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How rainfall is changing in a particular region is a ques-
tion of great practical importance to societies. Floods and 
droughts threaten the lives and livelihoods of many people 

and enhancing their resilience is of major concern, particularly as 
anthropogenic climate change is expected to increase the frequency 
of floods and droughts1. These expected changes may, moreover, 
render risk assessments based purely on the historical record inac-
curate. Well-planned adaptation to climate change thus requires 
information on how hazardous rainfall is changing in response to 
anthropogenic forcing. Are we observing systematic changes or are 
we simply experiencing natural variability? This is the business of 
detection and attribution (Box 1).

New observations and improved models have enabled the 
detection of anthropogenic change in the water cycle at large spa-
tial scales2,3,4, although even here large uncertainties remain. The 
Intergovernmental Panel on Climate Change5 (IPCC) in its Fifth 
Assessment Report (AR5) concludes that it is likely that anthropo-
genic influences have affected the global water cycle since 1960. In 
Section TS.6.3 of AR5, two key uncertainties that limit confidence 
in attribution assessments of the causes of precipitation changes 
are recognized as: (1) observational and modelling uncertainties, 
and (2) the large effect of internal variability. Hence there is only 
medium confidence that there is an anthropogenic contribution to 
global-scale changes in precipitation patterns over land since 1950, 
with higher levels of confidence precluded by uncertainty in models 
and observations, and the large internal variability in precipitation6. 

At continental scales, there has been some limited suc-
cess in detecting anthropogenic changes in land precipitation. 
Anthropogenically driven changes in zonal averages of land pre-
cipitation were detected by for example, ref. 7 — although in some 
cases the results were found to be sensitive to the observational 
dataset used. Anthropogenic trends in precipitation have also been 
detected in the northern mid-to-high latitude lands8,9 and southwest 
Australia10, where in both regions there are large expected trends 
that are coherent over wide areas (Figure TS.16 of IPCC, 2013). In 
general, however, detection and attribution of an anthropogenic 
signal at these scales is hampered by observational uncertainty and 
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model error2,6,8,9,11. Even the continental-scale studies described 
above are too coarse to inform assessments of the extent to which 
human-induced climate change has influenced the changes that are 
affecting many people locally. Because internal variability in pre-
cipitation tends to increase with reducing spatial scale there may be 
a tendency to assume that detection of an anthropogenic signal of 
change is more likely at global or continental scales than at regional 
scales. In this context, by regional scales we refer to smaller spa-
tial scales than ‘continental’, typically thinking of areas of the globe 
characterized by specific geographic and climatological features5. 

This Perspective argues that analysis of changes in the processes 
governing internal variability in precipitation should facilitate the 
detection and attribution of anthropogenic changes at a range of 
spatial scales. In some cases an anthropogenic signal may be easier 
to detect at regional scales, where we have a clearer expectation of 
forced changes8–10. Above all progress in detection and attribution 
of changes in the water cycle requires the development of novel 
metrics, which should help facilitate the identification of significant 
changes in precipitation even in the presence of substantial mod-
elling and observational uncertainty12. This should enable faster 
progress to be made than would be possible by simply waiting for 
models or observations to improve or by simply waiting for the sig-
nal of climate change to strengthen sufficiently to emerge from the 
noise of internal variability. 

We first compare physical expectations of global and regional 
anthropogenic changes in precipitation. Next, we describe how spa-
tial scale modifies the impact of model error and observational uncer-
tainty on detection of these changes. We then consider how novel 
methods of analysis can be brought to bear on detection and attribu-
tion of regional changes in precipitation. Finally, we reflect on how 
our current models and observations can best be utilized to provide a 
robust view of anthropogenic change in regional precipitation.

Expected changes on global and continental scales
Based on the physical relation of Clausius–Clapeyron, surface 
warming is expected to result in an increase in water vapour con-
centrations at a rate of 6–7% per Kelvin13, given that the relative 
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humidity is expected to remain nearly constant14. This thermo
dynamic expectation of an intensification of the water cycle has 
been confirmed in changes in observed and simulated atmospheric 
moisture content over land and ocean15–18, albeit in observations 
from recent years there is some evidence of a reduction of relative 
humidity over land19. 

Global mean precipitation is not, however, expected to scale with 
the increase in atmospheric moisture because it is controlled not 
by specific humidity, but by the energy budget of the troposphere. 
The two complementary energy budget arguments are (1) the trop-
ospheric latent heating during precipitation formation is balanced 
by the radiative cooling to outer space14, and (2) at the surface the 
latent heat flux (which is proportional to global mean evaporation 
and hence global mean precipitation) is balanced by the sensible and 
radiative heat fluxes13–15,20. The warming of the troposphere increases 
the radiative cooling rate and hence the precipitation. However, if 
the warming is driven by an increase in greenhouse gases (GHGs), 
the increase in the radiative cooling rate is partly offset by the direct 
radiative effect of the GHGs, which is to decrease the radiative cool-
ing rate. This implies that the precipitation response to GHG forc-
ings is smaller per unit change in forcing, than it is for short wave 
radiative forcings such as volcanic aerosol14. Overall anthropogenic 
forcings result in a lower rate of increase in precipitation globally 
than suggested by the Clausius–Clapeyron relation13–15, 20–22.

A pioneering study14 quantified the expected range of change in 
total global precipitation in response to CO2 driven warming, but 
found that even at large scales there was considerable variation in 
the expected spatial pattern of change. A key advance in the physical 
explanation of the response pattern of precipitation changes due to 
increasing GHGs was made by a later study15. They identified robust 
features of anthropogenic changes such as enhancement of the pat-
terns of precipitation minus evaporation (P−E), poleward move-
ment of the Hadley circulation and subsequent shifting of the arid 
subtropical subsidence regions and storm tracks, leading to the ‘wet 
gets wetter’ and ‘dry gets drier’ paradigm. It has recently been found 
that although this paradigm has some validity over wet higher lati-
tudes and dry subtropical land regions, it does not hold true eve-
rywhere. For example, humid to transitional regimes are shifting 
to drier conditions23. Other changes in large-scale rainfall patterns 
have been explained through a ‘warmer-get-wetter’ mechanism, by 
which warm sea surface temperature (SST) patterns over the tropics 
cause increases in precipitation24.

Expectation of regional changes
Change in regional rainfall is a consequence of both thermodynamics 
and anthropogenic influence on dynamics25. Human-induced 

depletion in stratospheric ozone, for example, is found to cause 
a poleward shift of the southern extratropical jets, which affect 
regional precipitation patterns in the Southern Hemisphere26,27. 
The storm track in the Northern Hemisphere, and hence rainfall in 
Europe, are also affected by changes in stratospheric circulation28.

More generally, the regional precipitation response to naturally 
occurring modes of variability, such as El Niño–Southern Oscillation 
(ENSO) and the North Atlantic Oscillation (NAO), is influenced by 
the basic state of the atmosphere and ocean14,29,30. It is to be expected 
therefore that anthropogenic perturbations to the basic state would 
lead to changes in regional teleconnection patterns. 

The regional character of anthropogenic precipitation change, 
therefore, results from complex interactions between natural vari-
ability and anthropogenic forcing. This is especially the case at 
regional scales. Indeed, variability related to teleconnections is not 
set to affect total precipitation over very large domains, because wet-
ter conditions in one place tend to be balanced by dryer conditions 
elsewhere31. In short, in order to disentangle the complex causes of 
regional precipitation change, we need to consider the following 
three aspects of the response: (1) external forcing may project onto 
internal variability, changing the amplitude or frequency of modes 
of climate variability, or altering the teleconnections that govern 
precipitation response, (2) the fingerprint of external forcing may 
reflect both thermodynamic and dynamic changes through forced 
changes to atmospheric energetics, moisture content, and large-
scale circulation, and (3) the precipitation responses to different 
external drivers such as greenhouse gases, aerosols, ozone, natural 
events will differ.

Modelling and observational uncertainties
Recent studies that have sought to detect and attribute anthro-
pogenic signals in large-scale zonal precipitation have com-
pared observations to CMIP5 (Coupled Model Intercomparison 
Project 5) model simulations with and without anthropogenic forc-
ings2,3. Anthropogenic increases in precipitation on global land and 
ocean are clear in model simulations (Fig. 1a–c). However attribu-
tion approaches require that like is compared with like — by com-
paring observations of the historical period to models that have 
been masked with the observational coverage. This means that the 
clear signals seen in models are obscured by sparse observational 
coverage2. These findings indicate that global as well as zonal trends 
are distorted by the aliasing of sparse observational coverage onto 
the multi-model means.

The robustness of the detection of global and large-scale trends 
(Figs 10.10 & 10.A.2 of ref. 6) needs to be tested by comparing model 
data with different datasets of long-term observations. One group 
of authors3, for example, detected seasonal changes in zonal-mean 
precipitation attributable to human activities in four observational 
datasets — albeit only for March–April–May and December–
January–February. However, the magnitudes of the temporal 
fingerprint of mid-to-high latitude positive trends and low latitude 
negative trends vary between observational datasets (Fig. 2). In fact, 
anthropogenic changes are detected for all seasons in only one of the 
observational datasets3. The sensitivity of findings to observational 
dataset illustrates the barriers imposed by observational uncertainty.

The above discussion has focused on uncertainties in obser-
vations of precipitation. It should not be forgotten, however, that 
effective model-observation comparison relies on accurate observa-
tions, not only of the variable in question, but also of forcing factors, 
including natural and anthropogenic aerosol. It has been found, 
for example, that natural desert-dust aerosols from North Africa 
and West Asia are positively correlated to Indian summer mon-
soon rainfall on short time scales, with the dust-induced heating 
favouring increased moisture convergence over the Arabian penin-
sula and hence the westerly flow and precipitation over the Indian 
subcontinent32. Such model based findings point to the increasing 

Detection of a change is the process of demonstrating that 
climate has changed in some defined statistical sense, without 
providing a reason for that change78. Attribution of causes of the 
change is defined as the process of evaluating the relative con-
tributions of multiple causal factors to a change or event with 
an assignment of statistical confidence6. Fingerprints are met-
rics or space-time patterns of the response of climate variables 
to anthropogenic forcings, such as greenhouse gas emissions, 
atmospheric pollutants, or natural forcings such as solar radia-
tion changes and aerosols from explosive volcanic eruptions. 
Most of the recent detection and attribution studies use climate 
models79 to estimate the expected fingerprints of change and the 
uncertainty of their estimate in observations of the real world. 
For an overview of techniques, see Appendix 9.2 of AR464 and 
Section 10.2.1 of AR56.

Box 1 | What is detection and attribution?
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land precipitation between the 1950s and 1980s and a subsequent 
recovery has been detected and attributed to increasing anthropo-
genic aerosols during 1950 to 1980s followed by a re-emergence of 
the greenhouse gas signal relative to the anthropogenic aerosol sig-
nal in later years36. Models with representation of the indirect effect 
of sulfate aerosols, together with the direct effect of sulfate aerosols 
perform better in representing the rate of decrease of precipitation in 
the 1950s and the recovery in the 1980s than the models that exclude 
the indirect effect47 although models still have shortcomings in rep-
resenting the timing of the recovery. There is thus a scientific oppor-
tunity to use these newly available simulations to decipher the joint 
influence of anthropogenic aerosols and greenhouse gas emissions 
on regional precipitation, and hence to detect anthropogenic trends. 

New methodologies
The base climate is expected to vary from one model to another. 
Averaging simplistically over output from many models may 

need for an improved understanding of the climatic response to aer-
osols, which will require more systematic modelling experiments 
exploring the sensitivity of the precipitation response to aerosol 
forcing uncertainty as well as improvements in the representation of 
aerosol forcing in models.

Many of the impacts of a changing water cycle are felt at 
regional and local scales rather than at continental or global scales. 
Observational uncertainty at any given grid point (of resolution 
of a few hundreds of kilometres) may be greatest at these scales33. 
Paradoxically, however, observational uncertainty may be less of a 
barrier to attribution at the regional than at the global level. At the 
largest spatial scales, many of the detection and attribution issues 
related to observational uncertainty stem from sparse spatial sam-
pling2 in observations, which means that the trends from models 
and observations can be badly distorted, losing much of the under-
lying signals. At local scales, in contrast, inconsistency in spatial 
sampling is less likely to contribute significantly to observational 
uncertainty. Instead, observational uncertainty reflects the scarcity 
of ground observations and consequent measurement/calibration 
errors. Such uncertainty may not, in itself, preclude robust detection 
and attribution of anthropogenic change in some regions, providing 
there exist temporally consistent ground or satellite based rainfall 
estimates. Indeed, at these scales, detection and attribution may be 
hampered more by the challenge of comparing models and observa-
tions, than by observational uncertainty itself. This is, in part because 
there are large discrepancies between the locations of simulated and 
observed features in the climatologies of precipitation that might be 
expected to cause differences in the anthropogenic response34. These 
discrepancies are compounded by the lack of robustness in model-
simulated internal variability35 causing uncertainty in the finger-
print3,36, or under sampling of the observed variability37 — which 
as described in earlier sections are a particularly serious issue at the 
regional scale.

A clearer view
The success of any approach to detection and attribution is contin-
gent on the model’s ability to represent the relevant processes over 
a particular region and season. Structural uncertainties in climate 
models (due to the differences in models’ structure leading to indi-
vidual model errors), although reduced since the Fourth Assessment 
Report38,39 (AR4), remain as a barrier to quantifying robust change in 
precipitation on regional scales40.

The need for improved process-representation has motivated 
recent work on improved model dynamics and resolution41, and the 
incorporation of individual processes and complex models of indi-
vidual parts of the climate system42. High horizontal and vertical reso-
lution, and improved parameterizations in climate models have been 
shown to improve representation in models of processes, such as: the 
vorticity of tropical cyclones, storm dynamics, atmospheric fronts, 
convection and blocking, clouds and their interactions with aerosols, 
gravity waves, ocean-biogeochemistry, land and sea ice, boundary 
layer and land-surface processes, and the strength of the local hydro-
logical cycle41–46. The development of both high-resolution climate 
models and Earth system models are thus instrumental in tackling 
regional climate problems. One group of authors, for example, per-
formed climate change experiments using a 1.5 kilometre resolution 
regional climate model and projected future increase in heavy down-
pours over the UK41. They illustrated that explicit convection and 
local storm dynamics are important in simulating the fine temporal 
and spatial scales of UK summer rainfall. 

Compared to CMIP3 models, many CMIP5 models represent 
first and second indirect effects of aerosols and improved aerosol-
cloud representations. On large spatial scales, these significant 
improvements in climate-model representation of aerosols have now 
enabled improved simulation of inter-decadal variability in tempera-
ture and precipitation36,47. A weakening of the Northern Hemisphere 
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Figure 1 | Observational uncertainties due to sparse coverage obscure 
expected fingerprints of change. a–c, Time-series of global mean 
precipitation anomalies (mm d-1) with respect to the baseline period of 
1961–1990, simulated by CMIP5 models forced with, both anthropogenic 
and natural forcings (All; orange/red lines) and natural forcings only 
(Nat., blue lines). land and ocean (a), land (b) and ocean (c) with all grid 
points. Multi-model means are shown in thick solid lines. Green stars 
show statistically significant changes at 5% level. The clear signals seen in 
simulations (above) are obscured by sparse observational coverage when 
the global land precipitation is masked by observational coverage2. Figure 
adapted with permission from ref. 2, © 2012 AGU.
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therefore obscure signals of anthropogenic change. For instance, 
variation between models of the location and seasonal timing of 
precipitation may hamper robust assessment of changes in the 
mean34,48,49. Novel methods of accounting for the mismatches 
between model climatologies offer a means of tackling the problem 
of consistent model changes being distorted by differences in clima-
tological features (for example, convergence zones) both between 
models, and between models and observations34,50. In order to cor-
rect feature location errors in global climate models, one group of 
authors applied a warping method34, which has been used in brain 
imagery registration, to monthly precipitation fields. The warping 
technique was found to improve the detectability of human influ-
ence50. Other model-observation comparison methods such as the 
model-by-model approach49 and space-scale smoothing48, which 
consider individual model runs as opposed to the multi-model 
ensemble mean, have also been shown to reduce feature-location 
biases and hence to identify robust changes in the location and 
magnitude of zonal extremes.

Natural variability, as well as systematic bias in models, can 
obscure part of the signal of anthropogenic change in precipitation. 
For example, the anthropogenic effect on the precipitation response 
to natural modes of variability is superposed on natural variation 
in the amplitude and frequency of these modes51–54. Aliasing natu-
ral internal variability and changes due to anthropogenic forcing in 
this manner would be expected to cause variations in the anthro-
pogenic effect on regional precipitation. So if, say, greenhouse gas 
forcing modifies the precipitation response to ENSO in a given 
region, the anthropogenic expression of precipitation change is 
more pronounced during periods when ENSO is active. These 

periods cannot be expected to coincide in free-running coupled cli-
mate models. Averaging precipitation over large model ensembles 
will therefore not reveal this component of the signal of anthropo-
genic influence. Rather detection and attribution techniques need 
to take explicit account of the drivers of precipitation variability 
(for example, ENSO, NAO) and to their effects on precipitation (for 
example, ENSO teleconnections) rather than just treating such vari-
ability as noise in the analysis. This type of process-based approach 
complements the application of detection and attribution tech-
niques directly to regional precipitation8,9 and can yield a clearer 
understanding of the role of natural and anthropogenic factors55.

On regional scales, therefore, in addition to analysing precipita-
tion directly, it is productive to investigate the processes underly-
ing precipitation change (process-based fingerprints). Examples of 
such fingerprints are the increased risk of heavy rainfall during mid-
latitude atmospheric river events in the UK56,57 and New Zealand58; 
the poleward migration of the storm track48 (Fig. 3) and the large 
scale dynamical implications of an expected intensification of the 
hydrological cycle15,20,59,60 that — at least over non-water limited 
regions23 of the earth including the oceans — many wet regions tend 
to get wetter and dry regions drier. As pointed out earlier it should 
be noted that the over simplicity of this expectation from theory 
and models is currently under discussion23. However, a temporal 
response pattern with wet tropical regions getting wetter and dry 
regions getting drier was apparent in simulations of the recent past 
and future projections from CMIP5 models, and was consistent with 
satellite rainfall observations for the tropical region20. ENSO vari-
ability can cause increase or decrease of regional rainfall over the 
land depending on the sign of the phase60 suggesting if the ENSO 
characteristics change such precipitation response that is governed 
by remote SST patterns may change too. On fine scales, shifting 
of the wet and dry regions may make it difficult to identify this 
expected pattern of change23,61,62. However, using two fingerprints of 
wet and dry processes, some authors59 detected an expected inten-
sification of the water cycle partly attributable to human-induced 
greenhouse gas forcing.

Anthropogenic change in precipitation is driven not only by 
greenhouse gas emission, but also by aerosol forcing that modu-
lates regional precipitation. Sulfate aerosol and desert-dust forc-
ings influence changes in the wet and dry conditions of Sahelian 
water cycle caused primarily by changes in West African Monsoon 
rains through changes in SST feedbacks and subsequent shifts in 
tropical convergence zones63,64. Simulated Sahel rainfall is found to 
weaken due to rapid changes in anthropogenic sulfur dioxide emis-
sions from Asia and Europe through a fast (less than three weeks) 
aerosol-radiation and aerosol-cloud response and a slow (more than 
three weeks) response (that is, decrease in West African Monsoon by 
adjustment of Walker circulation) caused by atmosphere and land-
surface feedbacks65. Although there was a decrease of Sahel rainfall 
during the 1970s and 1980s, since then there has been some recov-
ery of Sahel rainfall that could have been influenced by increasing 
levels of greenhouse gases in the atmosphere as well as changes in 
anthropogenic aerosol precursor emissions66.

Event attribution
The previous discussion has highlighted the importance of identify-
ing and isolating processes underlying anthropogenic change in pre-
cipitation. This can be accomplished, as described in the studies cited 
above, by explicitly isolating candidate processes and investigating 
how they are affected by anthropogenic climate change. A further 
refinement is to investigate the anthropogenic contribution to the 
processes underpinning individual extreme events — a technique 
known as event attribution.

Event attribution studies seek to determine how anthropogenic 
forcings have altered the magnitude or probability of a particular 
type of extreme weather or climate-related event as experienced in 
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Figure 2 | Magnitudes of zonal mean land precipitation trends are 
dependent on observational datasets. Comparison of observed trends 
(Obs., solid lines) using 4 observational datasets11,80–82 for 1951–2005 (top). 
The ranges of CMIP5 simulations are in grey shading and the multi-model 
ensemble mean (MM) is a black dashed line. The blue (orange) shadings 
show latitudes where all observed datasets show positive (negative) 
trends. Comparison of simulated trends (sims; bottom) using CMIP5 
historical (All) simulations (individual simulations shown by grey dashed 
lines; multi-model mean shown by the black dashed line), and the natural 
forcing only (Nat.) simulations (MM; blue dashed line) with the future 
(2006–2050) trend using RCP4.5 simulations (5–95% range is in green 
shading; MM in green dashed lines). Blue (orange) shading indicates 
latitudinal regions where more than two-thirds of the historical simulations 
show positive (negative) trends4. Figure reproduced with permission from 
ref. 4, © 2015 AMS.

PERSPECTIVE NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2976

©
 
2016

 
Macmillan

 
Publishers

 
Limited.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited.

 
All

 
rights

 
reserved.

http://dx.doi.org/10.1038/nclimate2976


NATURE CLIMATE CHANGE | VOL 6 | JULY 2016 | www.nature.com/natureclimatechange	 673

the observed record67–69. In recent years efforts have been made to 
carry out such studies shortly after the events in question, for exam-
ple in the publication of an annual series of reports that explain 
extreme events of the previous year from a climate perspective70. 
However, although there is increasing evidence that robust attribu-
tion statements can be made about an anthropogenic contribution 
to the likelihood of many extreme warm events, the role of human 
influences on extreme precipitation events is decidedly mixed71 
consistent with previous findings about the difficulties of robustly 
attributing precipitation events. Nevertheless such diagnostic 
approaches to attribution have made some headway in breaking 
down the problem into thermodynamic and dynamical compo-
nents72 and in devising modelling strategies to quantify the different 
contributions from anthropogenic and natural forcings, and aspects 
of internal variability66. It is therefore becoming possible to attribute 
changes in probability of some types of regional extreme precipi-
tation event through developing an understanding of the thermo
dynamic and dynamic contributors55,73. One group of authors argue 
that in attributing extreme climate events it is more useful to regard 
the extreme circulation regime or weather event as being largely 
unaffected by climate change and to concentrate solely on the ther-
modynamic component of an anthropogenic impact on the event in 
question74. However it is important to consider dynamic factors as 
well as thermodynamic factors and to consider the extent to which 
dynamical aspects may have changed, as it is both that contribute to 
the risk of a particular event55,73,75,76. Also attention should be given 
as to whether there are non-linear interactions between the two, as 
discussed above.

The way ahead
Based on our discussion of scientific opportunities and challenges, 
we emphasize that quantification of the effects of human influence 
on precipitation across the globe crucially depends on develop-
ing and applying process understanding. Given current observa-
tional uncertainties4 and limitations in models39 simply waiting for 
improvements in observations and models to deliver clearer detec-
tion and attribution results seems an insufficient response to the 
challenge of better understanding how climate change is affecting 
precipitation around the globe. For example some of the important 
recommendations proposed by some authors4, such as the obser-
vational data rescue, improvements in the observational coverage 
and models could take years to implement. Clearly observations and 
models are continuously improving and detection and attribution 
analyses should take advantage of such advances. But adaptation 
decisions could be even better informed if it were possible to incor-
porate process understanding more in detection and attribution 
studies. Those adaptation decisions that are based on robust climate 
projections are much stronger where the projections are based on 
a firm foundation of physical understanding and underpinned by 
robust attribution studies. Hence attribution studies are central to 
informed adaptation planning and decision making. Even where 
large uncertainties remain, additional useful information could 
be obtained and applied in a risk-based framework62 based on an 
understanding of the mechanisms at work. 

In particular, we need to better understand the expected effect 
of anthropogenic climate change on modes of variability and their 
teleconnections with regional precipitation29. Disentangling these 
effects will allow for an improved understanding of the extent to 
which regional changes are anthropogenically caused versus being 
caused by natural variations, either internally generated within the 
climate system or externally forced, such as by solar variability or 
explosive volcanic eruptions. It is not always reasonable to consider 
internal variability simply as ‘noise’ to be filtered out. 

Recent process-based detection and attribution approaches48, 
which consider the signal or the forced response being thermo-
dynamic and/or dynamic in origin, have shown some success. 

There is indication that the anthropogenic signal could also be 
expressed in part through changes in amplitude, frequency and 
modes of natural internal variability. An alternative approach 
would be to look directly at the anthropogenic signal as a net 
effect of rainfall changes due to (1) thermodynamic contribution, 
(2) dynamic contribution (which includes changes in circulation, 
modes of variability and changes in teleconnections due to changes 
in modes of variability). Analyses quantifying changes in natural 
internal variability77 would be a valuable addition to quantifying 
forced changes over regions where internal variability on interan-
nual timescales is changing. However, it is very difficult to robustly 
detect changes in observed variability for a highly noisy climate 
variable as precipitation.

New metrics that best express robust changes in the water cycle 
would aid in identifying anthropogenic changes. For example this 
could involve calculating areas of land with precipitation changes 
at particular thresholds12 or could involve combining terrestrial 
observations of precipitation with oceanographic observations 
of salinity6.

In summary, we have shown that, even in the face of imperfect 
models and observations, progress can be made in detecting and 
attributing changes in regional precipitation. Improved process 
understanding, innovations in detection and attribution meth-
odologies, and novel methods of confronting models with obser-
vations can now be brought to bear on this highly challenging 
problem. Development of high quality observational datasets and 
high-resolution models will be helpful and have substantial pay 
off over the longer term. But in the meantime, innovative methods 
for analysing the observations and models we have available now 
could yield important additional information to inform societies 
and policymakers about the nature of changing precipitation at fine 
spatial scales.
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Figure 3 | Simulated process-based fingerprint of anthropogenic 
precipitation change. a, Zonal mean boreal winter precipitation 
observations for 1990. Local extrema are marked in dark blue 
(mid-latitude storm tracks), red (subtropical dry zones), and green 
(equatorial tropical peak). Cyan, purple, and yellow circles indicate half-
max points. b, Multivariate fingerprint of forced precipitation change as 
thermodynamic  and dynamic process indicators. The thermodynamic 
empirical orthogonal function (EOF) loading is plotted on the vertical axis 
and the direction and magnitude of dynamic EOF loading are displayed 
as arrows showing the wet-gets-wetter and dry-gets-drier pattern in 
precipitation intensity and the poleward extension of precipitation over 
storm track and subtropical arid latitudes in both hemispheres48. Figure 
reproduced with permission from ref. 47, © 2013 PNAS.
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