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Reconciled climate response estimates from
climate models and the energy budget of Earth
Mark Richardson1*, Kevin Cowtan2, Ed Hawkins3 and Martin B. Stolpe4

Climate risks increase with mean global temperature1, so
knowledge about the amount of future global warming should
better inform risk assessments for policymakers. Expected
near-term warming is encapsulated by the transient climate
response (TCR), formally defined as the warming following
70 years of 1% per year increases in atmospheric CO2
concentration, by which point atmospheric CO2 has doubled.
Studies based on Earth’s historical energy budget have
typically estimated lower values of TCR than climate models,
suggesting that some models could overestimate future
warming2. However, energy-budget estimates rely onhistorical
temperature records that are geographically incomplete and
blend air temperatures over land and sea ice with water
temperatures over open oceans. We show that there is no
evidence that climate models overestimate TCR when their
output is processed in the same way as the HadCRUT4
observation-based temperature record3,4. Models suggest that
air-temperature warming is 24% greater than observed by
HadCRUT4 over 1861–2009 because slower-warming regions
are preferentially sampled and water warms less than air5.
Correcting for these biases and accounting for wider uncer-
tainties in radiative forcing based on recent evidence, we infer
an observation-based best estimate for TCR of 1.66 ◦C, with a
5–95% range of 1.0–3.3 ◦C, consistent with the climate models
considered in the IPCC 5th Assessment Report.

TCR for the Climate Model Intercomparison Project, phase 5
(CMIP5) models is defined using simulations in which atmospheric
CO2 increases at 1% per year and the multi-model mean is 1.8 ◦C
(1.2–2.4 ◦C, henceforth bracketed values refer to 5–95% ranges)6–8.
TCR has also been estimated from Earth’s energy budget using:

TCR=
1T
1F

1F2×CO2 (1)

where1T is the observed change in temperature,1F is the change
in radiative forcing, and 1F2×CO2 is the forcing change for doubled
atmospheric CO2. Energy-budget calculations have recently been
able to provide more constrained estimates of TCR, due to
increased amplitudes of 1T and 1F relative to their uncertainties
(see Supplementary Information). These energy-budget estimates
have typically fallen below the CMIP5 multi-model mean, for
example, 1.5 ◦C from Bengtsson and Schwartz (1.0–1.9 ◦C)9, 1.3 ◦C
(0.9–2.0 ◦C) fromOtto et al.2 and 1.3 ◦C (0.9–2.5 ◦C) fromLewis and
Curry (2015)10.

The lower best estimates of TCR from these observation-based
studies relative to CMIP5 may be due to a combination of: biases
in observed temperature series11, varying efficacy of different

forcings12–16, time and history dependence of TCR17, internal
variability18, overestimate of forcings19, efficacy of ocean heat
uptake20–22, structural uncertainties in energy-budget calculations or
lower real-world TCR.

We focus on potential biases in temperature series due to
geographical incompleteness of the data (‘masking’) and the
combination of air and water measurements (‘blending’) by
applying energy-budget TCR calculations to CMIP5 simulations
and observations. We calculate energy-budget TCR with the
Otto et al. method2, henceforth ‘Otto’, which uses differences
between an early baseline period and a recent reference period:

TCR=
T2000−2009−T1861−1880

F2000−2009−F1861−1880
1F2×CO2 (2)

where T2000−2009 is the mean temperature anomaly over 2000–2009,
and the other symbols follow this format. We shift the Otto baseline
period by one year to includeCMIP5 simulations beginning in 1861,
and end at 2009 due to lack of available and consistent forcing data.
Our conclusions are robust to the choice of time period and to
two other energy-budget calculation methods (see Supplementary
Information). As we use published radiative forcing series2,7, our
analysis determines only the effect on calculatedTCRdue to changes
in the1T term.

The single largest contribution to the formal error in calculated
TCR is, however, due to uncertainty in 1F . Otto used a Gaussian
distribution with a 5–95% range of ±0.58Wm−2. The IPCC 5th
Assessment Report reports a larger uncertainty range, so we use the
Otto median with uncertainties based on Lewis and Curry’s more
sophisticated 2015 IPCC-based uncertainty distribution, which
also accounts for non-Gaussian behaviour and cross correlation
between terms (see Methods). This range requires scaling, as it
uses slightly different time periods, but our result is not sensitive
to this (see Supplementary Information). Although we focus
on TCR, the equilibrium climate sensitivity (ECS) is another
common metric:

ECS=
1T

1F−1Q
1F2×CO2 (3)

where 1Q is the system heat uptake, which, being positive during
warming, means that ECS is larger than TCR. We do not calculate
ECS here, to avoid uncertainties associated with 1Q, and to avoid
the assumption of linear climate response, which is less accurate over
the longer time periods required for equilibrium17. However, as1T
is in the numerators of equations (1) and (3), any 1T bias affects
each calculation equally in percentage terms.
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Figure 1 | Median CMIP5-simulated temperature series from the temperature reconstruction method compared with the HadCRUT4 observational
series. a, Ensemble-median temperature change relative to an 1861–1880 baseline for tas-only (red line), blended (magenta line with circles) and
blended-masked simulations (blue line with triangles), along with HadCRUT4 blended-masked observations (thick grey line). b, Blended minus tas-only
(magenta line with circles) and blended-masked minus tas-only (blue line with triangles).

Formally, TCR refers to global near-surface air temperature
(‘tas’ in CMIP5 nomenclature) for 1T , whereas observational
temperature records have incomplete and varying geographical
coverage and combine air temperatures over land and sea ice with
near-surface water temperatures over oceans. These differences
introduce biases, as warming is not spatially uniform, sea ice
coverage changes, and as air and water temperatures are expected
to change differently4,23. Although some work accounted for these
issues, it has not yet been included in energy-budget analyses24.

Here we use equation (2) to calculate TCR in a consistent way
from both observations and CMIP5 simulations. For observation-
based TCR, 1T is from HadCRUT4 and 1F is the Otto median
with IPCC-like uncertainty, which updated the CMIP5 mean
based on observational constraints10. For modelled TCR, 1T
is from the Cowtan et al.4 CMIP5 series, 1F is the CMIP5
forcing series for each model where available, and the multi-model
mean otherwise7 (see Methods and Supplementary Information).
Modelled data use the historical scenario from 1861–2005 and the
Representative Concentration Pathway 8.5 (RCP8.5) from 200625.
Scenario choice has little effect over the short period 2006–2009
used in the TCR calculation, but may diverge from reality in
the future.

Model temperatures are reconstructed in three ways: by using
global air temperature (‘tas-only’), by blending air tempera-
ture over land and sea ice with ocean temperatures over wa-
ter (‘blended’), and by blending temperatures and using the
historical geographical coverage of observations in HadCRUT4
(‘blended-masked’). We assume that the modelled near-surface
water temperature over oceans (‘tos’ in CMIP5 nomenclature)
is equivalent to measured sea surface temperatures. Results are
similar between models with different ocean layering: for exam-
ple with a 2.5m top-layer depth instead of 10m, suggesting tos
is a robust measure of modelled sea surface temperature (see
Supplementary Information).

The tas-only reconstructions are used in standard model
assessments of TCR, the ‘blended’ reconstructions represent
the same reconstruction techniques as HadCRUT4, but with
perfect data coverage, and the ‘blended-masked’ reconstructions
represent HadCRUT4.

Figure 1 shows the ensemble-median global temperature series
for each reconstruction. Between 1861–1880 and 2000–2009,
HadCRUT4 warms slightly more (0.75 ◦C) than the multi-model
median (0.73 ◦C) in a like-with-like comparison, althoughmodelled
tas-only series warmed more (0.93 ◦C). This effect exceeds the
approximately 10% difference quoted in Cowtan et al.4, which
referred to the blending effect only, that is, masking increases the
effect further. Supplementary Table 8 shows that the masking bias is
largely due to undersampling of rapidly warming polar regions. The
blending and masking effects were not accounted for in the energy-
budget studies cited here, although masking has been considered in
some other analyses26.

After applying equation (2), Fig. 2 shows that the TCR
from the blended-masked HadCRUT4 series of 1.34 ◦C falls at
the 33rd percentile of the blended-masked model distribution,
but at the 7th percentile of TCR derived from tas-only model
reconstructions.

Figure 3 shows that the energy-budget TCR inferred from tas-
only temperature reconstructions is consistently higher than that
inferred from blended or blended-masked reconstructions, and that
both blending and masking contribute to the median bias of 24% in
1T . We correct for this bias by updating the blended-masked TCR
derived from equation (2) using Otto data for the best estimates of
each parameter but a scaled Lewis and Curry forcing distribution
accounting for correlation between1F and1F2×CO2 (seeMethods).
Our blended-masked estimate of 1.34 ◦C (range 0.8–2.6 ◦C) is
updated by applying our derived correction of 24% (including
±2% Gaussian uncertainty) to this distribution. The observation-
based energy-budget calculation implies a best estimate for tas-only
TCR of 1.66 ◦C (range 1.0–3.3 ◦C, see Methods and Supplementary
Information), consistent with the CMIP5 range as shown in
Fig. 4. This result is robust to a variety of assumptions and
correction approaches (see Supplementary Information). Intrinsic
uncertainties in natural variability, model structure and real-world
1F are large, and improved understanding of these factors may
adjust these results in the future. Of the 24% difference between tas-
only TCR and the observation-based blended-masked estimate, we
report that approximately 9 percentage points are due to blending
and 15 percentage points to masking (from Supplementary Table 5).
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Figure 2 | Histograms of TCR calculated for CMIP5 simulations with the observation-based HadCRUT4-derived value also shown as a vertical line.
a,b, HadCRUT4 used with Otto median forcing, CMIP5 simulations with model-specific forcing where available, multi-model mean otherwise.
a, Consistent comparison between blended-masked observations and blended-masked CMIP5 simulations, where the observations fall at the 33rd
percentile of the model distribution. b, Inconsistent comparison between blended-masked observations and global-air-temperature-derived values from
CMIP5, where the observations fall at the 7th percentile of the model distribution.
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Figure 3 | Energy budget estimates of TCR using the Otto et al.2

energy-budget calculation applied to historical-RCP8.5 simulations.
Values calculated from blended reconstructions or blended-masked
reconstructions as a function of the tas-only derived TCR for each
simulation. Best-fit lines shown for each case: solid magenta for blended
and dashed blue for blended-masked, whereas the 1:1 line is shown as a
dotted line.

Two further questions can be raised: is the difference in simulated
warming rates between water and air realistic, and what does this
mean for future research and impacts?

Modelled global air temperatureswarm7–9% faster than blended
air–water temperatures, with a component from the faster warming
of air relative to water, and the remainder from changes in sea

ice redistributing air and water measurements, as discussed by
Cowtan and colleagues4. We propose that changes in surface energy
balance contribute to air temperatures warming faster: radiative
equilibrium implies a temperature discontinuity at Earth’s surface,
with surface temperatures higher than air27, which drives vertical
latent and sensible heat fluxes. The size of this discontinuity
depends on atmospheric optical depth, such that more CO2
and warming-induced increases in water vapour suppress the
surface temperature discontinuity, meaning greater air-temperature
warming. Further adjustments in surface energy balance associated
with non-radiative heat transfer affect the amplitude of this
effect: warming increases evaporation at the surface, whereas
condensation increases at altitude. The increased latent heat transfer
outweighs reductions in sensible heat fluxes in models28 and is
related to the lapse-rate feedback, which acts to reduce surface
warming and increase warming of the air aloft.

The blending effect implies a limiting case of a 7–9% bias
in model-observation comparisons for perfect geographical data
coverage. Alternativemeasurements of surface and air temperatures
over oceans are required to assess this expected bias in observations.
The greatest immediate opportunities to reduce bias therefore
appear to be in recovery efforts for historical data records29
and improved spatial interpolation11, which should reduce the
potential 24% bias in observed global mean warming inferred over
1861–2009. Indeed, improved observational coverage has reduced
the combined blending-masking bias to approximately 15% over the
period 1970–2010 (see Supplementary Information). This implies
that future estimates of TCRwill be less sensitive to this bias as more
data become available.

Other research that uses temperature changes over multidecadal
or longer timescales may well be sensitive to the choice of
temperature metric, and researchers should be clear about which
temperature metric or reconstruction method they are using,
to minimize the risk of biases introduced through inconsistent
comparisons.

This issue also has considerable implications for policy
discussions about limiting global average temperature to some
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Figure 4 | Comparison of modelled and observed TCR estimated from
Earth’s historical energy budget. The blue bars show blended-masked
results, reported upwards as Otto et al.’s results2 using blended-masked
HadCRUT4 observations, the same results using scaled Lewis and Curry
forcing, and the range when the same calculation is applied to
blended-masked CMIP5 temperature series (one simulation per model).
The red bars compare our bias-corrected estimates of tas-only TCR from
HadCRUT4 using the Otto calculation with Lewis and Curry forcings, and
the canonical CMIP5 model range. The updated observation-based
estimate is higher due to the corrected blending-masking bias, and has a
wider range than Otto due to the greater uncertainty in radiative forcing
series used. Boxes represents 5–95% range and thick vertical lines are the
best estimate.

particular level, such as 2 ◦C above pre-industrial30. If our reported
air–ocean warming differences are robust, then which global
temperatures are relevant for policy? If it is decided that climate
targets refer to global near-surface air temperature, then the current
warming is probably 24% (range 9–40%, see Supplementary
Table 1) larger than reported by HadCRUT4.

Previous energy-budget-based TCR estimates reported TCR
values towards the lower end of the climate model range. These
studies clearly highlighted their limitations, including issues of
spatial coverage11, time sensitivity and the efficacy of different
forcings. Nevertheless Otto stated: ‘Our results match those of other
observation-based studies and suggest that the TCRs of some of the
models in the CMIP5 ensemble with the strongest climate response
to increases in atmospheric CO2 levels may be inconsistent with
recent observations’.

However, in our like-with-like comparison, the Otto TCR
best estimate of 1.3 ◦C based on the HadCRUT4 blended-
masked observational series falls at the 33rd percentile of the
CMIP5 blended-masked ensemble. There is therefore no evidence
for significant disagreement between modelled and real-world
TCR. This implies a TCR for global air temperature of 1.66 ◦C
(1.0–3.4 ◦C), in better agreement with the CMIP5 multi-model
mean of 1.8 ◦C (1.2–2.4 ◦C). We conclude that previous analyses
that reported observation-based estimates toward the low end
of the model range did so largely because of inconsistencies
in the temperature reconstruction methods between models
and observations.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
The primary results require five main steps, with further analysis and sensitivity
tests available in the Supplementary Information. The main steps are as follows:

(1) Extraction of observed and modelled temperature series.
(2) Best estimates of radiative forcing time series for models and observations.
(3) Application of energy-budget calculation.
(4) Deriving a bias correction for the observation-based TCR calculation.
(5) Applying the bias correction to the blended-masked observation-based value

to infer the tas-only TCR from observations.

Temperature series. The observed HadCRUT4 temperature record was taken from
http://www.cru.uea.ac.uk/cru/data/temperature/HadCRUT4-gl.dat [downloaded
22 March 2016] whereas the CMIP5 temperature series were for the 84 CMIP5
historical-RCP8.5 simulations reported by Cowtan et al.4 with a small update to
account for inconsistencies in how some models handled missing data and to
include 2015 data. The code used for the present paper is available at
http://www-users.york.ac.uk/∼kdc3/papers/reconciled2016 and the simulations
used are listed in Supplementary Table 13. The Otto et al. uncertainty of±0.20 ◦C
for changes from 1860–1879 to 2000–2009 is used, with1T assumed to follow a
Gaussian distribution based on Otto’s analysis of intrinsic measurement
uncertainty combined with CMIP5-based estimates of internal variability.

For each simulation, three time series of temperature are calculated.

(1) tas-only—the global mean average air-temperature change.
(2) blended—the global mean average temperature change using near-surface air

temperatures (tas) over land and sea ice, and near-surface ocean water
temperatures (tos) over ice-free ocean. These are referred to as
unmasked/anomaly/variable ice in Cowtan and colleagues4.

(3) blended-masked—similar to blended, but calculated on a 5◦×5◦ with the
historical month-by-month HadCRUT4 coverage mask applied. These are
referred to as the HadCRUT4 method series in Cowtan and colleagues4.
Our blended-masked simulations are designed to match the HadCRUT4

methodology as closely as possible, using the same gridding and following the
corresponding month-by-month HadCRUT4 data coverage. Global temperature
anomaly is determined by taking the arithmetic mean of the Southern- and
Northern Hemisphere area-weighted means, as in HadCRUT4.

Each model’s own sea ice field is used to determine whether to use air or water
temperature measurements: in months where sea ice is present the air temperature
is used, otherwise the water temperature is used. As discussed in Cowtan et al.4,
this may lead to discontinuities as sea ice area changes. In CMIP5 sea ice retreat
occurs mostly in summer, and summer air temperatures warm more quickly than
ice-covered water temperatures, which are strongly coupled to the freezing point of
water and are insulated by the overlying sea ice. By the time sea ice melts, air
temperatures have warmed by notably more relative to water temperatures since the
reference period used in the anomaly calculation. The removal of ice therefore leads
to an immediate jump downwards in reported temperature anomalies, as discussed
in Cowtan and colleagues4. The use of tos is taken as the closest equivalent to
observational SST records which sample near-surface water temperatures.

Each individual CMIP5 simulation is then baselined such that the 1861–1880
mean temperature anomaly is zero, and the CMIP5 median then comes from the
median temperature of the ensemble in each year.

The comparison in temperature changes shown in Fig. 1 is based on the
difference between the tas-only, blended and blended-masked simulations. The
24% difference we report for1T refers to the median of the set of model tas-only
divided by blended-masked1T values. The difference seen in Fig. 1 is slightly
higher, as Fig. 1 shows the difference of the medians rather than the median of the
differences.

Radiative forcing. Radiative forcing used with HadCRUT4 to obtain the
‘observation-based’ TCR was taken from Otto and colleagues2. This series is largely
diagnosed from models, but was updated based on some observation-based
constraints, so we take it as the best understanding of real-world historical1F . It
uses a version of the CMIP5 multi-model-mean historical-RCP4.5 forcing with
updates to better match observed natural variability and with an upward
adjustment of 0.3Wm−2 based on evidence for weaker real-world cooling by
tropospheric aerosol than that simulated by the CMIP5 simulations. The weaker
cooling effect of aerosols leads to an increase in the total forcing and a consequent
lower calculated value of TCR, as1F is in the denominator of equation (1).

For the CMIP5 simulation1F we used the historical-RCP8.5 simulated forcing
series from http://www.see.leeds.ac.uk/research/icas/research-themes/climate-
change-and-impacts/physical-climate-change/current-research/ipcc-
intergovernmental-panel-on-climate-change-reports-and-forcings [last accessed
2016-03-25]. We use all models which provide a full radiative forcing time series
from 1861 onwards. Each model uses its own forcing if available (N=54), or the
multi-model mean otherwise (N=30). Supplementary Information shows that the
TCR best estimate is not sensitive to this choice.

There is substantial uncertainty in1F and various values have been calculated
for observational series. Otto et al.2 reported 1.95± 0.58Wm−2 for the change
from 1860–1879 to 2000–2009, whereas Lewis and Curry (2014) reported
1.98Wm−2 (0.99–2.86Wm−2) for the change from 1859–1882 to 1995–2011. The
Otto results represents the 5–95% range of a Gaussian distribution, whereas Lewis
and Curry used updated forcing estimates from the IPCC Fifth Assessment Report,
accounting for individual forcings and allowing for non-Gaussian distributions in
some components. We build on the Lewis and Curry forcing uncertainty, as it more
accurately represents the IPCC’s best understanding and includes a more
sophisticated treatment of the cross correlations between terms.

To produce1F and1F2×CO2 distributions we use the Lewis and Curry (2014)
code that is available at https://niclewis.wordpress.com/the-implications-for-
climate-sensitivity-of-ar5-forcing-and-heat-uptake-estimates [last accessed
30 April 2016]. We extract 1 million samples from each of the output distributions.
These distributions include some correlation due to the correlated uncertainty in
the CO2 component that is present in each.

The Lewis and Curry1F values are then scaled such that their medians match
those from Otto data for 1861–1880 to 2000–2009, resulting in a distribution with
the same shape as that derived in Lewis and Curry, a median of 1.94Wm−2 and
5–95% range of 0.97–2.81Wm−2. This scaling is required to ensure that the best
estimate matches the period used.

The1F2×CO2 distribution is then scaled such that it has a median of 3.44Wm−2
and a range of±10%, consistent with Otto’s values, but maintaining the correlation
with the1F term as in Lewis and Curry.

Energy-budget calculation to obtain TCR. Temperature and radiative forcing
differences were calculated using equation (2) by taking the mean values for1T
and1F from 2000 to 2009 and subtracting the means from 1861 to 1880. The
mean forcing at CO2 doubling was taken to be 3.44Wm−2, from Forster and
colleagues7. In addition, different time periods and the one-box calculation of Held
and colleagues21 and the trend method of Bengtsson and Schwartz9 were also
assessed in the Supplementary Information, and our results are found to be
generally robust to the choice of method.

For the HadCRUT4-based estimate, the distributions of1F2×CO2 ,1T and1F
were sampled one million times to obtain the TCR distribution. Our best estimate
is 1.34 ◦C versus 1.32 ◦C in Otto, due to the one-year shift in the baseline period
from 1860–1879 to 1861–1880, and possibly differences between HadCRUT4
versions and the skewed forcing distribution. Due to the broader forcing
uncertainty, the range in our TCR is 0.8–2.6 ◦C (see Supplementary Table 12).

For Figs 2 and 3 the best estimates of TCR according to the energy-budget
calculation equation (1) are shown using each simulation’s temperature
reconstructions (tas-only, blended and blended-masked) to calculate1T with the
model-specific1F if available, and the multi-model mean1F otherwise. For the
model TCRs used in Fig. 4, we use the first simulation of each model in
the ensemble.

Resultant TCR bias correction. Energy-budget calculations performed on
blended-masked simulations were found to consistently underestimate the tas-only
value, and so a correction was determined by performing a linear regression of
CMIP5 tas-only TCR against blended-masked TCR for the 84 available
historical-CMIP5 simulations. This linear regression was constrained to go
through zero, and found to have a gradient of 1.24± 0.02 (5–95% error, as
throughout). To this precision, the same result is determined when using the 54
simulations for which model forcing is available.

This result suggests that an upward revision of 24% is required to accurately
represent tas-only TCR, given the result of a calculation using blended-masked
temperature series. This 24% value is appropriate for the time period used, and is
found to change with time (see Supplementary Information)—it was larger
historically and is now tending towards approximately 15% for HadCRUT4
coverage over 1970–2010, or 7–9% for perfect coverage (that is, blending bias only).

Applying TCR bias correction.Having obtained an adjustment factor, α, of
1.24± 0.02 from linear regression, we can apply it to the blended-masked
energy-budget TCR to estimate the relevant tas-only TCR from:

TCRtas-only=α1F2×CO2

1Tblended-masked

1F
(4)

We use the distributions described above with the HadCRUT4-based1T and
broader1F range with α taken to be a Gaussian with the mean and error
determined from the linear regression fit. Each of these distributions is sampled
one milion times to derive a one-million-member set of TCRtas-only values from
which the median and range statistics are extracted. Our blended-masked TCR of
1.34 ◦C (0.8–2.6 ◦C) becomes 1.66 ◦C (range 1.0–3.3 ◦C, see Supplementary
Table 12). Alternatively α could be sampled from the distribution of N=84 ratios
of tas-only TCR to blended-masked TCR determined previously. Supplementary
Table 13 shows that this would result in 1.67 ◦C (range 1.0–3.3 ◦C).
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