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Land–atmosphere feedbacks amplify aridity
increase over land under global warming
Alexis Berg1*, Kirsten Findell2, Benjamin Lintner3, Alessandra Giannini1, Sonia I. Seneviratne4,
Bart van den Hurk5, Ruth Lorenz6, Andy Pitman6, Stefan Hagemann7, Arndt Meier8,
Frédérique Cheruy9, Agnès Ducharne10, Sergey Malyshev11 and P. C. D. Milly12

The response of the terrestrial water cycle to global warming
is central to issues including water resources, agriculture
and ecosystem health. Recent studies1–6 indicate that aridity,
defined in terms of atmospheric supply (precipitation, P)
and demand (potential evapotranspiration, Ep) of water at
the land surface, will increase globally in a warmer world.
Recently proposed mechanisms for this response emphasize
thedriving roleofoceanicwarmingandassociatedatmospheric
processes4,5. Here we show that the aridity response is sub-
stantially amplified by land–atmosphere feedbacks associated
with the land surface’s response to climate and CO2 change.
Using simulations from the Global Land Atmosphere Coupling
Experiment (GLACE)-CMIP5 experiment7–9, we show that
global aridity is enhanced by the feedbacks of projected soil
moisture decrease on land surface temperature, relative hu-
midityandprecipitation.Thephysiological impactof increasing
atmospheric CO2 on vegetation exerts a qualitatively similar
control on aridity. We reconcile these findings with previously
proposed mechanisms5 by showing that the moist enthalpy
change over land is una�ected by the land hydrological
response. Thus, although oceanic warming constrains the
combined moisture and temperature changes over land, land
hydrologymodulates the partitioning of this enthalpy increase
towards increased aridity.

Changes in water availability over land are a key driver of climate
change impacts on human and natural systems. Observations2
and model projections1,3–6 point to the Aridity Index (AI=P/Ep,
with annual-mean values) decreasing on average over land,
corresponding to increasing aridity. This reflects the increase in
global land evaporative demand from global warming10 outpacing
the precipitation increase4,11. Increasing aridity under climate
change has recently been interpreted4 in terms of the greater
fractional change inEp over land compared to the ocean. This results
from enhanced near-surface warming over land12–15 combined with
declining relative humidity (RH), compared to a small RH increase
over oceans16–18. Although land–ocean differences in moisture
availability and surface energy budget have been invoked to explain

such contrasts13, a growing literature5,14,15,18–20 emphasizes the role of
ocean warming and atmospheric processes. In this view, the greater
land-to-ocean warming is explained, at least in the tropics, in light
of the zonal homogeneity of warming in the troposphere, combined
with a smaller decrease in tropospheric lapse rate with warming
over land, which is closer to dry adiabatic, than over oceans14,15,19.
This land–ocean warming contrast is further invoked to explain
the decrease of surface RH over land, with the argument that air
masses advected from oceans contain insufficient water vapour to
keep pace with the greater increase in saturation vapour pressure
over land5,15,18,20,21. On the basis of such studies it has been argued4,5

that the overall aridity increase over land is mainly driven by ocean–
atmosphere processes. In particular, these studies imply that land
surface processes, although possibly contributing, are unnecessary
to explain increased aridity over land.

Nevertheless, key land surface processes potentially influence
aridity changes. These include feedbacks from climate-change-
induced long-term soil moisture changes on surface climate7–9, and
the physiological response of vegetation to increased atmospheric
CO2

22. Here we assess the role of these processes on aridity
projections. We make use of simulations from the multi-model
GLACE-CMIP5 experiment7, in which several modelling groups
performed transient climate change simulations with (simulation
SM_TRND) and without (SM_FIX) long-term trends in soil
moisture (Methods). Another set of simulations includes runs with
(CTL) and without (NoFERT) long-term changes in atmospheric
CO2 seen by vegetation, that is, the physiological effect of CO2
(Methods). For each model, the same sea surface temperatures
(SSTs) and radiative forcing agents (based on historical and RCP8.5
coupled simulations) were prescribed in all runs. Thus, comparing
simulations SM_FIX and SM_TRND isolates the feedback on
climate from long-term soil moisture changes; comparing CTL
and NoFERT isolates the feedback from the vegetation response to
increasing CO2.

Projections of future soil moisture content by climate models
generally exhibit negative trends23 (Fig. 1 and Supplementary
Fig. 1), consistent with overall land surface drying under global
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Figure 1 | Prescribed soil moisture trends. a, Trends in global, annual-mean, and total-column soil moisture, as a fraction of the average 1971–2000
global-mean value, in SM_TRND. Shading indicates the range of changes in an ensemble of 28 CMIP5 models, using historical and RCP8.5 simulations. See
Supplementary Fig. 1 for individual models. b, Distribution of end-of-century fractional changes from the CMIP5 ensemble (whiskers indicate the total
range, box edges indicate the first and third quartiles, middle bar indicates the median and red dot indicates the mean). c, Zonal fractional change in
annual-mean soil moisture in simulation SM_TRND between 1971–2000 and 2071–2100. Shadings indicate the range of changes in the ensemble of
28 CMIP5 models.

warming. The four GLACE-CMIP5 models analysed here exhibit
this behaviour (Fig. 1). Caution in interpreting trend differences
is warranted because soil moisture is highly dependent on the
model24: absolute soil moisture can vary substantially acrossmodels,
and relative changes (Fig. 1) of similar magnitude may not imply
similar impacts on surface fluxes. The global-mean negative trends
mask spatial variability (Supplementary Fig. 2), consistent with
large model spread in projected changes in land water balance25.
Still, some agreement is evident for zonal-mean changes, with
smaller decreases near the Equator and in high latitudes of the
Northern Hemisphere, and larger decreases in the subtropics and
mid-latitudes.

Figure 2 depicts the projected changes in global (land-only)
annual-average surface climate in simulations SM_FIX and
SM_TRND. In all models, the decreasing soil moisture trend in
SM_TRND (Fig. 1) reduces the increase in terrestrial latent heat
flux evident in SM_FIX. In terms of surface energy balance, this
reduction is largely compensated by enhanced sensible heat flux
and upwelling longwave radiation (not shown), both of which are
associatedwith elevated skin temperature, and thus 2m temperature
(T ), in SM_TRND. SM_TRND also manifests a greater reduction
in continental cloud cover and thus greater surface incoming
solar radiation, which amplifies the warming over land. With
greater surface warming and reduction in specific humidity (Q),
the projected decrease in RH over land is substantially enhanced
in SM_TRND (∼−2.7%) compared to SM_FIX (∼−1%). The
greater surface warming and larger relative humidity decrease

in SM_TRND yield a greater increase in evaporative demand, as
captured by Penman potential evapotranspiration Ep (Methods).
By itself, the greater increase in Ep in SM_TRND enhances aridity
(that is, lowers AI). However, the negative trends in soil moisture
also have a positive feedback on precipitation, reducing the
warming-induced increase in land precipitation (Fig. 2). For these
reasons, AI decreases more strongly in SM_TRND than SM_FIX,
highlighting the contribution of soil moisture changes to increasing
continental aridity. Decomposing the fractional change of AI in
each simulation into P- and Ep-related terms (Methods) indicates
global contributions of 46% and 54%, respectively, to the enhanced
aridity increase in SM_TRND.

Although the impacts of soil moisture changes on land
climate are significant globally, they exhibit pronounced spatial
heterogeneity (Supplementary Fig. 3, which illustrates this for
evaporative demand). This heterogeneity mirrors regional soil
moisture trends. For example, in all models, the greater increase in
Ep in SM_TRND occurs primarily in regions with both low present-
day soil moisture and projected soil moisture decreases (Fig. 3a).
The impact of soil moisture changes on 1Ep also results in distinct
behaviours across latitudes (Fig. 3b): Ep enhancement is smallest
around the Equator and largest in the subtropics and mid-latitudes.
InMPI-ESM and IPSL-CM5A, this increase extends into (northern)
high latitudes. Zonal patterns for 1Ep reflect similar patterns for
T , Q and RH (Supplementary Fig. 5). Because zonal changes in
precipitation are more heterogeneous across the models than those
of Ep (Supplementary Fig. 5), and because of the nonlinearity of AI
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Figure 2 | Impact of soil moisture trends on land climate change. Bars represent multi-model mean changes in global (land-only), annual-mean surface
climate in SM_FIX (orange) and SM_TRND (red) between the present (1971–2000) and future (2071–2100) (1= future minus present). Symbols
represent individual models. Whiskers around symbols represent±1 s.d. of annual means of the corresponding variable, estimated as pooled standard
deviation over the present and future. Future-minus-present changes non-significantly di�erent from zero are identified in grey. Asterisks over the
SM_TRND bar indicate models for which the di�erences in future-minus-present change between SM_FIX and SM_TRND are statistically significant.
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Figure 3 | Spatial variability of soil moisture impacts on aridity changes. a, SM_ TRND–SM_FIX di�erence in1Ep (1= future minus present) over land
binned as a function of mean soil moisture (SM) in SM_TRND in the present (x axis) and future-minus-present soil moisture changes in SM_TRND (y axis).
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Figure 4 | Impact of CO2 physiological e�ect on land climate change. a, Same as Fig. 2 for simulations NoFERT and CTL. Present-day for the ACCESS
model is defined as 2007–2036 instead of 1971–2000 (Methods). For CCSM4, Ep was computed with a mean surface wind speed value (Methods)
because of missing model outputs. b, Zonal change (future minus present) in surface relative humidity over land in NoFERT and CTL.

with respect to Ep, differences in 1(P/Ep) exhibit more complex
zonal patterns overall than1Ep (Fig. 3c), with somemodels yielding
stronger enhancement in the middle and high latitudes, and others
in the subtropics.

Similar results to those above are found in the simulations with
and without the physiological effect of CO2 in the twenty-first
century. In these simulations, differences in near-surface climate are
caused by stomatal closure in response to increased atmospheric
CO2 (ref. 22). With increased CO2 in CTL, plant transpiration
is reduced compared to NoFERT. The chain of processes leading
to enhanced aridity in CTL compared to NoFERT is qualitatively
similar to the soil moisture experiments (Fig. 4): increased land
warming and drying enhancing evaporative demand, and reduced
precipitation increase. The zonal patterns associated with these
changes differ, however, with generally larger effects near the
Equator, as is evident for the decrease in RH (Fig. 4b). This
reflects the more uniform impact of CO2 on vegetation compared
to the regional soil moisture trends. Note that two of the models
analysed (MPI-ESM and CCSM4) have an interactive leaf area
index (LAI), and both simulate an increased global LAI from the
CO2 fertilization effect in CTL. Any enhanced evapotranspiration
associated with increasing LAI is thus more than compensated by
reduced evapotranspiration from stomatal closure in these models.

Although all models analysed agree on the signs of the effects
investigated, inter-model spread exists in their magnitudes (Figs 2
and 4). This reflects model differences in projected changes in soil
moisture (Fig. 1) or in representation of the physiological impacts
of CO2, but also in the strength of the simulated land–atmosphere
coupling, in particular the feedback on precipitation7–9,26. Despite
the qualitative robustness of these effects across models, the limited
size of the model ensemble warrants caution when inferring their
importance in other climate models. Another caveat involves the

use of prescribed SSTs, which ignores possible feedbacks of ocean
dynamics on land surface effects. The impact of such feedbacks
is uncertain, but has generally been shown to slightly amplify the
impacts of land perturbations such as deforestation27; our results are
therefore likely to be conservative.

Different approaches have been used to compute Ep changes
with climate change1,3,4,10,28,29. We obtain similar results to Fig. 2
when computing Ep as Penman–Monteith evapotranspiration3,10

(Methods). Using simpler, net-radiation-based estimates (either
directly as net radiation29, or with the Priestley–Taylor formulation),
Ep remains unchanged or is even reduced in SM_TRND compared
to SM_FIX, reflecting the slight relative decrease in net surface
radiation in SM_TRND, as greater surface warming is associated
with increased upwelling longwave radiation. However, in this
case, reduction in precipitation still leads to increased aridity
(Supplementary Fig. 6). This highlights the key role of the positive
feedback of decreasing soil moisture on precipitation. Our results
are thus qualitatively robust to the approach used for calculating
evaporative demand.

Overall, our analysis underscores a large contribution of land
surface processes to increased continental aridity in response to
global warming. Aridity does increase in experiments without soil
moisture trends or the physiological effect of CO2, in agreement
with the proposed remote influence of ocean warming on land
aridity changes5; however, this increase is substantially amplified by
land–atmosphere feedbacks. In addition, we note that the ‘without’
simulation in each case still includes either the CO2 effect (SM_FIX)
or soil moisture changes (NoFERT), so that some of the aridity
increase in these runs remains attributable to land surface effects.
We also point out that although enhanced plant water use efficiency
with increased atmospheric CO2 may lead to lower AI values, this
does not imply increased vegetation water stress. Rather, it stems
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Figure 5 | Moist enthalpy changes over land. a, As Fig. 2, but for changes in moist enthalpy over land in SM_FIX and SM_TRND. b, Zonal change (future
minus present) in moist enthalpy over land in the four models in SM_FIX and SM_TRND.

from reduced plant water requirements. It is also associated with
increased P−E over land (not shown). Thus, atmospheric aridity in
that case may be decoupled from impacts on vegetation30 and water
resources29,30. Part of the diagnosed aridity increase in climatemodel
projections1–6 should thus be interpreted in this context30.

Previous studies have argued that fundamental aspects of
terrestrial climate change, such as contrasting land–ocean
temperature and relative humidity changes, are constrained by
oceanic warming and associated atmospheric processes4,5,14,15,18–21.
Our results further highlight the essential contribution of
amplifying land surface feedbacks. We interpret our findings in
light of previously proposed ocean–atmosphere arguments by
showing that, despite different changes in T and Q in SM_FIX
and SM_TRND, the increase in moist enthalpy over land, which
combines temperature and humidity changes (Methods), is similar
in both simulations (Fig. 5). Recalling that, for each model, SSTs
are identical in both simulations, this is consistent with projected
zonally uniform changes in equivalent potential temperature over
land and oceans18, and highlights an important constraint on
land climate change from oceanic warming. Interestingly, because
physiological heat stress (for humans and other mammals) is closely
related to moist enthalpy18, this result also reinforces confidence
in model projections of future heat stress over land, as changes
are tightly coupled to ocean warming and not dependent on the
less certain land hydrological response. Aridity changes, on the
other hand, reflect the response of the coupled land–atmosphere
system, and are affected by the land hydrological response, which
partitions the enthalpy increase into T and Q changes—ultimately
amplifying aridity. To improve projections of changes in terrestrial
aridity and associated impacts, it will thus be necessary to better
understand and constrain simulated land hydrology and associated
land–atmosphere feedbacks in climate model projections.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Simulations.We use simulations from several models participating in the
GLACE-CMIP5 experiment7. All simulations are land–atmosphere transient
climate change simulations extending over 1950–2100, with transient sea surface
temperatures (SSTs), sea ice and radiative forcing agent concentrations prescribed
from the corresponding CMIP5 simulations (using the historical simulations over
1950–2005 and the representative concentration pathway 8.5 (RCP8.5) scenario
thereafter). In simulation SM_FIX, for each model, total soil moisture was
overridden throughout the simulation, pixel by pixel, by the climatological seasonal
cycle of soil moisture over 1971–2000 from the corresponding historical, coupled
CMIP5 simulation. Simulation SM_TRND is identical to SM_FIX except that a
centred, 30-year moving average transient climatology of soil moisture (from the
historical and then RCP8.5 coupled simulation) is used to prescribe soil moisture
(in the first and last 15 years the climatology of 1950–1979 and 2071–2100,
respectively, are used). Simulations SM_TRND and SM_FIX thus share similar
boundary conditions throughout the simulations (SSTs, sea ice and radiative
forcing agents), but simulation SM_TRND includes long-term changes in mean
soil moisture, whereas SM_FIX does not. In both SM_FIX and SM_TRND, soil
moisture was prescribed at every level in the soil column; depending on the
model, soil moisture was prescribed either at every time step, or daily, or monthly
with interpolation between the midpoints of the adjacent months for each
time step.

Similarly, simulations NoFERT and CTL also share the same boundary
conditions. However, in simulation NoFERT, atmospheric CO2 concentrations
seen by photosynthesis are kept constant through the twenty-first century to the
1971–2000 annual mean. In simulation CTL, CO2 used for photosynthesis is
identical to atmospheric CO2 (in both runs soil moisture is fully interactive).

The reader is referred to refs 7 and 9 for further discussion of the models and
the experimental protocol of GLACE-CMIP5. For simulations SM_FIX and
SM_TRND, six models provided data. We use simulations from four models.
Two models were discarded owing to identified issues with the simulations related
to the soil moisture override technique. The models used are the Geophysical Fluid
Dynamic Laboratory ESM2Mmodel, the European Consortium Earth System
Model (EC-EARTH), the Max Planck Institute for Meteorology Earth System
Model (MPI-ESM), and the Institut Pierre-Simon Laplace Coupled Model,
version 5A (IPSL-CM5A). Excluded from the comparison between SM_FIX and
SM_TRND were the Australian Community Climate and Earth System
Simulator (ACCESS) model ESM and the National Center for Atmospheric
Research (NCAR) Community Climate System Model, version 4 (CCSM4).
Even though excluded, results from these models were qualitatively similar to
other models.

For simulations NoFERT and CTL, three models provided data: the
ACCESS model, MPI-ESM and NCAR’s CCSM4. Because of missing surface
wind data in CCSM4, we used a fixed mean surface wind speed (3.4m s−1,
computed as the mean over land from ACCESS and MPI-ESM) to compute
Ep and P/Ep for this model. Relative to changes in energy availability and
vapour-pressure deficit, Penman–Monteith Ep is relatively insensitive to wind
speed1,10. Results are thus not qualitatively affected by this approximation:
a similar approximation for other models yielded results consistent with those
presented here (Fig. 4).

In addition, because of issues with the consistency of SSTs between historical
and future simulations in the ACCESS simulations, we define present day in
ACCESS as 2007–2037, rather than 1971–2000. This does not significantly affect
our conclusions, as results for other models are similar whichever way present
is defined.

Only land-only pixels were considered when computing global and zonal
averages over land (Figs 2–5); mixed sea–land pixels were excluded. Greenland
and Antarctica were removed. Averages are computed on the models’
native grids.

Calculation of evaporative demand. There are numerous ways to estimate the
potential evaporation rate of the land surface under given climatic conditions. In
this study we consider the evaporation that would occur from an open body of

water subjected to similar climatic conditions. It is estimated from the Penman
equation, in the form:

Ep=
∆

∆+γ
Rnet+

γ

∆+γ
6.43(1+0.536U )D (1)

where Ep is evaporative demand, Rnet is surface net radiation, U is wind speed at
2m, D is the vapour-pressure deficit, γ is the psychometric constant, and∆ is the
slope of the saturated vapour pressure against air temperature. This form is
equivalent to the Penman–Monteith evapotranspiration of a reference vegetation
cover10 when stomatal resistance is set to zero. Equation (1) is the recommended
form of the Penman equation28.

Note that surface wind speed is provided at 10m in standard climate model
outputs. We interpolate 10-m wind to two metres with a logarithmic
approximation, assuming roughness parameters of open water.

We also calculate Ep simply as net radiation, as well as with the Priestley–Taylor
formulation, which does not consider vapour-pressure deficits:

Ep=α
1(Rnet−G)
(∆+γ )

(2)

where G is the heat flux into the ground, Rnet−G is approximated here as the sum
of the latent and sensible heat fluxes, and we use 1.26 for scaling factor α.

Finally, we also compute Ep as potential evapotranspiration (PET) using the
Penman–Monteith evapotranspiration of a virtual, well-watered reference crop
with known physical characteristics, as done in ref. 10, using:

PET=
[
1(Rnet−G)+ρacpe∗(Ta)(1−RH)CHU

∆+γ (1+ rsCHU )

]/
Lv (3)

where e∗(Ta) is the saturation vapour pressure at a given temperature T , RH is the
relative humidity, U is surface wind speed, CH is a scalar transfer coefficient (which
depends on prescribed surface roughness parameters associated with the reference
crop), rs is the (prescribed) bulk stomatal resistance under well-watered conditions
(rs=70sm-1),ρa is the air density, cp is the air specific heat, Lv is the latent heat of
phase change of vaporization. The reader is referred to ref. 10 for further details.

Decomposition of P/Ep change. According to error propagation rules, the
fractional change in AI=P/Ep can be decomposed as follows:

1(P/Ep)

P/Ep
∼
1P
P
−
1Ep

Ep

where1 refers to the future-minus-present change and the values in the
denominator are present-day means. Thus, the change in P/Ep can be
approximated by a precipitation-change-induced term:

P
Ep

1P
P

and an Ep-change-induced term:

P
Ep

1Ep

Ep

Calculation of moist enthalpy.Moist enthalpy, H , is defined as CpT+Lvq, where
Cp is the heat capacity of air at constant pressure, T is air temperature, Lv is the
latent heat of phase change of water vapour, and q is the specific humidity of air. It
characterizes the energy content of a parcel of air from both temperature and
humidity. Here we use the classic approximation for CpT= (1.007T−0.026) and
Lv= (2, 502−0.538T ) (https://pielkeclimatesci.wordpress.com/2010/07/22/
guest-post-calculating-moist-enthalpy-from-usual-meteorological-measurements-
by-francis-massen).
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