. and Nodularia spumigena [39], the centre of A. glacialis

colonies might have relatively high pH/low CO2 concentrations

during the day in comparison to the bulk media, decreasing

diffusive CO2 supply. Hence, the initial positive effect of increased

CO2 availability, here more visible in photosynthesis (carbon

Figure 2. Relative number of cells per chain at increasing
carbon dioxide levels (pCO2). 1 to 6 cells in one chain (diamonds,
p,0.01), 7 to 12 cells in one chain (triangles, p,0.01), 13 to 18 cells in
one chain (squares, p = 0.05), more than 19 cells in one chain (circles).
Solid lines correspond to a linear fit of all data points from each size
class. Dashed vertical lines correspond to 390 and 750 matm. Schemes
of colonies represent the increase of longer chains with increasing
carbon dioxide.
doi:10.1371/journal.pone.0090749.g002

Figure 3. Cell division rates based on cell counts and POP/C/N
in relation to CO2 levels (from ,600 to 3400 matm, p,0.01). The
solid line depicts a tendency line obtained by fitting the Asterionellopsis
glacialis cell based data (red line) and a combination of cell, POP, POC
and PON data (grey line) to an equation following a modified Michaelis-
Menten curve. Markers correspond to cell division rates based on POP
(green), POC (black), PON (blue) and cell numbers (red). Dashed vertical
lines correspond to 390 and 750 matm.
doi:10.1371/journal.pone.0090749.g003
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production rate) than growth, was counterbalanced by the effects

of the pH decrease. Increased chain length of A. glacialis may have

influenced CO2 supply, but more importantly at more extreme

conditions of pH exposure, may have maintained localised

external pH closer to optimum. Finally, the modifications in

colony length of A. glacialis might come as a compensation for a

higher pH optimum (more alkaline) of this species, at the expense

of energy and cell division rate. This may oppose the response of

other species such as Thalassiosira weissflogii or S. costatum which

form more linear colonies. In Proboscia alata cells formed spirals

under the combined effect of low CO2 concentrations (below

present concentrations and the range considered in this study) and

high light [19]. However, in this case, the modification in

morphology might be related to a strategy to reduce excess light

penetration under low CO2 supply, thereby reducing reactive

oxygen species production and keeping growth rate constant.

Influence of carbonate chemistry speciation on chain
length

Lower cell division rates found in this study were associated with

longer chains of A. glacialis. In contrast, the growth rate of S.

costatum has been found to be positively correlated with chain

length both in cultures and enclosed natural communities [2].

Discrepancy in the correlation between colony growth and

metabolic rates has been previously reported [7]. The increased

chain length and proximity of the cells due to the observed colony

structure under high CO2 concentrations might be a strategy to

increase pH in the centre of the colonies during the light phase or

may simply be a consequence of the nature of the bonds

established between adjacent cells in a chain. These bonds vary

from septa fusion [1] to attachment at the valve apices by

exudation of polysaccharides [5] depending on the diatom species.

Adjacent cells of S. costatum establish low flexibility bonds by

connection of external tubes, which may break with increased

turbulence. Under a low turbulence environment, as cell division

rate rises, the number of cells in a given chain and time should

increase independent of the type of cell-cell connections. A. glacialis

cells bind by mucilage polysaccharide pads with high C:N and C:P

[7]. However, no detectable increase in polysaccharide production

was observed either by using Calcofluor White staining (data not

shown) nor by a change in the C:P and C:N ratios under

increasing CO2 concentrations/decreasing pH values. Therefore,

longer chains under decreased cell division rates and slight

turbulence due to mixing in this study might be connected to

stronger bonds between polysaccharides at lower pH conditions.

Figure 4. Cellular element quotas of Asterionellopsis glacialis at increasing CO2 levels (pCO2). Carbon (A), nitrogen (B) and phosphorus (C).
Lines denote a polynomial fit of the respective data (cellular POC: y = 24.1861027a2+0.002a+2.81; PON: y = 28.2261028a2+3.4561024a+0.50; POP:
y = 29.5461029a2+3.7761025a+0.045, without considering the outlier value correspondent to 320 matm). Dashed vertical lines correspond to 390
and 750 matm.
doi:10.1371/journal.pone.0090749.g004
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Interestingly, the elemental ratios found in this study were lower

than Redfield and distinct from those found for the same species

(different strain and growth conditions) by Burkhardt et al. [40],

but within the range found in previous studies for cells (e.g. similar

C:N to [16]) under nutrient replete conditions (C:P 27-135 and

N:P 5-19, for a revision see [41]).

Cell uptake/exudation balance
Under nutrient-replete conditions, lower cell division rates

would be expected to be accompanied by increased cellular

element quotas as observed here until 1470 matm CO2. However,

N, P and C quotas decreased with increasing CO2 from 1470 to

3400 matm in spite of the decreasing trend in cell division rates.

This is potentially due to increased exudation of dissolved organic

compounds or variable nutrient uptake. Nutrient drawdown data

is not conclusive (data not shown), but it is evident that P and Si

uptake were higher at 3400 matm CO2 concentrations than

600 matm while nitrate showed no trend. Hence, the decrease of

cellular quotas could not be explained by lower nutrient uptake.

Similarly, in Thalassiosira weissflogii there wasn’t a significant

difference in Si uptake with increasing CO2 concentrations from

,370 to 750 matm, changing the rates of dissolution, efflux and

incorporation into the frustule from ,100 to 750 matm [42]. Here,

the difference between P, Si and nitrate drawdown may reflect a

number of factors related to cell signalling (e.g. unsaturated

aldehydes, see [43,44]), energetics and membrane permeability.

Enhanced exudation of organic matter, namely carbohydrates,

has been previously observed as a response to stressors such as

increasing CO2 concentrations in coccolithophores [45] and

nutrient limitation at the end of phytoplankton blooms [46].

Exudation as a response to low pH values might indeed explain

the observed trend in carbon cellular quotas as depicted by uptake

rates (DIC) that are greater than the accumulation rate of organic

Figure 6. Particulate organic matter ratios (mmol/mmol) of
Asterionellopsis glacialis under increasing CO2 levels (pCO2).
Carbon to nitrogen (A), carbon to phosphorus (B) and nitrogen to
phosphorus (C). The solid black line was obtained by fitting the data
linearly. Grey line denotes the Redfield value.
doi:10.1371/journal.pone.0090749.g006

Figure 5. Organic matter production rates of Asterionellopsis
glacialis under increasing CO2 levels (pCO2). Carbon(A), nitrogen
(B) and phosphorus (C). Lines denote a modified Michaelis Menten
kinetic of the respective data (without considering the outlier value
correspondent to 320 matm). Dashed vertical lines correspond to 390
and 750 matm.
doi:10.1371/journal.pone.0090749.g005
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carbon. This is further supported by the POC production rate

decrease with the increase of dissolved organic exudation rates at

higher CO2 levels.

Summary and conclusions
The present study shows that cell division rates of A. glacialis did

not change significantly from 320 to 750 matm of pCO2, but

started to decrease towards higher CO2 levels. This decrease was

accompanied by an increase in cellular element quotas and

organic matter production rates until 1470 matm, and by increased

DOC exudation at CO2 levels higher than that, with no changes

in stoichiometric element ratios. Moreover, the relative number of

cells per chain (chain length) increased at elevated CO2,

potentially limiting nutrient diffusion under deplete conditions.

Longer chains and modified chain morphology could influence

buoyancy and sinking rates as in the case of other species [3,4,47].

If A. glacialis follows the response of S. costatum [4] the increased

buoyancy with chain length could in turn positively affect growth

in the natural environment since cells closer to the surface of the

ocean will be exposed to an increased average light intensity.

Hence, the chain formation strategy (i.e. longer chains) displayed

by A. glacialis might be advantageous under future scenarios of

elevated CO2 where increased light supply might further increase

photosynthesis. Depending on the sensitivity of co-occurring

species, these changes could affect the plankton community

composition. Finally, the increased exudation of dissolved organic

carbon might increase aggregation and potential for sinking of

particles.
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