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Abstract
The Lower Carboniferous (Visean) Granton Lagerstätte (Edinburgh, Scotland) is principally

known for the discovery of the conodont animal, but has also yielded numerous crustaceans

and other faunas. Here we report on small branching colonies, reaching 10 mm in length.

They are small, erect, arborescent, and irregularly branched with predominant monopodial

and dichotomous growth. They bud in a single plane. In one specimen the wall microstruc-

ture is well preserved and it is composed of evenly spaced, linear fibers, running parallel to

the axis of the stems, and connected by transverse bars. We discuss possible biological

affinities of these organisms; we consider algal, poriferan, hydrozoan and bryozoan affini-

ties. The general pattern of branching, presence of fan-like structures (interpreted here as

possible gonophores) and microstructure suggests affinity to Hydrozoa, affinity to non-calci-

fying algae is less likely. Assuming hydrozoan nature; the microstructure might suggest

affinities with the extant family Solanderiidae Marshall, 1892 that possess an internal

chitinous skeleton. The EDS analysis shows that fossils discussed here are preserved as

phosphates. The skeletons were probably not mineralized, the presence of phosphorus

suggests that the colonies were originally composed of chitin. We describe these organisms

as Caledonicratis caridum gen. et sp. nov. (Solanderiidae?, Capitata?). Colonies of C. cari-
dum gen et. sp. nov. sometimes encrust the exuviae of crustaceans, which very probably

lived in fresh to brackish water thus indicating a likely habitat of Caledonicratis.

Introduction
The Granton Lagerstätte (near Edinburgh, Scotland; Fig 1) is principally known for the discov-
ery of the conodont animal [1], but has also yielded numerous crustaceans (e. g., [2, 3, 4]) and
other faunas (e.g., [5, 6]). Among vertebrates, molluscs and various invertebrates, Briggs and
Clarkson [5] described a certain number of branching fossils that they considered as either
bryozoans, hydrozoans, or algae. The aim of this paper is to describe them in detail and to dis-
cuss their possible hydrozoan affinities.
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LWM and HWM refer to LowWater Mark and High Water Mark respectively. Based upon
British Geological Survey geological map. 1:50000 Series. Edinburgh Scotland Sheet 32 E [7],
with the permission of the British Geological Survey.

Cnidarians, a phylum close to the root of the evolutionary tree of animals [8], are common
fossils, but not all groups are represented evenly throughout time. Corals of various groups,
due to the presence of a carbonate skeleton have a good fossil record; on the other hand, hydro-
zoans, being usually soft-bodied, are quite rare. Therefore hydrozoans, despite their long evolu-
tionary history, are scarce as fossils. In contrast to their rarity in the fossil record, recent
hydrozoans are very diversified, with more than 3,500 recent species known [9], as compared
to corals with about 6,000 species known. As a result of such a great diversity hydrozoan phy-
logeny has been intensively studied [10, 11, 12]. The fossil record provides a necessary tool for
the calibration of molecular phylogenetic trees and for that reason every discovery of a fossil
hydrozoan is important for the understanding of evolutionary history of this group.

Several soft-bodied taxa of hydrozoans have been described from the Palaeozoic; the oldest
hydrozoan medusae are Cambrian [13] and the oldest hydrozoan polyps are these of Sinobryon
elongatum Baliński et al. 2013 from the Ordovician of Hubei, China [14]. A limited number of
other non-skeletal hydroids has been reported throughout the Palaeozoic, but most of them,
due to a poor state of preservation were described under open nomenclature [15]. In some
cases, however, it has been possible to assign fossil hydroids to modern families. The porpitoid

Fig 1. A map showing the locality of the Granton Shrimp Bed at Granton, Edinburgh.

doi:10.1371/journal.pone.0144220.g001
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Pseudodiscophyllum vindermerense Fryer & Stanley 2004 (incorrectly ‘vindermerensis’ in the
referred publication) has been described from the Silurian of Cumbria, England [16]. Several
plumularioid species of the genus PlumalinaHall 1858 from the Silurian and Devonian of
North America have been reviewed recently [15].

The exceptional preservation of one of the specimens discussed here might suggest their
possible affinities with the recent family Solanderiidae Marshall, 1892; the impact of this new
discovery for the calibration of molecular-based trees is discussed.

Material and Methods
The material consists of 36 specimens. The collection is depostited at the National Museums of
Scotland, Edinburgh, the repository numbers starting with NMS and RSM are given in the
description section with the holotype and paratypes. Specimens were studied under a Zeiss Dis-
covery.V20 stereoscopic microscope, using both polarized and unpolarized light at various
angles, at magnifications from 10× to 150×, and SEM (the microstructure images were taken in
1980's at the University of Edinburgh; others were taken at the Faculty of Biology, University
of Warsaw). Photos were taken with a Canon EOS 70D camera either using Zeiss Discovery.
V20 stereoscopic microscope or using Canon EF 100mm f/2.8L Macro IS USM Lens. Energy
Dispersive Spectroscopy (EDS) analyses on three uncoated specimens were performed at the
Faculty of Geology, University of Warsaw with Zeiss Sigma VP SEM, at 20kV and pressure 40
Pa. This method is commonly used in analysis of element distribution (elemental mapping) in
soft-bodied fossils (see explanations and case studies in [17] and [18])

The electronic edition of this article conforms to the requirements of the amended Interna-
tional Code of Zoological Nomenclature, and hence the new names contained herein are avail-
able under that Code from the electronic edition of this article. This published work and the
nomenclatural acts it contains have been registered in ZooBank, the online registration system
for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated
information viewed through any standard web browser by appending the LSID to the prefix
"http://zoobank.org/". The LSID for this publication is: urn:lsid:zoobank.org:pub:EA2A716F-
4317-477A-B74E-B3DD25A6714B. The electronic edition of this work was published in a jour-
nal with an ISSN, and has been archived and is available from the following digital repositories:
PubMed Central, LOCKSS.

The Granton Shrimp Bed—Geological Setting
Within the Midland Valley of Scotland, a graben lying between the Highland Boundary Fault
and the Southern Upland Fault, there are substantial thicknesses of Carboniferous sedimentary
rocks. There was also much volcanic activity during the deposition of the sediments, episodic
throughout the Carboniferous, which gives rise to a dramatic landscape. During the Dinantian
there were complex and shifting patterns of sedimentation, influenced by the northward drift
of the plate bearing what is now Scotland. Initially, in the eastern part of the Midland Valley,
sedimentation was fluviatile and lacustrine, with thin coals; these sediments belong to the
Tournaisian Inverclyde Group. But as the plate moved into a region dominated by tropical
rainfall, during the early Visean (Strathclyde Group), a substantial lake formed, known as Lake
Cadell. This was hemmed in to the north-west by the Clyde Plateau lavas, to the south-east by
the Lower Palaeozoic Southern Uplands, to the northeast by an old Siluro-Devonian volcanic
region and to the east by a great delta spilling down from a vast river system flowing from the
north. The lake is generally regarded as having contained fresh or brackish water [19] although
it was subject to intermittent invasion by the sea. Lake level fluctuated periodically, and oil
shales formed from time to time. There are eleven main seams, formerly mined, from the
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1870s to 1962. The Scottish Carboniferous, especially the oil shales, is renowned for the
superbly preserved fish and ostracodes that lived in the lake, and the fossil plants and tetrapods
from the surrounding forests. Yet there are horizons also where very delicate animals are
found, of a kind not normally preserved. There are two of these Fossil-Lagerstätten, in which
the most numerous fossils are ‘shrimps’, eumalacostracan crustaceans similar to those living
today, though lacking claws and generally less modified. These are the Gullane and Granton
(or Muirhouse) Shrimp Beds.

The Gullane Shrimp Bed, exposed at Cheese Bay, on the East Lothian coast and only 10 cm
thick, was apparently deposited in a thermally stratified lake, probably a fresh-water satellite of
Lake Cadell. It yields only the exquisitely preserved shrimp Tealliocaris Peach, 1908, and rare
fish and amphibians [3, 20, 21]. Two poorly preserved specimens of analyzed here fossils come
from this locality.

The Granton or Muirhouse Shrimp Beds are exposed on the southern shore of the Firth of
Forth, about 3 km from the centre of Edinburgh. Here the sandstones of an abandoned delta
lobe are overlain by lagoonal mud-shales, deposited in a relatively stagnant environment. The
Granton Shrimp Bed is a 35–45 cm thick horizon within this sequence, consisting of alternat-
ing organic-rich and organic-poor dolostone laminae. These were interpreted [22, 23] as
deposited in periodically exposed mud flats, and there is evidence of algal mats within this
sequence also [5], some of which are distorted or enrolled through slumping or current activity.
This sequence was presumably deposited at the margins of Lake Cadell or a satellite water
body. It is generally regarded as having been laid down in a fresh or brackish lake, though sub-
ject to occasional marine incursions from the east.

Systematic Paleontology
Remarks: The systematic position of the material described here is uncertain, we tentatively
assign it to Hydrozoa. Detailed discussion on its systematic position is given below. Systematics
here follow Schuchert [9].

Phylum: Cnidaria Verill, 1865 (?)

Class: Hydrozoa Owen, 1843 (?)

Subclass: Hydroidolina Collins & Marques, 2004 (?)

Order: Anthoathecata Cornelius, 1992 (?)

Suborder: Capitata Kühn, 1913 (?)

Family: Solanderiidae Marshall, 1892 (?)

Genus: Caledonicratis gen. nov.

LSID urn:lsid:zoobank.org:act:75B03B4E-9193-4ED9-BB45-F55A6382130A

Derivatio nominis: From Latin Caledonia–Scotland and cratis–network, because of colony
wall structure. The genus name is feminine.

Diagnosis: Colonies small, erect, arborescent, irregularly branched with predominant
monopodial and dichotomous growth. They bud in one plane. Wall microstructure composed
of evenly spaced, linear fibers, running parallel to the axis of stems, connected by transverse
bars.

Remarks: The record of Carboniferous soft-bodied hydroids is restricted, with two species
described from Mazon Creek (Westphalian, Illinois, USA)–the colonial Drevotella proteana
Nitecki and Richardson, 1972 [24] of unknown affinities and the solitaryMazohydra (Schram
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and Nitecki 1975 [25]; Baliński et al. [14] consider it as a problematic hydrozoan). Drevotella
has partially hydrorhizal growth, not observed on our specimens, its hydranths are broad and
rounded, and the colonies are much larger than those of Caledonicratis, attaining several centi-
meters. Caledonicratis also differs from the Recent Solanderia, with the latter having larger col-
onies and bubble shaped gonophores.

Caledonicratis caridum sp. nov.

LSID urn:lsid:zoobank.org:act:9565CF21-1292-467C-9701-848B491B22B9

Figs 2, 3, 4 and 5

1983. Branching organisms. Briggs and Clarkson, p. 164, pl. 20, figs 13–17.
1991. Hydroid. Briggs et al. 1991, text-fig. 12b.
Diagnosis: as for the genus
Material:

Holotype: Specimen NMS.G.2015.1.1 from Granton.

Paratypes: Granton: RSM.1982.66.18, RSM.1982.66.19, RSM.1982.66.21, RSM.1984.46.15,
NMS.G.2013.1 to 13, 15 to 22, 23, 25 to 31; Cheese Bay: RSM.1984.46.11 RSM.1984.46.12

Derivatio nominis: caridum, latinized plural genitive of Greek caris–shrimp, because found
in Granton Shrimp Beds.

Stratum typicum: Granton Shrimp Beds, Gullane Formation, Strathclyde Group, Visean.
Locus typicus: Granton, Edinburgh, UK.

Description
The colony. Colonies small, erect, arborescent, reaching maximally 10 mm in length.

Branching may be very irregular, but the general pattern can be described as monopodial with
secondary dichotomous outgrowths. The colonies are preserved lying on bedding planes, and
therefore are flattened. There is negligible overlap between branches even in extensively rami-
fying branches, and this indicates that the branching is essentially in one plane ([5]: p. 165).
In some of the specimens the main growing tip gives rise to lateral branches, which give rise
to further, often bifurcating branches. The angle between them usually ranges between 20
and 30°.

Branches are elongated, sometimes slightly thickened at the proximal end. They are usually
about 0.5 mm wide, but there is large variation in our material—some are shorter and wider,
some are long and slender. At the, or near to the proximal end of a branch, a small black dot
often occurs ("small nodule of dark mineral"; [5]), which is difficult to interpret. This structure
does not occur on all specimens and is not visible on the specimen with preserved microstruc-
tures. In some specimens there is a dark line running along the branch, close to its middle.

Fan-like structures. Besides dendroidal colonies, several isolated fan-like structures have
been found (Fig 3; specimens NMS.G 2013.34.2 NMS.G 2013.34.7, NMS.G 2013.34.8, NMS.G
2013.34.13). These structures seem to be composed of narrow tubes, with whitish thin edges
and a dark, nearly black, thick axial structure. Their size ranges from 1.5 to 4.5 mm. On one of
the specimens (NMS.G 2013.34.13) this structure seems to be connected with the Caledonicra-
tis caridum colony and it seems to have continuous structures with the rest of colony (Fig 3).

Microstructure. On one specimen (NMSG.2015.1.1) the microstructure of the fibers is
well preserved (Fig 4). The structure is composed of evenly spaced, linear fibers, running paral-
lel to the axis of stems. Some of these fibers reach width of 20 μm, but they may have been
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Fig 2. Examples ofCaledonicratis caridum gen et sp. nov. (A) Specimen NMS.G.2013.34.20. (B) Specimen NMS.G.2013.34.1. (C) Specimen NMS.
G.2013.34.26, encrusting a crustacean skeleton. All specimens from Granton, Edinburgh, Granton Shrimp Bed, Visean.

doi:10.1371/journal.pone.0144220.g002
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Fig 3. Caledonicratis caridum gen et sp. nov. with fan-like structures. (A) General view of the specimen. (B) Enlargement of a branch detail (C) and (D)
is a fan-like structure interpreted here as gonophore. (C) Top lighting. (D) The same structure, acute angle lighting. Specimen RSM 2013.34.13 from Granton,
Edinburgh, Granton Shrimp Bed, Visean.

doi:10.1371/journal.pone.0144220.g003
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thickened during diagenesis. They are spaced 20–30 μm apart. These linear fibers are con-
nected by transverse bars at intervals of 50–120 μm. It seems that these structures form the
walls of a hollow tube. At the proximal part of the specimen under discussion this microstruc-
ture seems to be covered by another layer (Fig 4B—top left corner and Fig 4D, see reconstruc-
tion on Fig 5). The exact spatial relation between this layer and the fibrous one is unclear. This
second layer may be either primary or diagenetic. Fibrous microstructure is faintly visible on
two other specimens (NMS.G 2013.34.4 and NMS.G 2013.34.13).

Biological affinities of the Granton fossils
Briggs and Clarkson [5] briefly described and illustrated the branching organisms from the
Granton Shrimp Bed. They discussed the possible biological affinities of these fossils and stated
that they may be either bryozoans, hydrozoans or algae. We briefly summarize the arguments
pro and contra for various possible affinities, adding also poriferans.

Fig 4. Microstructure ofCaledonicratis caridum gen et sp. nov., holotype. (A) General view of a branch. (B-D) Details of the microstructure composed of
evenly spaced, linear fibers, running parallel to the axis of the stems. SEM images of the holotype, specimen NMS.G.2015.1.1 from Granton, Edinburgh,
Granton Shrimp Bed, Visean.

doi:10.1371/journal.pone.0144220.g004
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Our material slightly resembles biocalcifying Devonian and Carboniferous algae, such as for
example the dasycladacean Issinella [26]. Such algae are usually an order of magnitude smaller
(usually sub-millimetric sizes), besides, our specimens are preserved as phosphates rather than
carbonates (see discussion on taphonomy); biocalcifying algae would be probably be preserved
as the latter. On the other hand, specimens from Granton resemble strongly multicellular calci-
fying algae such as Ungdarella or Komia. They are most commonly regarded as algae [27, 28],
however, their taxonomic status was often questioned and they have also been compared with
stromatoporoids or hydrozoans [27, 29]. Both genera display elongated, rectangular cells not
visible in any of our specimens; also the pattern of branching seems to be much less regular
than that of the material investigated here ([30]: fig. 76). What is more, both genera are known

Fig 5. Comparison ofCaledonicratis caridum gen. et sp. nov. and extant Solanderia minima. (A) A schematic drawing of a C. caridum branch, based
on the holotype. Upper picture corresponds to the microstructure shown on the Fig 4B and 4C, lower corresponds to structures shown on the Fig 4D. Note
that structure visible on the lower picture may be a diagenetic coating. (B) Microstructure of Solanderia minima (picture on the basis of the pl. V fig. 3 from
[44]). Drawings by BogusławWaksmundzki.

doi:10.1371/journal.pone.0144220.g005
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from the late Palaeozoic shelf carbonates (they contributed to reef formation [31]), and there-
fore their presence in the Late Palaeozoic fresh or brackish water (see discussion on ecology)
may be unlikely. Our material also resembles the non-calcifying alga Perissothallus, described
from the late Carboniferous and Permian of USA and Germany. Perissothallus is similar in its
branching pattern, but this alga is much larger, with immature thalli exceeding several cm, and
reaching nearly 20 cm, but these algae are preserved as brown impressions [32]. It must be
noted that the Perissothallus from USA has been found in similar paleoecological setting, that
is freshwater with possible marine incursions [32]. Most of non-calcifying algae are preserved
by carbonization, but in Phaeophyta cells contain calcium alginate, which might possibly lead
to phosphate preservation. Therefore algal affinity cannot be definitely ruled out (such a con-
clusion has been already formulated by Briggs and Clarkson, [5]).

The reticular microstructure of our specimens may slightly resemble either demospongean
sponges of the order Agelasida or some calcareous sponges. Representatives of the former
order usually have characteristic monactine megascleres [33] invisible in our material. In the
geological setting where calcareous fossils occur (such as mollusks: [5]) calcareous sponges
would be preserved as calcite or aragonite rather than phosphates (see section on taphonomy).

Our specimens resemble also ctenostome bryozoans related to the genus Alcyonidium
Lamoroux, 1813, from which they differ in their smaller size and budding in one plane. Also,
the internal structure and arrangement of zooids within the colony branch of Alcyonidium is
chaotic ([34]: fig. 1B); in our material such internal structures cannot be traced in the branches.
Another ctenostome that slightly resembles our material is Vesicularia Thompson, 1830. Rep-
resentatives of this genus are strongly chitinized, with dichotomous or trichotomous branch-
ing, but presence of elongated, bubble shaped autozooids [35, 36] make it different from
Caledonicratis, where such structures are absent.

In the phylactolaematan Plumatella the zooids are much more distinct [37, 38], as is the pat-
tern of branching, which in Plumatella is rarely dichotomous and moreover, the orifices of the
zooids are usually on one side [38]. Moreover, the microstructure of the chitinous skeleton in
Plumatella is solid [39], thus entirely different from the microstructure of Caledonicratis.

Most of our specimens do not have preserved skeletal microstructures, but one of them has
a well preserved reticular, anostomosing structure as described above. Moreover, in several
specimens remains of such structures are also present, but poorly visible. Chitinous internal
skeletons composed of fibers are characteristic for the extant hydrozoan family Solanderiidae
Marshall, 1892 [40, 41, 42, 43, 44]. As only one specimen has such structures well preserved,
and on several others they are just faintly visible (as longitudinal ribs) it remains unclear how
far these structures are representative for the whole material. As there is a morphologic contin-
uum between the specimens, we assign them all to one species.

The family Solanderiidae is monogeneric, with Solanderia Duchassaing & Michelin, 1846,
being the only genus. This genus contains probably seven extant species [9, 41]. Molecular
analyses show that representatives of this family are closely related toMillepora, Zanclea and
Asyncoryne [11]. The chitinous skeletons of S.minima (Hickson, 1903) or S. secunda (Inaba,
1892) resemble structures visible in our material (cf. [45]: pl. 5, figs. 1–4 and pl. 12, figs. 1–4).
Comparison of skeletal structures of Caledonicratis and Solanderia is shown on the Fig 5.
Ridges seen in Caledonicratis are not exactly the same as in Solanderia, but one must remember
that images of Solanderia are based on extant specimens, and the material of Caledonicratis is
flattened and remineralized. There is also significant variation in the skeleton shape of Solan-
deria, both intraspecifically and intragenerically [45]. Also the budding in one plane is charac-
teristic of several species of Solanderia [40], especially in small colonies [42]. Although
solanderiids usually form larger colonies, such species as S. secundamay be as large as 4–8 cm
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in height [46], or S dendritica attaining 7 cm in height [45] thus sizes very similar to these of
Caledonicratis.

The fan-like structures that are described above may be interpreted as gonophores. They are
different from gonophores known from the recent Solanderia; in the latter genus the fixed
sporosacs [45] are round [43, 45, 47], but they may also show distinct traces of radial canals
[30, 43, 48]. The size of Solanderia gonophores is less than that of the structures discussed here.
Male gonophores of Solanderia secunda have 200–250 μm in length, and female reach 450 μm
[43]. In these species where gonophores are known, they are placed on short stalk, having 1/3
of the gonophore length [30]. It also must be kept in mind that our material is flattened, there-
fore obtaining its original shape requires restoration. It may be assumed that the observed
shape is close to a hypothetical longitudinal section of this structure, therefore similar to a
slightly conical ellipsoid. Another possible interpretation of these structures is that they may
also resemble hydranths of Cladocoryne, where tentacles form a fan-shaped structure; both are
similar in size [49].

It is difficult to interpret the black mineral grouping at the end of branches, especially since
it does not occur in all specimens. These may be either thorns, which occur in some solander-
iids (e. g. [45]), however this interpretation is doubtful, as they do not occur regularly. Another
interpretation may be that at these places occur structures other than normal hydranths (such
as attachment places of gonophores) that had a slightly different chemical composition, caus-
ing black mineral grouping. On the other hand, if interpreted as algae, these black mineral
groupings might represent reproductive conceptacles [5]. The origin of these structures is,
however, speculative.

Taking into account: microstructure of probably chitinous origin, branching pattern and
possible polymorphism of zooids we may state that our material is either related to the Recent
family Solanderiidae, which seems to be more probable, or to an alga similar to Perissodactylus.

Ecology of Caledonicratis caridum gen et sp. nov.
The fauna in the Granton Shrimp Beds is much more diverse than that of the Gullane Shrimp
Beds. Most of delicate fossils occur in bands, very probably as a result of mass mortality events.
The commonest fossils are crustaceans, the small, ubiquitous and endemicWaterstonella, the
larger, rarer predator Anthracophausia, uncommon Anthracocaris, Tealliocaris and Pseudoga-
lathea, and very rare Bairdops [4, 5, 50]. There are also a number of individuals of the syncarid
Minicaris, and the large ostracode Eocypridina. The salinity of the original habitat in which
these lived remains uncertain, since both fish and crustaceans abound today in marine to fresh-
water environments. Living syncarids, however, are known only from fresh-water lakes and
rivers in Tasmania. The diversity of crustaceans testifies to a dramatic Lower Carboniferous
eumalacostracan radiation. There are also unequivocal marine fossils in the Granton Shrimp
Bed, orthocone cephalopods, the marine planktonic worm Eotomopteris [51], and several
conodont animals [1, 52, 53, 54]. The salinity habitat of the chordate Conopiscus is unknown
[55]. A likely isopod has recently been discovered, along with a new Eotomopteris specimen
[56], and a possible sipunculid has been recorded [6].

As briefly outlined, fossil faunas of the Granton Shrimp Beds give contradictory information
on the salinity of the Caledonicratis habitat. A likely scenario, which reconciles all the appar-
ently conflicting lines of evidence, is that Lake Cadell normally contained fresh or brackish
water. The endemic fauna consisted of the abundant ‘shrimps’Waterstonella and Anthraco-
phausia, living in the lake along with fish and probably other crustaceans. The syncarids may
also have lived in the lake itself or were inhabitants of rivers draining into the lake. Periodically
there were storm surges from the east, and during such times marine organisms were brought
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in. The conodont animals are sometimes partially rotted, as is the case also with the tomopter-
ids, thereby suggesting long-distance transport. So, in what conditions did the Caledonicratis
organisms originally live? They are very abundant, as are the crustaceans, and occur at several
levels, including all those where crustaceans are found. In some instances hydroids are actually
growing on the bodies or exuviae of the crustaceans (Fig 2A). This indicates that they lived in
the same habitat. It is likely, therefore that Caledoniocratis organisms were of fresh or brackish
water origin; such is the most parsimonious interpretation. This conflicts with the data on
modern solanderiids, which are exclusively marine [9]. As stated above, these organisms may
be related to brown algae, which are also nearly exclusively marine [57]. Fresh or brackish
water organisms have usually efficient osmoregulatory mechanisms and high tolerance to
salinity changes [58]. Although very rarely, sometimes members of a single hydrozoan
genus can inhabit brackish and fully marine environments, as it is in case of Pachycordyle
(Anthoathecata: Filifera; [59]). While this is only distantly related to solanderiids, it shows that
shifts between environments are possible in hydrozoans. It might therefore have happened that
during the long evolution of this group, some members of the Solanderiidae colonized brackish
environments.

Recent hydrozoans often encrust crustaceans, mostly crabs and hermit crabs (e.g. [60, 61,
62, 63]). Shrimps rarely host hydrozoans, as is in the case of Earleria corachloeae [64]. As rep-
resentatives of Caledonicratis caridum sometimes occur on shrimps (or their exuviae) it may
be inferred that (at least in cases of syn vivo encrustation, which cannot be proven in this case)
they were ecologically similar to the case of E. corachloeae.

Colonies discussed here are either found isolated, or attached to shrimp exuviae or carcasses.
It is unknown whether the attachment took place syn vivo or post mortem, using carapaces only
as hard substrate. If the hydrozoans were attached to living shrimps, the relationship between
the two might have been close to parasitic, similar to extant filiferansHydrichthys Fewkes, 1887
or Larsonia Boero, Bouillon et Gravilli 1991 [65]. These are not closely related to Solanderiidae,
but the bryozoan symbiont Zanclella, possessing either few or no tentacles [66, 67] may be con-
sidered as similar to our material. Unfortunately, without further material this issue cannot be
resolved.

Taphonomy
The specimens are preserved on bedding planes, therefore flattened. However, the negligable
overlap of branches suggests that the budding in the colonies under discussion was in a single
plane.

SEM/EDS analyses performed on three specimens (NMS.G.2014.34.13. NMS.G.2014.34.17
and RSM 1982-66-18) evidence the presence of phosphorus, calcium and oxygen (Fig 6). On
these pictures, the relative abundance of a given element is shown—the lighter the colour, the
higher the relative abundance of a given element. Such concentrations evidence phosphatiza-
tion of the material [68]. Phosphorus is present along nearly the whole outline of the colony,
but absent in the central part of the specimen (Fig 6b), but as specimens are partly preserved
on the part, and partly on the counterpart it can be assumed that fragments of phosphatized
elements were left on the counterpart. The area around the branches of the fossil body has a
very low concentration of phosphorus. On the other hand, absence of microstructures in most
of the specimens may suggest that they were non-mineralized. These observations may there-
fore suggest that the skeleton of Caledonicratis was built by a substance possibly related to chi-
tin [69], as it is in modern solanderiids. The very early phosphate diagenesis may be either
related to a contemporaneous algal bloom, and deposited as fluorapatite by bacteria which cov-
ered and penetrated the dead bodies of the various invertebrates retaining the form of the
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animal after the soft parts had rotted away [4]. Another explanation, mentioned above is that
brown algae are possibly more prone to phosphatization, therefore this way of phosphatization
may suggest algal affinity. These phosphates may be also of secondary origin, as a result of later
phosphatization of carbonates. However, also shrimps are preserved in similar way [4] and this
suggests that hydroid skeletons were originally chitinous. It can also be added that in these

Fig 6. EDS elemental mapping ofCaledonicratis caridum gen et sp. nov. (A) General view of a specimen. (B) Phosphorus concentrations. (C) Calcium
concentrations. (D) Oxygen concentrations. The lighter the color, the higher relative abundance of a given element. Please note that abundances are not
comparable between pictures, and reference level is different for each element. Specimen RSM 1982.66.18.(P) from Granton, Edinburgh, Granton Shrimp
Bed, Visean.

doi:10.1371/journal.pone.0144220.g006
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cases where chitinous skeletons are preserved as phosphates, algae are preserved as carbona-
ceous films, as is in the Famennian of Kowala, Holy Cross Mountains, Poland [68].

The calcium distribution is somewhat different from that of phosphorus. This may be
caused by presence of other minerals, such as calcite. Also the oxygen distribution pattern may
be affected by presence of other minerals, as this element occurs commonly in e. g. dolomite
(the bulk of rock in the specimens is dolomitic).

Possible Evolutionary Significance of Caledonicratis caridum gen
et sp. nov.
Assuming the hydrozoan nature of Caledonicratis caridum gen. et sp. nov. and its possible rela-
tion to the extant family Solanderiidae, its discovery may be significant in understanding of the
evolution of Zancleida. As already shown [11], the Solanderiidae are one of the most derived
families within the Zancleida. The finding of a possible solanderiid from the Early Carbonifer-
ous indicates that the divergence of all families of the Zancleida probably had taken place not
later than in the Visean.

If the new species described here is an alga, its evolutionary significance would depend on
more precise classification, which on present material is not possible.

Conclusions

1. Caledonicratis caridum gen et sp. nov. is probably a hydrozoan, showing potential affinities
with the extant family Solanderiidae Marshall 1892; it therefore may suggest the fossil
record of Solanderiidae in the Visean. Its algal affinity, although possible is much less likely.

2. Caledonicratis caridum gen et sp. nov. lived in the freshwater or slightly brackish Visean
Lake Cadell; it therefore seems that Solanderiidae might have been primarily freshwater or
brackish, whereas modern representatives of this family are exclusively marine.

3. The Solanderiidae are the most derived family within the Zancleida. If Caledonicratis is
indeed a solanderiid it can be concluded that the divergence of all families of Zancleida
probably had taken place not later than in the Visean.

Acknowledgments
We would like to express our gratitude to various specialists that devoted their time to discuss
with us the affinities of Caledonicratis. Heyo Van Iten (Hanover, IN) and two anonymous jour-
nal referees gave comments that helped to improve this manuscript significantly. We thank
Peter Schuchert (Geneva), the late Paul F. S. Cornelius (London), Paul D. Taylor (London),
Andrzej Pisera (Warsaw), Stanisław Skompski (Warsaw) and Robert Riding (Knoxville, TN)
for comments and discussions, although views expressed in this paper may not always reflect
their own. Derek Briggs (New Haven, CT) kindly made his specimens available for our study.
We are also grateful to Adam T. Halamski and Anna Żylińska (both Warsaw) for commenting
on several versions of the manuscript. Julita Nowakowska and Petras Jokoubauskas (both War-
saw) kindly assisted in SEM and EDS analyses. Separate thanks are due to Mr. BogusławWaks-
mundzki (Warsaw) for drawings of Caledonicratis and Solanderia.

Author Contributions
Conceived and designed the experiments: MKZ ENKC. Performed the experiments: MKZ
ENKC. Analyzed the data: MKZ ENKC. Wrote the paper: MKZ ENKC.

Enigmatic Fossils from the Carboniferous of Scotland

PLOS ONE | DOI:10.1371/journal.pone.0144220 December 23, 2015 14 / 17



References
1. Briggs DEG, Clarkson ENK, Aldridge RJ. The conodont animal. Lethaia 1983; 16: 1–14.

2. Tait D. The rocks between Leith and Granton, with historical notes on the working of theWardie Coal.
Trans Edinb Geol Soc 1925; 11: 346–351.

3. Briggs DEG, Clarkson ENK. The Lower Carboniferous Shrimp Tealliocaris from Gullane, East Lothian,
Scotland. Trans R Soc Edinb Earth Sci 1985; 76: 1773–201.

4. Briggs DEG, Clark NDL, Clarkson ENK. The Granton shrimp-bed, Edinburgh—a Lower Carboniferous
Konservat-Lagerstätte. Trans R Soc Edinb Earth Sci 1991; 82: 65–86.

5. Briggs DEG, Clarkson ENK. The Lower Carboniferous Granton ‘Shrimp-Bed’ Edinburgh. Spec Pap
Palaeontol 1983; 30: 161–177.

6. Muir LA, Botting JP. A Lower Carboniferous sipunculan from the Granton Shrimp Bed, Edinburgh. Scot
J Geol 2007; 43: 51–56.

7. British Geological Survey geological map. 1:50000 Series. Edinburgh Scotland Sheet 32 E [map]. Not-
tingham: British Geological Survey; 1977.

8. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault M, et al. Phylogenomics Revives
Traditional Views on Deep Animal Relationships, Curr Biol 2009; 19: 706–712. doi: 10.1016/j.cub.
2009.02.052 PMID: 19345102

9. Schuchert P. Hydrozoa. Accessed through: World Register of Marine Species at http://www.
marinespecies.org/aphia.php?p = taxdetails&id=1337 on 2014-12-11

10. Cartwright P, Evans NM, Dunn CW, Marques AC, Miglietta MP, Schuchert P et al. Phylogenetics of
Hydroidolina (Hydrozoa, Cnidaria). J Mar Biol Assoc UK 2008; 88, 1663–1672.

11. Nawrocki AM, Schuchert P, Cartwright P. Phylogenetics and evolution of Capitata (Cnidaria: Hydro-
zoa), and the systematics of Corynidae. Zool Scr 2010; 39: 290–304. doi: 10.1111/j.1463-6409.2009.
00419.x

12. Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. Cnidarian phylogenetic relationships as revealed
by mitogenomics. BMC Evol Biol 2013; 13:5 doi: 10.1186/1471-2148-13-5 PMID: 23302374

13. Van Iten H, Marques AC, Leme JdM, Pacheco MLAF, Simões MG. Origin and early diversification of
the phylum Cnidaria Verrill: major developments in the analysis of the taxon's Proterozoic–Cambrian
history. Palaeontology 2014; 57:677–690. doi: 10.1111/pala.12116

14. Baliński A, Sun Y, Dzik J. Probable advanced hydroid from the Early Ordovician of China. Paläontol Z
2014; 88: 1–10. doi: 10.1007/s12542-013-0169-1

15. Muscente AD, AllmonWD. Revision of the Hydroid PlumalinaHall, 1858 in the Silurian and Devonian of
New York. J Paleontol 2013; 87: 710–725.

16. Fryer G, Stanley GDA Jr.. Silurian porpitoid hydrozoan from Cumbria, England, and a note on porpitoid
relationships. Palaeontology 2004; 47:1109–1119. doi: 10.1111/j.0031-0239.2004.00402.x

17. Moore RA, Lieberman BS, Preservation of early and Middle Cambrian soft-bodied arthropods from the
Pioche Shale, Nevada, USA. Palaeogeogr Palaeoclimatol Palaeoecol. 2009; 277: 57–62.

18. Orr PJ, Briggs DEG, Kearns SL. 'Cambrian Burgess Shale animals replicated in clay minerals. Science.
1998; 281:1173–1175. PMID: 9712577

19. Greensmith JT. Rhythmic deposition in the Carboniferous Oil-Shale Group of Scotland. J Geol 1962;
70: 355–364.

20. Peach BN. Monograph on the higher Crustacea of the Carboniferous rocks of Scotland. MemGeol
Surv GB 1908; 1–82.

21. Hesselbo SP, Trewin NH. Deposition, diagenesis, and structures of the Cheese Bay Shrimp Bed, East
Lothian. Scot J Geol 1984; 20: 281–296. doi: 10.1144/sjg20030281

22. Cater JML. Sedimentology of part of the Lower Oil-Shale Group (Dinantian) sequence at Granton, Edin-
burgh, including the Granton ‘shrimp bed’. Transactions of the Royal Society of Edinburgh: Earth Sci-
ences 1987; 78: 29–40.

23. Cater JML, Briggs DEG, Clarkson ENK. Shrimp-bearing sedimentary successions in the Lower Car-
boniferous (Dinantian). Cementstone and Oil Shale Groups of northern Britain. Trans R Soc Edinb
Earth Sci 1989; 80, 5–15.

24. Nitecki MH, Richardson ES Jr. A new hydrozoan from the Pennsylvanian of Illinois. Fieldiana. Geology
1972; 30: 1–8.

25. Schram FR, Nitecki MH. Hydra from the Illinois Pennsylvanian. J Paleontol 1975; 49: 549–551.

26. Mamet B, Roux A. Note sur genre Issinella (algue verte Paleozoique). Rev.Micropaleontol 1981; 23:
151–158.

Enigmatic Fossils from the Carboniferous of Scotland

PLOS ONE | DOI:10.1371/journal.pone.0144220 December 23, 2015 15 / 17

http://dx.doi.org/10.1016/j.cub.2009.02.052
http://dx.doi.org/10.1016/j.cub.2009.02.052
http://www.ncbi.nlm.nih.gov/pubmed/19345102
http://www.marinespecies.org/aphia.php?p�=�taxdetails&id=1337
http://www.marinespecies.org/aphia.php?p�=�taxdetails&id=1337
http://dx.doi.org/10.1111/j.1463-6409.2009.00419.x
http://dx.doi.org/10.1111/j.1463-6409.2009.00419.x
http://dx.doi.org/10.1186/1471-2148-13-5
http://www.ncbi.nlm.nih.gov/pubmed/23302374
http://dx.doi.org/10.1111/pala.12116
http://dx.doi.org/10.1007/s12542-013-0169-1
http://dx.doi.org/10.1111/j.0031-0239.2004.00402.x
http://www.ncbi.nlm.nih.gov/pubmed/9712577
http://dx.doi.org/10.1144/sjg20030281


27. Mamet B. Carboniferous Calcareous Algae. In: Riding R, editor. Calcareous Algae and Stromatolites.
Berlin: Springer-Verlag; 1991, p. 370–452.

28. Toomey DF, Johnson JH.Ungdarella americana, a new red alga from the Pennsylvanian of southeast-
ern NewMexico. J Paleontol.1968; 42:556–560.

29. Wilson EC, Waines RH, Coogan AH. A new species of Komia Korde and the systematic position of the
genus. Palaeontology. 1963; 6: 246–253.

30. Wray JL. Calcareous Algae. Develop Palaeontol Stratigr. 1977; 4:1–185.

31. Mamet B, Villa E. Calcareous marine algae from the Carboniferous (Moscovian-Gzhelian) of the Canta-
brian Zone (NW Spain). Rev Esp Paleontol. 2004; 19: 151–190.

32. Krings M, Klavins S, Barthel M, Lausberg S, Serbet R, Taylor T, et al. Perissothallus, a new genus for
Late Pennsylvanian-Early Permian noncalcareous algae conventionally assigned to Schizopteris (aph-
leboid foliage). Botanical Journal of the Linnean Society. 2007; 153(4):477–88.

33. Van Soest RWM, Hooper JNA. Order Agelasida Hartman, 1980. In: Hooper JNA, Van Soest RWM,
Willenz P (editors). Systema Porifera. New York: Kluwer Academic/Plenum Publishers 2002. pp. 817–
818.

34. Porter JS. Morphological and genetic characteristics of erect subtidal species of Alcyonidium (Ctenos-
tomata: Bryozoa). J Mar Biol Ass UK 2004; 84: 243–252.

35. Hayward PJ. Ctenostome bryozoans. Synopses Brit Fauna NS. 1985; 33: 1–169.

36. Bassler RS. Bryozoa. Part G. In: Moore RC, editor. Treatise on invertebrate paleontology, Lawrence:
Kansas University Press, p. 1–253.

37. Rogick MD, Van Der Schalie H. Studies on Fresh-Water Bryozoa. XVII, Michigan Bryozoa. Ohio J Sci.
1950; 50: 136–146.

38. Wood TS. Three new species of plumatellid bryozoans (Ectoprocta: Phylactolaemata) defined by stato-
blast nodules. J North Am Benthological Soc. 2001; 20: 133–143.

39. Walzl M, Wöss E. The soft body parts of freshwater bryozoans depicted by scanning electron micros-
copy. Denisia. 2005; 16: 49–58.

40. Bouillon J, Cornelius PFS. Redescription and affinity of the large hydroidChitina ericopsis Carter, 1873
(Cnidaria, Hydrozoa, Solanderiidae). J Nat Hist 1988; 22, 1551–1563.

41. Daly M, Brugler MR, Cartwright P, Collins AG, DawsonMN, Fautin DG et al. The phylum Cnidaria: a
review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 2007; 1668: 127–182.

42. Wineera JS. The Histology of a Species of SolanderiaDuchassaing & Michelin, 1846 from Auckland
Harbour, New Zealand, with Special Reference to the Internal Skeleton of the Solanderiidae (Coelen-
terata, Hydrozoa). Zool Publ Victoria Univ Wellington 1968; 43: 1–11.

43. Vervoort W. A redescription of Solanderia gracilis Duchassaing and Michelin 1846 and general notes
on the family Solanderiidae (Coelenterata: Hydrozoa). Bull Mar Sci Gulf Caribb. 1962; 12: 508–542.

44. Vervoort W. Skeletal structure in the Solanderiidae and its Bearing on Hydroid Classification. In: Rees
WJ, editor. The Cnidaria and their Evolution. Symp Zool Soc London. 1966; 16: 372–396.

45. Bouillon J, Wouters K, Boero F. Étude des Solanderiidae de la Baie de Hansa (Papouasie Nouvelle-
Guinée) avec une révision du genre Solanderia (Cnidaria, Hydrozoa). Bull Inst R Sci Nat Belg Biol
1992; 62, 5–33.

46. Calder DR. Some anthoathecate hydroids and limnopolyps (Cnidaria, Hydrozoa) from the Hawaiian
archipelago. Zootaxa. 2010; 2590: 1–91.

47. Millard NAH. Monograph on the Hydroida of Southern Africa. Annls S Afr Mus. 1975; 68: 1–513.

48. Wedler E, Larson R. Athecate hydroids from Puerto Rico and the Virgin Islands. Stud Neotrop Fauna E.
1986; 21: 69–101.

49. Bouillon J, Boero F, Seghers G. Redescription ofCladocoryne haddoni Kirkpatrick and a proposed phy-
logeny of the superfamily Zancleoidea (Anthomedusae, Hydrozoa, Cnidaria). Indo-Malayan Zool.
1987; 4: 279–292.

50. Clarkson ENK. The Granton Shrimp Bed, Edinburgh: crustaceans, conodonts, and conservation. Earth
Sci Conserv 1985; 22, 3–8.

51. Briggs DEG, Clarkson ENK. The first tomopterid, a pelagic polychaete from the Carboniferous of Scot-
land. Lethaia 1987; 20: 257–262.

52. Aldridge RJ, Briggs DEG, Clarkson ENK, Smith MP. The affinities of conodonts—new evidence from
the Carboniferous of Edinburgh, Scotland. Lethaia 1986; 19: 279–291.

53. Aldridge RJ, Briggs DEG, Smith MP, Clarkson ENK, Clark NDL. The anatomy of conodonts. Philos
Trans R Soc Lond B Biol Sci. 1993; 340: 406–421. doi: 10.1098/rstb.1993.0082

Enigmatic Fossils from the Carboniferous of Scotland

PLOS ONE | DOI:10.1371/journal.pone.0144220 December 23, 2015 16 / 17

http://dx.doi.org/10.1098/rstb.1993.0082


54. Knell SJ. The Great Fossil Enigma. Bloomington: Indiana University Press; 2012.

55. Briggs DEG, Clarkson ENK. An enigmatic chordate from the Lower Carboniferous Granton “Shrimp-
Bed” of the Edinburgh district, Scotland. Lethaia 1987; 20: 106–114.

56. Clark NDL. Shrimping at Granton—the Muirhouse 'shrimp-bed' revisited. Edinb Geol 2014; 55: 14–19.

57. Kadłubowska JZ. Zarys algologii. Warsaw: PaństwoweWydawnictwo Naukowe, 1975. pp. 1–503.

58. Pennak RW. The fresh-water invertebrate fauna: Problems and solutions for evolutionary success.
Amer Zool. 1985; 25: 671–687.

59. Stepanjats SD, Timoshkin OA, Anokhin BA, Napara TO. A new species of Pachycordyle (Hydrozoa,
Clavidae) from Lake Biwa (Japan), with remarks on this and related clavid genera. Sci Mar. 2000; 64
(Suppl.1): 225–236.

60. Dvoretsky AG, Dvoretsky VG. Epifauna associated with an introduced crab in the Barents Sea: a 5-
year study. ICES J Mar Sci. 2010; 67: 204–214.

61. Fernandez-Leborans G, Gabilondo R. Taxonomy and distribution of the hydrozoan and protozoan epi-
bionts on Pagurus bernhardus (Linnaeus, 1758) (Crustacea, Decapoda) from Scotland. Acta Zool.
2006; 87:33–48. doi: 10.1111/j.1463-6395.2006.00218.x

62. Fernandez-Leborans G, Gabilondo R. Invertebrate and protozoan epibionts on the velvet swimming
crab Liocarcinus puber (Linnaeus, 1767) from Scotland. Acta Zool. 2008; 89:1–17. doi: 10.1111/j.
1463-6395.2007.00287.x

63. Williams JD, McDermott JJ. Hermit crab biocoenoses: a worldwide review of the diversity and natural
history of hermit crab associates. J Exp Mar Biol Ecol. 2004; 305: 1–128.

64. Widmer CL, Cailliet G, Geller J. The life cycle of Earleria corachloeae n. sp. (Cnidaria Hydrozoa) with
epibiotic hydroids on mid-water shrimp. Mar Biol. 2009; 157: 49–58. doi: 10.1007/s00227-009-1294-y

65. Boero F, Bouillon J, Gravili C. The life cycle of Hydrichthys mirus (Cnidaria: Hydrozoa: Anthomedusae,
Pandeidae). Zool J Linnean Soc. 1991; 101: 189–199.

66. Boero F, Hewitt CL. A hydrozoan, Zanclella bryozoophila n.gen., n.sp. (Zancleidae), symbiotic with a
bryozoan, with a discussion of the Zancleoidea. Can J Zool. 1992; 70: 1645–1651. doi: 10.1139/z92-
229

67. Boero F, Bouillon J, Gravili C. A survey of Zanclea, Halocoryne and Zanclella (Cnidaria, Hydrozoa,
Anthomedusae, Zancleidae) with description of new species. Ital J Zool. 2000; 67: 93–124, doi: 10.
1080/11250000009356301

68. ZatońM, Filipiak P, Rakociński M, Krawczyński W. Kowala Lagerstätte: Late Devonian arthropods and
non-biomineralized algae from Poland. Lethaia. 2014; 47: 352–364.

69. Weaver PG, Doguzhaeva LA, Lawver DR, Tacker RC, Ciampaglio CN, Crate JM et al. Characterization
of Organics Consistent with b-Chitin Preserved in the Late Eocene CuttlefishMississaepia mississip-
piensis. PLoS ONE 2011; 6(11): e28195. doi: 10.1371/journal.pone.0028195 PMID: 22132239

Enigmatic Fossils from the Carboniferous of Scotland

PLOS ONE | DOI:10.1371/journal.pone.0144220 December 23, 2015 17 / 17

http://dx.doi.org/10.1111/j.1463-6395.2006.00218.x
http://dx.doi.org/10.1111/j.1463-6395.2007.00287.x
http://dx.doi.org/10.1111/j.1463-6395.2007.00287.x
http://dx.doi.org/10.1007/s00227-009-1294-y
http://dx.doi.org/10.1139/z92-229
http://dx.doi.org/10.1139/z92-229
http://dx.doi.org/10.1080/11250000009356301
http://dx.doi.org/10.1080/11250000009356301
http://dx.doi.org/10.1371/journal.pone.0028195
http://www.ncbi.nlm.nih.gov/pubmed/22132239

