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Abstract

In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen
content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-
resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China).
The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of
winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC
model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter
wheat were significantly (P,0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated
and dry land winter wheat passed a significance test (P,0.01). Multiple anticipating models (MAM) were established by
NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of
determination R2 (R) of MAM was greater than that of the other two single-factor models. The relative root mean square
error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test
effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple
anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and
reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely
to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China.
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Introduction

The winter wheat grain protein content is one of the important

standards to evaluate wheat quality [1,2]. However, the traditional

grain protein content (GPC) detection methods need to be

destructive in sampling, and consuming time, labor, and money

[3]. It is difficult to achieve the quality monitoring and forecasting

GPC of the large area of winter wheat. With the rapid

development of remote sensing technique in recent years [4], the

large scale quickly and nondestructive testing approaches become

possible to monitor the wheat grain quality [5,6,7].

It is fundamental to realize quantitative remote sensing and

precise monitoring methods by building the models of wheat GPC

and remote sensing parameters. Apan et al. [8] built the winter

wheat GPC estimation model based on spectral vegetation indices

by using partial least squares regression method. The model could

more accurately predict winter wheat GPC in Australia and the

prediction accuracy was 92%. Reyniers et al. [9] monitored the

winter wheat GPC using the aerial images and field spectrometer,

and the prediction accuracy had achieved 90%. Liu et al. [10]

determined the winter wheat GPC using multi-temporal EnviSat-

ASAR and Landsat TM satellite images. The model was built

based on the C-HH backscatter and SIPI data and the correlation

coefficient was 0.75.

Wright et al. [11] analyzed the nitrogen status of wheat plants

and found that nitrogen content of flag leaf could predict GPC at

middle growth stage in Minidoka County, Idaho. Huang et al.

[12] reported that the GPC could be predicted using nitrogen

reflectance index and foliar nitrogen concentration around the

anthesis stage. The leaf nitrogen content of winter wheat was

significantly (P,0.01) correlated with GPC, and spectral vegeta-

tion indices significantly correlated to leaf nitrogen content at

anthesis stage. Therefore, it was feasible by using remote sensing

data to predict GPC at anthesis stage of winter wheat [13].

The normalized difference vegetation index (NDVI) is a most

commonly employed vegetation index, which is sensitive to

vegetation growth status, productivity, and other biophysical and

biochemistry characteristics [14]. It is widely used in the land use

cover monitoring [15], vegetation coverage density evaluation

[16], crop recognition [17], and crop yield forecast [18,19] and so

on. Stone et al. [20] found that the NDVI and wheat plant

nitrogen content were highly correlative at several different growth

stages. Freeman et al. [21] demonstrated that NDVI was well

correlated with straw N uptake and total N uptake at Feekes
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growth stages 9 and 10.5 in both cropping cycles at Hennessey and

Stillwater.

As there were very limited studies in using vegetation index to

simulate the models and predict winter wheat GPC in Shanxi, the

current research attempted to predict the GPC of winter wheat in

Linfen using plant nitrogen content extracted from satellite remote

sensing data. Compared to other studies in the literature [8–

11,20,21], our current research not only established the single-

factor model, but also established multiple-factor anticipating

model to predict the winter wheat protein contents (different

stages) in the identified area. This study also mapped the

regionalization characterization of the winter wheat production

in the Linfen region based on the GPC character. In addition, the

selection of winter wheat variety and management system (i.e.,

irrigated or dry land) might also lead to different results and need

further consideration. The specific objectives were to: (i) extract

the planted area and NDVI of different irrigated type winter

wheat, (ii) analyze the relation between PNC and NDVI, PNC and

GPC, and (iii) build GPC prediction model and realize the

regionalization analysis of winter wheat GPC based GIS.

Materials and Methods

Site description
The study was carried out in the southwest of Shanxi province

in China (north latitude 35u239–36u569, east longitude 110u239–

112u339) (Figure 1). This region is situated in Loess Plateau and the

middle-downstream of Fen River. It is temperate continental

monsoon climate in the region. The winter is frigid and dry and

the summer is torrid and rainy. The temperature difference

between winter and summer is large, and the precipitation is

concentrated in summer (June, July, and August). The mean

annual temperature is 10.7uC. The average temperature of

January and July is 24uC and 26uC, respectively. Frostless season

is 180 days annually. The mean annual precipitation is 550 mm.

The primary crops include winter wheat, cotton, mealie, and

paddy rice. The winter wheat is primarily distributed in central

basin where is one of the key winter wheat production areas in

Shanxi province, China.

Sampling and data collection
There were 38 irrigated wheat and 16 dry land winter wheat

fields selected from the study areas (Figure 2) in 2006, 2007, and

2009 under the same sowing, fertilization, with a size of at least 5

ha. The irrigated winter wheat main variety was ‘‘Linyou 7287,’’

and the average GPC was 14.06%. The dry land winter wheat

main variety was ‘‘Jinmai 79,’’ and the average GPC was 14.84%.

Winter wheat both in irrigated and dry land was sowed in early

October and harvested in late May (dry land) and mid-June

(irrigated wheat) respectively. At the different growth stage

(returning green, joining, booting, heading, filling, and maturing

stages) of winter wheat, the wheat plant samples were collected in

the selected area and threshed manually for plant nitrogen content

analysis. At the harvest of wheat, the grains were collected for

GPC content determination. More specifically, in each plot, an

area of 1 m61 m was cropped manually just above ground and

brought to the lab for processing. For each field, there were

triplicate plots (50 m in length by 50 m in width). The GPS was

used in the region for accurate positioning. The Aridisols is the

predominant soil type in this area. The data collected in 2006 and

2007 were used for model establishment and the data of 2009 were

collected to test the established models. We need to note that the

field study was authorized by the Agricultural Bureau of Linfen

City in Shanxi Province (P. R. China). In addition, no specific

permissions were required for these locations/activities because

the research activities were for the local agricultural service.

Furthermore, the field studies did not involve endangered or

protected species and this study also did not involve vertebrate

species.

All the samples were placed in the oven to dry at 70uC for 24 h.

The PNC (%) and GPC (%) of all the samples were determined by

using the Kjeldahl-nitrogen method [22]. The PC in grain was

calculated as Kjeldahl-nitrogen content multiplied by 5.7 [23].

Table 1 listed the mean, standard deviation, and range of PNC

and GPC values of different irrigation type winter wheat. The

range of variation was wide within the wheat variables, i.e., 5-fold

and 1.5-fold variation in PNC and GPC of irrigated wheat, 2-fold

variation in PNC and GPC of dry land wheat. However, the mean

values of different irrigation type wheat were close. And the range

of GPC in dry land wheat was so wide; it could be caused by

uneven regional rainfall. The wide range of wheat variables was

more realistic and universal while the relationship between PNC,

GPC and reflectance was made.

Data acquisition and treatment of remote sensing data
The remote sensing data in the current study was Landsat TM5

data and MODIS land surface Reflectance (LSR) data synthesized in

eight days. The MODIS data to be used were daily level 3 surface

reflectance. We downloaded all tiles of h26v05 and h27v05 from the

NASA’s EOS data gateway, covering the entire extent of Linfen

region. Both MODIS and TM data were used in current

investigation mainly based on the fact that compared to the TM,

MODIS had a higher time resolution and therefore available

MODIS was used in time series analysis; and TM had a higher

spatial resolution compared to the MODIS, TM could be used for

extraction of crop area. Thus, the crop character through a

combination of the two datasets could be more effectively monitored.

TM data preprocessing
Different plants have different seasonal rhythm [17]. The winter

wheat growth area was extracted by using TM data (mosaicking

disposal has been conducted on purchase) on April 8th, 2007 by

the Themaic Mapper sensor. The blue (450–520 nm), green (520–

600 nm), red (630–690 nm), and near infrared (NIR, 760–

900 nm) bands of electromagnetic spectrum were identified at a

resolution of 30 m. The planting status of winter wheat in study

areas had been identified as the same in recent years and the

change of planting area and position could be neglected. Only one

scene TM image in 2007 was used to extract planting area, which

was conformable with the practical investigation result in 2006.

Preprocessing consisted of:

(1) Atmosphere adjustment. The atmospheric correction module

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral

Hypercubes) was used here to adjust the TM remote sensing

image [24].

(2) Geometric correction. Coarse geometric correction and

precise geometric correction were completed using 1:10 000

digitized raster map and ground control points. The cubic

convolution interpolation was used in the georeferencing

process to assure that the error was less than one pixel [25].

(3) Extraction of researching region. The Mahalanobis Distance

taxonomy [26] was used for classification and the best

classification effects were reached at the threshold of 2.9.

For a fraction of leakage and spillage image after classification,

the planting area vectograph produced by classification was

superimposed by TM remote sensing image in GIS through

second visual interpretation to produce area vectograph

Remote Sensing Data to Monitor Protein Content
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ultimately. Then the mask was made and TM image was

cropped, thereby the winter wheat planting area was obtained.

(4) NDVI calculation. The NDVI of TM image was calculated

using the following method [27]:

NDVI~
lNIR{lR

lNIRzlR

Where lNIR is the reflectance (%) of the near infrared (NIR)

band and lR is the reflectance (%) of the red band.

MODIS data processing
The MODIS data were superior to the TM (in time series

resolution identification), NOAA/AVHRR [28] in monitoring of

crop growth by features such as high time resolution, high spectral

resolution as well as moderate spatial resolution. The MODIS

LSR data including two bands (Band1 as red band, 620–670 nm;

Band2 as NIR band, 841–876 nm) were obtained from LPDAAC

and synthesized in eight days at a 2506250 m spatial resolution.

And duration of the data collection was from January to July of

2006, 2007, and 2009 in this study.

Processing consisted of:

(1) Image mosaicism. The Mosaicking method [29] localized by

geographical coordinates and the Feathering function [30]

was used for edge feathering.

(2) Geometric correction. The geographical coordinates locating

information carried by the head file of MODIS data were

used for geometric correction.

(3) Atmosphere adjustment. The histogram method [4] was used

for the atmosphere adjustment of the images.

(4) Extraction of researching region and NDVI calculation. The

detailed methods were of the same with TM image.

Flow scheme of winter wheat planted area extraction
As winter wheat has different growing process under different

irrigated conditions, in order to improve the monitoring precision,

the irrigated and dry land winter wheat should be distinguished in

the study of crop quality and growth monitoring. In general, the

winter wheat varieties in irrigated and dry land area of Shanxi

province were different and the sowing time was almost the same.

However, winter wheat of dry land harvested earlier than of the

irrigated mainly because of the longer filling time and low levels of

drought stress of irrigated winter wheat.

The winter wheat plant area of Linfen region included the

irrigated winter wheat area of Linfen basin and dry land winter

wheat area of Jinnan hilly region. The irrigated winter wheat area

of Linfen basin included hirakawa counties of Houzhou,

Hongtong, Linfen, Xiangfen, Quwo, and Houma. The altitude

was from 350 to 600 m. The dry land winter wheat area of Jinnan

hilly region included most of wheat fields of Fushan and Yicheng

Figure 1. The locations of the study area.
doi:10.1371/journal.pone.0080989.g001
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counties. The altitude (above sea level) was from 475 to 700 m.

The slope of Linfen basin was less than 15u, and the slope of the

hilly region was in the range of 15u,20u. The 3D model image

was shown in Figure 3.

We need to clarify the following: (1). Figure 1 was indeed very

difficult to distinguish between basins, but 3D remote sensing

image in Figure 3 made it clear that the basin was located, e.g., two

mountains between L-type, with 20–25 km wide, 200 km long.

The irrigated wheat was concentrated in 350–600 m above sea

level, dry land was concentrated in 475–700 m above sea level;

partial dry land were included in the irrigated wheat elevations.

(2). To extract the 3D remote sensing images, by using the

ArcScene software, it was hard to figure the superscript in the

elevation data. (3). Winter wheat growing region in Linfen could

be categorized to two areas including basin area of irrigated winter

wheat and in hilly area of dry land winter wheat growing. Two

major irrigation systems (river irrigation and well irrigation)

managed by local farmers were characterized.

Using the above-mentioned discrimination characteristics,

irrigated and dry land winter wheat plant area were extracted

by building the decision tree (Figure 4) extraction model. The

NDVI, elevation, and slope values were obtained from TM image

Figure 2. The spatial distribution image of sampling sites.
doi:10.1371/journal.pone.0080989.g002

Table 1. The summary of variables measured different irrigation type winter wheat.

Irrigation Type Variables Mean
Standard
deviation Min Max Range

irrigated wheat PNC 1.6690 0.7124 0.7643 3.8479 3.0836

GPC 12.7617 1.1722 10.4801 15.4102 4.9301

dry land wheat PNC 1.1928 0.3059 0.8748 1.8144 0.9396

GPC 12.4966 2.4967 7.1484 14.9925 7.8441

doi:10.1371/journal.pone.0080989.t001
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of winter wheat planted area and 3D model, respectively. The

decision tree structure image was shown in Figure 4 and Table 2

listed the classification results of irrigated and dry land winter

wheat. The actual area came from statistical data of agricultural

statistics department of Shanxi Province, China. The accuracy

estimation was determined by the following formula:

� Accuracy(%)~ 1{
extracted area{actual area

actual area

����
����

� �
|100%

Data analysis and calculation methods
Excel software was used for data collation, analysis, and

mapping. All data were analyzed statistically to use DPS (i.e.,

statistical analysis, regression analysis, and variance analysis). The

DPS (Data Processing System) 7.05 is a kind of statistical analysis

software [31].

The simple linear regression models were established using the

data of PNC and NDVI values and PNC and GPC. Two

prediction models were combined into GPC monitoring models.

The GPC model was grain protein content monitoring model. Its

direct variable was PNC, and indirect variable was NDVI.

The assessment model was based on multiple correlation

coefficients [32], F-test values of significance [7], relative root

mean square errors (RRMSE) [33], and relative error (RE) [34].

The relative root mean square error (RRMSE) and relative error

(RE) are defined by:

RRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

(Oi{Si)
2

s ,
1

n

Xn

i~1

Oi

RE~
1

n

Xn

i~1

Oi{Sij j
Oi

� �

Where, Oi and Si are the observed and simulated values of the

sample i and n is the number of samples.

Sampling points monitored by current study were conducted in

the state of nature. The research process did not interfere with the

farmer’s production and operation, in this case the coefficient of

determination of the model, which can meet the needs of the

model.

MCC=R2~

P
(ŷy{�yy)P
(y{�yy)

F{test~
v2R2

v1(1{R2)

Where y, �yy and ŷy are the observed value, mean value, and

prediction value, degrees of freedom v1 = m, v2 = n-m-1.

Results and Discussion

Relation of NDVI and nitrogen content of plants
The correlation between NDVI and nitrogen content of plants

was established. The degree of correlation was different for

different irrigation type winter wheat at different growth stages

Figure 3. The 3D TM image of remote sensing of Linfen City.
doi:10.1371/journal.pone.0080989.g003

Figure 4. The classification image of decision tree of irrigated
and dry land winter wheat.
doi:10.1371/journal.pone.0080989.g004

Remote Sensing Data to Monitor Protein Content

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e80989



(Figure 5). Through data analysis, there was a significant (P,0.01)

negative correlation between NDVI4.14, NDVI5.8 and nitrogen

content of plants of irrigated winter wheat, i.e., at early heading

stage (May 8) the correlation coefficient were 20.45 and 20.44,

respectively. There was a significant difference (P,0.01) between

NDVI4.30, NDVI5.8, and nitrogen content of plants of dry land

winter wheat. The max-relativity also appeared in the May (8th)

and the correlation coefficient were 20.75 and 20.67, respec-

tively. Our data might suggest that the NDVI could be used as the

indicators to predict nitrogen content of irrigated and dry land

winter wheat plants in Shanxi.

According to the relationship between NDVI and nitrogen

content of different irrigation type winter wheat plants, the

statistical evaluation models of nitrogen content of plants were

developed. The simulation models were showed in Table 3. The

results of the regression models and significant F-tests were

conducted for all models (Table 3). The models of NDVI4.14 and

NDVI4.30 had the best prediction effects on irrigated and dry land,

respectively. It was clear that all R2 of the irrigated wheat models

were lower than dry land and the RRMSE and RE were higher

than dry land. This result demonstrated that dry land models had

a better ability to predict nitrogen content of winter wheat.

Theoretically, the R2 of model should be closer to 1 for ideal

result, and RE, RMSE should be closer to 0 for ideal result.

However, in this work, R2 was only 0.569 for dry land wheat, but

the model passed a 0.01 significant level test. The large sample

numbers could be one of the reasons. In addition, we did not

interfere with farmers’ production and management in the whole

study process; this might also be the main reason for the

emergence of such results. Therefore, it speculated that there

might be a possibility by using remote sensing data for large area

monitoring winter wheat protein content.

And the multiple anticipating models were also established using

two temporal NDVI and nitrogen content of plant, the models

were as follows:

Irrigated winter wheat: N %ð Þ~2:9358{0:0126NDVI4:14{

0:0119NDVI5:8, (n = 38, R2 = 0.207, F = 9.4, RRMSE = 0.302,

RE = 0.254)

Dry land winter wheat: N %ð Þ~3:1581{0:0216NDVI4:30{

0:0156NDVI5:8, (n = 16, R2 = 0.527, F = 15.6, RRMSE = 0.124,

RE = 0.106)

The above mentioned multiple anticipating models (MAM)

showed that they had passed F test and also reached significant

level (P,0.01). The R2 value of MAM was higher than the

unifactor models for irrigated winter wheat. The dry land R2 of

MAM value was in the medium between the two unifactor models.

Relation of nitrogen content of plants and GPC
The correlation between PNC and GPC was carried out at

different stages. There was a significant (P,0.01) positive

correlation between plant nitrogen content and GPC of irrigated

and dry land winter wheat in early heading (the correlation

coefficient of 0.541 and 0.567, respectively). The difference was

not significant (P.0.01) in other stages. And the agronomy models

were established to predict GPC; the models were showed in

Table 4.

The F-test value of the GPC evaluation models was greater than

F-critical value (Table 4). It indicated that the models passed a

0.01 significant level test. The RRMSE and RE of irrigated and dry

land wheat models were 0.063 and 0.054, 0.205 and 0.141,

respectively. It showed that the two models were more suitable for

prediction.

It was also noted that the former researches for constructing

model were mainly concentrating on mixing the different

irrigation type winter wheat to monitor the crop growth status

and estimate crop yield. In fact, the growing process of irrigated

and dry land winter wheat as affected by varieties and

environmental factor was of difference. For example, the growth

stage for irrigated land winter wheat was middle-heading stage on

Table 2. The classification result of winter wheat in Linfen City.

Winter wheat Pixel numbers Extracting area/ha Actual area/ha Accuracy/%

Irrigated wheat 1194314 107488 94400 86.15

Dry land wheat 1414335 127290 147733 86.16

Total area 2608649 234778 242133 96.96

doi:10.1371/journal.pone.0080989.t002

Figure 5. Correlation coefficients between NDVI and plant nitrogen content of irrigated and dry land wheat at different stages.
doi:10.1371/journal.pone.0080989.g005
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May 8; while late-heading stage for dry land winter wheat was

observed on May 8. In addition, the dry land winter wheat

matured on June 1; while for irrigated land wheat was on June 9.

Thus, it was hard to construct the mixed model based on the

specific growth stage. The models were simulated in our

investigation only in dry land wheat and irrigated wheat.

Spectral GPC estimation models
Because PNC was strongly associated with GPC, the PNC could

indirectly be used to predict GPC though the correlation between

PNC and vegetation index. The spectral GPC estimation models

were established by using the plant nitrogen content as the

connecting point as shown in Table 5.

All the F values of spectral prediction models for GPC in

irrigated and dry land were greater than the value of F-critical,

revealing that all of the prediction models for GPC of irrigated and

dry land winter wheat passed the significance level test of 0.01.

The R values of the models constructed by NDVI4.14 for irrigated

winter wheat were higher than those of the models constructed by

NDVI5.8, therefore the model in April (14th) was selected as the

prediction models for GPC of irrigated winter wheat. The model

in May (8th) was selected as the prediction models for GPC of dry

land winter wheat.

Simultaneously, hybrid prediction model was constructed by

NDVI in two time phases of irrigated and dry land winter wheat as

well as nitrogen content in plants to link the prediction model for

GPC, the formulas were as following:

Irrigated winter wheat:

Rro %ð Þ~14:2946{0:0152NDVI4:14{0:0145NDVI5:8,

(n = 38, R2 = 0.244, F = 11.6, RRMSE = 0.081, RE = 0.062);

Dry land winter wheat:

Rro %ð Þ~24:5688{0:1325NDVI4:30{0:0955NDVI5:8,

(n = 16, R2 = 0.632, F = 24.0, RRMSE = 0.144, RE = 0.106).

Significance level test of correlation coefficient to the formulas

above with F test indicated that spectral GPC prediction models

for winter wheat in all regions passed the significance level test of

0.01, which showed highly significant relationships between NDVI

and GPC. The purpose of this model construction was just for

prediction, and then R2 could be used to test the models [35]. The

R2 values of hybrid prediction models for irrigated and dry land

winter wheat were larger than those of the other two unifactorial

models. Additionally, RRMSE and RE were smaller than the two

unifactorial models, lowered 0.2% (0.1%) and 1.7% (1.3%),

respectively.

Furthermore, we constructed a mixed GPC model of irrigated

and dry land wheat by using the same growth stage data (8th of

May). The formula listed as the following:

Rro %ð Þ~17:5174{0:1101NDVI5:8{0:0004NDVI2
5:8, (n = 54,

R2 = 0.174, F = 6.57, RRMSE = 0.254, and RE = 0.340)

Although the GPC mixed prediction model for irrigated and

dry land winter wheat passed the significance level test of 0.01, the

R2 value of mixed model was lower than classification models; the

RRMSE and RE were higher. Again, the growing process of

irrigated land and dry land winter wheat as affected by varieties

and environmental factor was of difference. For example, the

growth stage for irrigated land winter wheat was middle-heading

stage on May 8; while late-heading stage for dry land winter wheat

was observed on May 8. In addition, the maturity stage was also

different for both irrigated wheat and dry land wheat. Thus, our

results demonstrated that the precision of mixed model was far

below the classification models using the same stage data.

Additionally, based on our study, liner relationship between

predicted and measured values of GPC (independent dataset from

2009) of irrigated and dry land wheat was further explored in

Figure 6. The GPC (%) was predicted from NDVI4.14 and

NDVI5.8, resulting in a prediction of GPC [R2 = 0.453,

RRMSE = 0.054, slope = 0.296 (p,0.01), and intercept = 8.896]

for irrigated winter wheat. The combination of NDVI4.30 and

NDVI5.8 was an excellent predictor of GPC content [R2 = 0.624,

RRMSE = 0.118, slope = 0.711 (p , 0.01), and intercept = 3.295]

for dry land wheat. In sum, the test results of hybrid prediction

models were better than those of the unifactorial models and the

hybrid prediction models would be more reliable in predicting the

GPC of irrigated and dry land winter wheat.

The regionalization analysis of irrigated and dry land
winter wheat

The spatial distribution maps of irrigated and dry land winter

wheat GPC were composited according to the hybrid protein

Table 4. The agriculture statistical evaluation models of GPC
of different irrigation type winter wheat.

Irrigation
Type Model R2 F–test F–crit RRMSE RE

Irrigated
wheat

Pro (%) = 10.7421+
1.2101N (%)

0.541 42.4 7.4 0.063 0.054

Dry land
wheat

Pro (%) = 5.1689+
6.1431N (%)

0.567 18.3 8.5 0.205 0.141

doi:10.1371/journal.pone.0080989.t004

Table 5. The spectral GPC estimation models of irrigated and
dry land winter wheat.

Irrigation
Type Model R2 F–test F–crit RRMSE RE

Irrigated
wheat

Pro(%) = 14.0815–
0.0292NDVI4.14

0.235 11.1 7.4 0.083 0.063

Pro(%) = 14.3469–
0.0272NDVI5.8

0.228 10.6 7.4 0.082 0.063

Dry land
wheat

Pro(%) = 26.1742–
0.2700NDVI4.30

0.487 13.3 8.5 0.185 0.123

Pro(%) = 22.1738–
0.1725NDVI5.8

0.557 17.6 8.5 0.189 0.119

doi:10.1371/journal.pone.0080989.t005

Table 3. The statistical evaluation models of nitrogen
content of different irrigation type winter wheat.

Irrigation
Type Model R2 F–test F–crit RRMSE RE

Irrigated
wheat

N(%) = 2.7597–
0.0241NDVI4.14

0.202 9.1 7.4 0.369 0.291

N(%) = 2.9790–
0.0225NDVI5.8

0.192 8.6 7.4 0.346 0.278

Dry land
wheat

N(%) = 3.4194–
0.0440NDVI4.30

0.569 18.5 8.5 0.131 0.111

N(%) = 2.7682–
0.0281NDVI5.8

0.446 11.3 8.5 0.171 0.146

doi:10.1371/journal.pone.0080989.t003
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prediction models and images operation (Figure 7). From this

graph, it demonstrated that irrigated winter wheat with lower

GPC than 12.5% was mainly distributed in cities and counties

such as Hongtong, Linfen, Xiangfen, and Yicheng. Winter wheat

with GPC between 12.5% and 13% was unequally distributed in

all counties. Winter wheat with GPC between 13% and 13.5%

was mostly distributed in the North and South region. Winter

wheat having higher GPC than 13.5% was scattered distributed in

all counties. As for in dry land, winter wheat with GPC between

10% and 12% was mainly distributed in cities and counties such as

Linfen, Huozhou, and Xiangning; while winter wheat with GPC

between 14% and 16% was primarily distributed in the Southeast

region.

From Figure 7, it was noted that the spatial distribution of

different winter wheat GPC was comparatively scattered in a large

scale and GPC in different point had significant difference.

Therefore, it was very difficult to play a key role for winter wheat

practice with various GPC. This paper focused on the spatial

analysis capability by GIS aiming for better regionalization

analysis of winter wheat. The outermost dispersion points were

connected to form wheat planting region and the Kriging

interpolation method [36] was used to realize wheat GPC

regionalization (Figure 8). The special distribution images of

winter wheat GPC of irrigated and dry land were introduced into

ArcGIS, and translated into point layer. Then the peripheral point

outline was drawn to form the polygon layer. The regionalization

analysis of GPC was performed using inverse distance weighted

function, clipped by the polygon layer. The results were showed in

Figure 8.

Summary
In this study, taking nitrogen content as the connecting point, a

prediction model for GPC in winter wheat based on different

breeding periods was established. Compared to the other two

unifactor models, the values of R2 of MAM of winter wheat in

irrigated and dry land were greater. Simultaneously, RRMSE and

RE in the MAM were lower than those in the unifactor models,

lowering 0.1% (0.1%) and 1.7% (1.3%), respectively. Generally, all

of the prediction results in the MAM for GPC were better than

those in the unifactor models. Therefore, the MAM for forecasting

GPC of winter wheat in irrigated and dry land will be more

accurate and reliable. And the analysis of regionalization in GPC

of irrigated and dry land winter wheat was preceded in ArcGIS,

which could serve wheat research and production well.

The mean, min, and max values of the measured GPC

(Table 1) of irrigated wheat were all higher than that of the dry

land wheat. However, as shown in Figure 7 and 8, the most of

the predicted GPC values of irrigated wheat appeared lower

than those of the dry land wheat. This weird observation might

be explained by the following. On the one hand, the difference

mainly came from the modeling precision (e.g., R2 = 0.244 for

irrigated wheat was much less than R2 = 0.632 for dry land

wheat). In addition, actual wheat planting area was scattering in

the whole dry land wheat distribution region. Therefore, by

statistical interpolation statistics method, the dry land wheat

planting area was unilateral enlarged.

Most of the previous researchers [2,23] established the

hyperspectral model for nitrogen and protein contents in leaf

in the flowering period to forecast GPC of winter wheat.

However, in the monitoring of large areas, because of difficulty

in selection of sampling point, punctuality of sampling, and

storage of samples, nitrogen content of different growth periods

was selected for calculation in this article. Consequently, this

method needs further study and consolidate the applications of

established model.

Ideally, once spectral signatures are available it should be able

to predict the satisfactorily the GPC under diverse condition.

However, in the large area of winter wheat by remote sensing

monitoring study, due to the choice of sample sites (related to

transportation, information and communications, science and

technology and other factors) and timeliness of the sample for the

entire region are difficult to achieve synchronous sampling.

Furthermore, the inconsistencies in sampling time and the

preservation of the samples are also inevitable. This article focused

Figure 6. Liner relationships between predicted and measured values of GPC of irrigated and dry land wheat.
doi:10.1371/journal.pone.0080989.g006
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only on the plant nitrogen content-related research. The forecast

accuracy needs to be further study; establishing a research base on

the ground may be the key to addressing this problem.

In order to improve the precision of the prediction model and

minimize the interference of the mixed pixels, the TM and

MODIS data were used in this study through overlay analysis,

spatial scaling, adjust MODIS spatial resolution to match TM

data. However, due to the terrain surface complexity and the

scattered (fragmentation) of the winter wheat sowing area in the

whole study region, the mixed pixels interferences were not

completely erased and still existed in some degree. Hence, it is

necessary to summarize current research to identify (develop) the

appropriate technique of partition of mixed pixels for future

research.

Figure 7. The GPC spatial distribution images of irrigated and dry land wheat.
doi:10.1371/journal.pone.0080989.g007

Figure 8. The GPC regionalization images of irrigated and dry land wheat.
doi:10.1371/journal.pone.0080989.g008
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Meteorological factors including rainfall, temperature, and

sunshine have the important influence on quality of grain. The

corresponding correlation analysis of meteorological factors was

conducted (unpublished data) and the correlation was not

significant. The meteorological factors were not brought into

establishment of the model in this study. However it did not mean

meteorological factors had no effect on grain quality. The

indication of insignificant correlation was probably due to distant

sampling points to weather stations. The factors such as cultivars

(wheat variety), fertilizers [37,38] also affect grain quality of winter

wheat which was not involved in the study. Thereafter, more solid

study on the factors affecting quality of winter wheat needs for

more consideration. In the end, remote sensing monitoring and

regionalizing of GPC of winter wheat was dissected in the study

and monitoring and regionalizing of other qualities of winter

wheat need further research.
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