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Abstract
The Deepwater Horizon (DWH) spill released 4.9 million barrels of oil into the Gulf of Mexico

(GoM) over 87 days. Sediment and water sampling efforts were concentrated SW of the

DWH and in coastal areas. Here we present geochemistry data from sediment cores collect-

ed in the aftermath of the DWH event from 1000 – 1500 m water depth in the DeSoto Can-

yon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm

intervals) in order to evaluate the concentration, composition and input of hydrocarbons to

the seafloor. Specifically, we analyzed total organic carbon (TOC), aliphatic, polycyclic aro-

matic hydrocarbon (PAHs), and biomarker (hopanes, steranes, diasteranes) compounds to

elucidate possible sources and transport pathways for deposition of hydrocarbons. Results

showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to

2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including

terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event,

both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the

deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1) sink-

ing of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended

particulate material), and 2) advective transport and direct contact of the deep plume with

the continental slope surface sediments between 1000-1200 m. Our findings underline the

complexity of the depositional event observed in the aftermath of the DWH event in terms of

multiple sources, variable concentrations, and spatial (depth-related) variability in the DeS-

oto Canyon, NE of the DWH wellhead.

Introduction
Sediments serve as repository systems for a large range of organic matter sources and hydrocar-
bons that can be used to assess historical impacts to the environment. In the northern Gulf
of Mexico (GoM), the composition of organic matter deposited in deep-sea sediments is
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controlled by physical sorting of particles (regional hydrodynamics) and the off-shore move-
ment of the less dense material from terrigenous sources transported by the Mississippi River
[1,2]. In shallow coastal areas (e.g. estuaries) the terrigenous pool is primarily composed of
fresh vascular plant detritus whereas in deeper areas off-shore it is comprised of highly altered
organic matter from angiosperm grassland soils [3,4]. Compared to sediments in shallow areas,
terrigenous derived matter in deep-sea sediments is typically recalcitrant [3]. Marine-derived
organic matter content in sediments is greater in areas associated with high rates of primary
productivity in the surface waters [4]. Other sources of sedimentary organic carbon are erosion
of sedimentary rocks from the Mississsipi River drainage basin, and fossil fuels from natural oil
seeps and petroleum exploration [3,5,6].

It is estimated that an average of 95,500 tons oil enters the GoM annually from natural
seeps (73%), oil and gas extraction activities (3%), transportation activities (4%), and oil com-
bustion byproducts (~16%) [7]. In comparison, the Deepwater Horizon (DWH) spill in 2010
released 4.9 million barrels of oil into the Gulf of Mexico (~699,700 metric tons) [8], an
amount over seven times the average annual input of oil into the GoM [9]. The DWH blowout
was unique not only for its size but also its depth at 1500 m below the sea surface. The released
oil partitioned into oil drops, gas bubbles, and gas hydrates with accompanied partitioning of
petroleum hydrocarbons into aqueous, gas and particulate phases. A mixture of soluble and in-
soluble petroleum hydrocarbons reached the sea surface, where it evaporated (5% of the leaked
mass), formed sheens and slicks (10% of the leaked mass), was mechanically recovered (20% of
the leaked mass) or burned (6% of the leaked mass) [10]. In addition, a lateral plume at ~1000–
1200 m depth formed (35% of the leaked mass) rich in water-soluble gases and compounds
[10–14]. The final fate of the hydrocarbons from the subsurface plume is unknown, although
dissolution and biodegradation have been proposed as important processes [11,14,15].

Following the blowout of the DWH drilling rig, an unusually large marine snow event was
observed [16,17]. The large depositional event may have occurred by marine snow formation
from surface oil slicks (containing ~0.5 million barrels of liquid oil) and the subsurface deep
plume (containing ~1.7 million barrels of liquid oil). Despite the broad accounts of chemical
composition of hydrocarbons at sea surface and depth in the GoM in 2010 [10] and their fate
in the environment [18–28], a comprehensive discussion of possible transport pathways of oil
into the deepwater sediment environment and a hydrocarbon inventory for 2010 is
not available.

The primary objectives of this study are to contribute to the overall understanding of hydro-
carbon geochemistry in deepwater sediments by providing information on the concentration
and composition of sediments samples collected from the DeSoto Canyon, NE of the DWH;
and to interpret these data within the context of the possible sources and transport pathways of
hydrocarbons to the deep sea during the period of the study.

Materials andmethods

Sample collection
Sediment cores were collected in December 2010 and February 2011 on board Florida of Insti-
tute of Oceanogrpahy’s (FIO) R/VWeatherBird II during oil spill response cruises WB1111
andWB1114. Three sediment-coring sites were located in the DeSoto Canyon in the northeast-
ern GoM (Fig 1). Sites were located ~56 km (DSH10 at 1520 m depth, 28.59°N, 87.53°W),
~83 km (DSH08 at 1143 m depth, 29.07°N, 87.52°W) and ~111 km (PCB06 at 1043 m depth,
29.06°N, 87.16°W) northeast of the DWH. These sites were chosen based on predictions of oil
transport towards the opening of the canyon due to wind direction and the formation of the
Loop Current during the summer of 2010 [29,30]. Due to the lack of studies conducted before
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2010 in the studied sites (DSH10, DSH08, PCB06), a core was collected 240 km east of the
DWH (NT1200 at 1200 m depth, 27° 57.98’ N, 86° 1.38’W, 1200 m depth) to provide a control
site representing an area that was outside of the impact area during the DWH event.

A multi-corer (Ocean Instruments MC-800) was used to collect sediment cores with mini-
mal disturbance to the sediment-water interface and surficial sediment intervals. Whole cores
were sliced on board or in the laboratory at the University of South Florida’s College of Marine
Science Paleo-Laboratory (USFCMS-PL) at 2 mm (0–20 mm) and 5 mm (>20 mm) intervals
downcore. A modified version of the Engstrom [31] and Valsangkar [32] extrusion devices was
used. The extruder consists of a basal metal plate holding a threaded steel rod with uniform
threads calibrated (1 complete turn = 2 mm) to push the core at specific intervals vertically up-
ward, where the sample was then sliced off the top. Extruded samples from cores designated
for organic geochemistry analysis (bulk carbon and nitrogen content, stable isotopes, and hy-
drocarbon analyses) were stored in pre-combusted glass containers (450°C for 4hr) in a freezer
(-20°C). Frozen samples were freeze-dried and ground using a mortar and pestle. Extruded
samples from cores designated for analysis of short-lived radioisotopes geochronology (210Pb,
234Th) were weighed, freeze-dried, and weighed again to determine their wet mass and dry
mass to calculate dry bulk density. A separate core was split and used for visual descriptions
and X-ray photographs to confirm the absence of bioturbation that may compromise stratigra-
phy and geochronology. Sediments collected in December 2010 were analyzed down to a depth
of 90 mm to include recently deposited and historical data, while sediments collected in Febru-
ary 2011 were analyzed down to 6 mm to analyze the most recently deposited sediment.

Geochronology and input calculations
Short-lived radionuclide geochronology samples were counted for 48 hours on a Canberra Se-
ries HPGe (High-Purity Germanium) Coaxial Planar Photon Detectors to determine excess

Fig 1. Location of study sites (DSH10, DSH08, PCB06, NT1200), Deepwater Horizon (DWH), and Mississippi River Delta. Insert show the location of
the sites within the Gulf of Mexico.

doi:10.1371/journal.pone.0128371.g001
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210Pb and excess 234Th activities for age dating. Samples were counted within 120 days of col-
lection to account for the short half-life (24.1 days) of 234Th. Raw activities were corrected for
counting time, detector efficiency, as well as for the fraction of the total radioisotope measured,
yielding activity in disintegrations per minute per gram (dpm/g) with error generally<5% of
activity. Age dates were assigned to each sample analyzed using the Constant Rate of Supply
(CRS) Model as described previously [33–35]. Organic carbon inputs to the sediment surface
were calculated by combining compound concentrations with sediment density measurements
and geochronology (age dates). Inputs were calculated for total organic carbon (TOC) integrat-
ed over specific 2 or 5 mm intervals corresponding to each year in the sediment cores analyzed.

Bulk carbon, nitrogen, and stable isotopes
Bulk analyses for total organic carbon (TOC), nitrogen (N), and carbon and nitrogen isotopic
values (δ13C, δ15N) were carried out at USFCMS-PL. Prior to analysis of TOC and δ13C, pre-
weighed subsamples were placed in glass containers and acidified (80% 1.0N HCl) to remove
inorganic carbon [36]. Dried subsamples were then placed in silver capsules and analyzed
using a CarloeErba 2500 Series 2 Elemental Analyzer coupled to a Thermo Finnigan Delta XL.
All samples were analyzed in duplicate and data reported as the average (<1% difference be-
tween duplicates). The results are reported using conventional delta notation in permil (‰)
units relative to the Vienna Pee Dee Belemnite (VPDB) standard. The precision for replicate
analyses of external standards (NIST 8573, NIST 8574, NIIST 1570) was 0.3‰ for δ13C and
0.4‰ for δ15N (1σ, N = 100).

Hydrocarbon analysis
We followed modified EPA methods [37,38] and QA/QC protocols for the analysis of hydro-
carbons. Samples were freeze-dried and extracted under high temperature (100°C) and pres-
sure (1500 psi) with a solvent mixture 9:1v:v dichloromethane: methanol (MeOH) using an
Accelerated Solvent Extraction system (ASE 2001, Dionex). For selected samples perdeuter-
ated n-alkane (d50-Tetracosane) and PAHs (d10-acenaphthene, d10-phenanthrene, d10-fluor-
anthene, d12-benz(a)anthracene, d12-benzo(a)pyrene, d14-dibenz(ah)anthracene, d14-benzo(ai)
perylene) were added. Activated copper (40 mesh, 99.9%, Sigma-Aldrich, USA) was added
to desulfurize each sample extract. Lipid fractions were separated using solid-phase extrac-
tion (SPE) with silica/cyanopropyl glass columns (SiO2/C3-CN, 1 g/0.5 g, 6 mL) made at the
USFCMS-PL. Silica gel (high purity grade, 100–200 mesh, pore size 30A, Sigma Aldrich, USA)
was combusted (450°C for 4h) and deactivated (2%) previous to assemble the columns. Ultra-
clean silica bonded cyanopropyl (C3-CN, 50 μM, Interchim, USA) was used as well to improve
separation of lipid fractions. Lipid fractions were collected by sequentially eluting the extracts
with hexane (100%) to collect aliphatic hydrocarbons, and hexane/dichloromethylene mixture
(3:1, v:v) to collect aromatic hydrocarbons. Both fractions were concentrated and spiked with
d14-terphenyl to correct for injection volume. All solvents used were at the highest purity avail-
able and without further purification. Two extraction blanks were included with each set of
samples (15–18 samples) to ensure no contamination from chemicals, glassware and/or labora-
tory equipment.

The aliphatic fraction was quantified in a gas chromatograph/flame ionization detector
(GC/FID) by the external standard method in splitless injections of 5μL. A VF-1ms (15m x
0.25mm x 0.25μm) capillary column was used with a GC oven temperature programming of
80°C held for 0.5 min, then increased to 320°C at a rate of 10°C min-1 and held for 5.5 min. In-
jector temperature was set to 280°C. Identification and quantification of n-alkanes (nC12-nC40)
and isoprenoids pristine (Pr) and phytane (Phy) were conducted by comparing with reference

Hydrocarbons in Deep-Sea Sediments, Northeast Gulf of Mexico

PLOS ONE | DOI:10.1371/journal.pone.0128371 May 28, 2015 4 / 23



standards. Branched alkanes and the unresolved complex mixture (UCM) were calculated
using the mean response factors of n-alkanes. All samples were corrected for % recovery from
spiked samples with surrogates and were generally 60–80%. Total aliphatic concentration was
calculated as the sum of n-alkanes, isoprenoids, branched alkanes and UCM. Aliphatic com-
pounds are expressed as sediment dry weight concentrations.

The aromatic fraction was quantified in a Gas Chromatograph/mass spectrometric detector
(GC/MS) in full scan mode (m/z 50–550). Splitless injections of 1μL of the sample were con-
ducted. A RXi15sil column was used with a GC oven temperature programming of 60°C held
for 8 min, then increased to 290°C at a rate of 6°C/min and held for 4 min, then increased to
340°C at a rate of 14°C/min, and held at the upper temperature for 5 min. The temperature of
the MS detector was 250°C. Target PAH (polycyclic aromatic hydrocarbon) compounds are
2-ring: Naphthalene (N) and alkylated homologues (NC1-C4), 3-ring: Acenaphthylene (ACL),
Acenaphthene (ACE), Fluorene (F), Dibenzothiophene (D), Phenanthrene (P), Anthracene
(AN), and their alkylated homologues (P/ANC1-C4, DC1-C2), 4-ring: Fluoranthene (FL), Pyrene
(PY), Benz[a]anthracene (BAA), Chrysene (C), and their alkylated homologues (FL/PYC1-C4,
BAA/CC1-C4), 5-ring: Benzo[b]fluoranthene (BBF), Benzo[k]fluoranthene (BKF), Benzo[a]pyr-
ene (BAP), Dibenz[a,h]anthracene (DA), and alkylated homologues (BP/PERC1-C4), and
6-ring: Indeno[1,2,3-cd]pyrene (ID), Benzo[ghi]perylene (BGP). Concentrations of PAHs were
calculated using response factors by comparison with a known standard mixture (16-unsub-
stituited EPA Priority Pollutants and selected congeners: Ultrascientific US-106N PAHmix,
NIST 1491a) and were corrected for the recovery of the surrogate standard. When no commer-
cial reference standard was available, compounds were quantitated using the response factor
for an isomer. Therefore, the concentrations determined for many of the alkylated PAHs were
semiquantitative. Recoveries from spiked samples included with each batch were generally
within QA/QC criteria of 60–120%. Aromatic compounds are expressed as sediment dry
weight concentrations.

Biomarkers (hopanes and steranes) were quantified using GC/MS/MS multiple reaction
monitoring (MRM) on a Varian 320 triple quadrupole MS. Splitless injections of 1μL of the
sample were conducted. Chromatographic separation of biomarker compounds were con-
ducted using a RXi15sil column (30 m x 0.25 mm x 0.25 μm) with a GC oven temperature pro-
gramming of 80°C held for 1 min, then increased to 200°C at a rate of 40°C/min, to 250°C at
5°C/min, to 300°C at 2°C/min, to 320°C at 10°C/min, and held for 2 min. The GC was operated
in constant-flow mode (1ml/min) with an inlet temperature of 275°C and a transfer line tem-
perature of 320°C. Ion source temperature was 180°C and source electron energy was 70eV.
Mass transitions targeted appropriate parent molecular ion masses on Q1 and monitored
mass 191.2 (hopanes) or 217.0 (steranes) on Q3, with collision energy held at 10 volts through-
out. Targeted hopanes (and relevant Q1 masses) included C27, C28, and C29 norhopanes
(370.5, 384.5, and 398.5, respectively), C30 hopanes (412.5), and C31 through C35 homohopanes
(426.5, 440.5, 454.5, 468.5, and 482.5), while sterane targets included C27- C29 steranes and dia-
steranes (372.7, 386.7, and 400.7). An additional transition (376.7 to 221) was monitored to
quantify the internal standard (cholestane 2,2,4,4 D4; CDN Isotopes). Argon at a pressure of 1
millitorr was used as a collision gas. Concentrations of biomarkers compounds were calculated
using response factors by comparison with a known standard mixture (Hopane/Sterane cali-
bration mix, Chiron, S-4436-10-IO) and the internal standard. When no commercial reference
standard was available, compounds were quantitated using the response factor for the nearest
available homologue in the same compound class. Concentrations were corrected for the re-
covery of the surrogate standard (d50-Tetracosane) for the F1 fraction. Recoveries from spiked
samples included with each batch were generally within QA/QC criteria of 60–80%. Biomarker
compounds are expressed as sediment dry weight concentrations.

Hydrocarbons in Deep-Sea Sediments, Northeast Gulf of Mexico

PLOS ONE | DOI:10.1371/journal.pone.0128371 May 28, 2015 5 / 23



Replicate hydrocarbon analyses were done in selected samples from the cores collected in
2010. Our depth resolution of the core samples allowed us to replicate hydrocarbon analyses at
the 65–85 mm depth interval. The relative standard deviations (RSDs) of replicates (N = 4) for
PAHs analysis were 10%, 17% and 19% for DSH10, DSH08 and PCB06 sites, respectively.
RSDs of replicates (N = 4) for aliphatic analysis were 12%, 6% and 10% for DSH10, DSH08
and PCB06 sites, respectively. And, RSDs of replicates (N = 4) for biomarker analysis were
17%, 22% and 4% for DSH10, DSH08 and PCB06 sites, respectively. RSDs values for all com-
pound groups were lower than the variability observed in concentration from surface sediment
layers to downcore in all sites (see Results section).

Diagnostic ratios were calculated to discriminate hydrocarbon sources in the samples col-
lected. Diagnostic ratios use isomer pairs that are abundant in different PAH sources but with
similar dissolution and adsorption properties as they have comparable thermodynamic parti-
tioning and kinetic mass transfer coefficients [39]. Typically, low molecular weight PAHs
(LMW, containing 2–3 ring PAHs) are abundant in petrogenic sources while high molecular
weight PAHs (HMW, containing 4–6 ring PAHs) are abundant in pyrogenic sources. However,
some oils like the DWH oil contain HMW PAHs, but in moderate levels relative to LMW
PAHs [14]. HMW PAHs can become more abundant due to loss of LMW PAHs during weath-
ering processes (e.g. dissolution), therefore PAH diagnostic ratios must be interpreted with
caution. We used the following diagnostic ratios: AN/(P+AN), pyrogenic index, PI: ∑(other
3–6 ring EPA priority pollutant PAHs) / ∑(5 alkylated PAHs), HMW/LMW, Parental/alkyl,
(BAP+BGP)/HMW, and (ID+C)/HMW [40–43]. We also calculated diagnostic ratios using
biomarkers due to their properties of source specificity and resistance to weathering and bio-
degradation [44–46]. We used the following diagnostic ratios: Ts/Tm (18α(H)-22,29,30-tris-
norneohopane/17α(H)-22,29,30-trisnorhopane), C29ββ(S+R)/C29αα(S+R) (24-ethyl-5α
(H),14α(H),17α(H)-20(S+R)-cholestane/24-ethyl-5α(H),14β(H),17β(H)-20(S+R)-cholestane),
C29ααS/H (24-ethyl-5α(H)14α(H)17α(H)-20S-cholestane/17α(H)21β(H)-hopane).

For comparison to potential hydrocarbon sources, diagnostic ratios were calculated for
DWH crude oil (Macondo oil, MC252 block) obtained from British Petroleum (BP, sample
No. SOB-20100622-084) and from crude oil standard reference material collected from the in-
sertion tube that was receiving oil directly from the Macondo well (NIST 2779). We also used
analyses from two sediment samples collected at the DWH wellhead that contain high concen-
tration of 17α(H)21β(H)-hopane (60 ng g-1). In addition, we used GoM sediment for PAH ra-
tios from sites with evidence of pyrogenic (HMW) PAH inputs reported by the Operational
Science Advisory Team in 2010 [47].

Results

Bulk measurements
In the DeSoto Canyon, recently deposited sediment sections were established in each sedimen-
tary record indicating variable and larger deposition in 2010 compared to previous years
(Table 1, S1 Table). TOC input was from 2 to 4 times higher in 2010 compared to previous
years (Fig 2), indicating that in 2010 TOC content in surface sediments is primarily the result
of variation in water column-derived organic matter input.

The δ13C of organic carbon in the sediment samples showed a higher variation in 2010 at
DSH08 (from -19‰ to -23‰), and in 2011 at DSH10 (-20‰ to -23‰) than in previous years
(Fig 3, Table 1). δ15N values were similar down core in all sites (5.4 ± 0.1‰ at DSH10,
5.6 ± 0.1‰ at DSH08, and 4.2 ± 0.1‰ at PCB06) but higher in 2011 (up to ~6.1‰ at all sites,
Fig 3). C:N is higher in 2010 at DSH08 and PCB06, and in 2011 at DSH10 compared to previ-
ous years, although downcore C:N ratios showed large variations for all sites (Fig 3). The

Hydrocarbons in Deep-Sea Sediments, Northeast Gulf of Mexico

PLOS ONE | DOI:10.1371/journal.pone.0128371 May 28, 2015 6 / 23



Table 1. Aliphatic ratios and concentrations for the sediment cores collected in 2010 (interval: 2010 to ~1970) and 2011 (only 2011 data) at the
study sites.

Site Year Depth Interval (mm) TOC (%) δ13C (‰) δ15N (‰) n-alkanes UCM (μg g-1)

C17/Pr C18/Phy Total CPI14-35 CPI14-23 CPI26-35 C�25 (μg g-1) C �26 (μg g-1)

DSH10 2011 0–2 1.8 -20.3 6.1 3.8 1.0 2.6 1.8 2.7 0.2 4.4 28.5

2011 2–4 1.8 -23.1 6.0 n.d. 0.8 2.4 2.6 2.3 0.1 1.8 65.9

Mean 0–4 1.8 -21.7 6.0 0.9 2.5 2.2 2.5 0.2 3.1 47.2

2010 0–2 1.3 -20.6 5.5 0.5 0.0 2.4 1.4 2.9 0.3 1.4 41.3

2010 2–4 1.2 -20.5 5.3 0.2 1.2 3.4 2.4 3.6 0.3 2.6 11.9

2010 4–6 1.2 -20.6 5.3 0.5 1.4 3.8 2.3 4.1 0.3 3.3 8.5

Mean 0–6 1.2 -20.6 5.4 0.4 0.9 3.2 2.0 3.6 0.3 2.5 20.6

CI (0.1) (0.1) (0.1) (0.2) (0.9) (0.8) (0.6) (0.7) (0.1) (1.1) (20.4)

2009 6–8 1.2 -20.6 5.1 0.1 1.4 3.4 2.6 3.6 0.2 2.6 5.8

2009 8–10 1.2 -20.5 5.1 0.0 n.d. 0.6 0.8 0.5 0.4 1.3 3.5

2008 10–12 1.2 -20.7 5.0 0.3 1.1 4.3 3.0 4.6 0.2 2.4 6.0

2007 12–14 1.3 -20.9 5.0 0.0 4.3 3.1 2.1 3.3 0.2 1.6 6.7

2007 14–16 1.3 -20.9 4.4 0.1 0.5 2.3 1.4 2.5 0.3 2.0 6.4

2006 16–18 1.4 -21.0 4.7 0.2 1.5 4.5 2.8 4.9 0.0 0.4 8.9

2006 18–20 1.5 -20.8 4.7 0.2 0.7 4.6 2.8 5.0 0.2 2.0 8.1

2005 20–22 1.5 -20.9 4.7 0.9 1.0 4.6 2.6 5.1 0.2 1.3 4.8

2005 22–24 1.4 -21.0 4.6 0.7 1.7 4.4 2.6 4.8 0.2 3.0 6.0

2004 24–26 1.3 -20.9 4.5 0.0 n.d. 5.8 2.5 7.2 0.0 0.3 7.4

2004 26–28 1.3 -20.9 4.6 1.5 1.1 4.6 2.9 4.9 0.3 3.5 4.3

2003 28–30 1.4 -20.9 4.5 0.9 1.7 4.5 2.7 4.9 0.2 2.2 3.8

2003 30–35 1.5 -21.0 4.4 1.5 1.5 1.2 2.4 0.9 1.1 5.1 0.2

2001 35–40 1.4 -20.8 4.4 0.7 0.5 3.2 3.1 3.2 0.2 1.9 5.5

1999 40–45 1.2 -20.3 4.4 1.3 1.3 3.0 2.5 3.1 0.9 7.7 0.0

1996 50–55 1.4 -20.4 4.6 1.5 1.3 0.8 1.7 0.1 1.4 2.0 3.2

1994 55–60 1.4 -20.5 4.4 1.1 0.4 3.6 3.2 3.7 0.2 1.5 5.2

1992 60–65 1.4 n.d. 4.4 1.3 1.4 0.8 2.3 0.3 0.9 2.6 9.4

1976 85–90 1.4 n.d. 4.4 1.3 1.4 2.0 2.3 1.9 1.1 3.9 0.0

Mean 6–90 1.4 -20.8 4.6 0.7 1.3 3.0 2.4 3.4 0.4 2.5 5.0

CI (<0.1) (0.1) (0.1) (0.3) (0.4) (0.6) (0.3) (0.9) (0.2) (0.8) (1.3)

DHS08 2011 0–2 1.9 -21.1 6.1 3.8 1.0 4.4 2.6 4.7 0.3 3.7 41.1

2011 2–4 1.6 -20.7 6.0 n.d. 0.8 4.1 2.4 4.4 0.3 2.2 12.8

Mean 0–4 1.8 -20.9 6.0 0.9 4.3 2.5 4.6 0.3 3.0 27.0

2010 0–2 2.0 -20.1 5.5 1.0 1.7 1.3 1.9 1.3 0.4 5.1 325.7

2010 2–4 1.9 -20.4 5.4 0.5 1.9 2.5 1.0 3.4 0.7 3.5 48.0

2010 4–6 2.0 -22.5 5.7 n.d. 3.1 3.0 1.1 4.1 0.2 1.3 73.9

2010 6–8 2.0 -19.1 5.6 0.7 1.8 2.6 1.2 3.2 0.7 4.5 41.1

2010 8–10 2.0 -20.7 5.6 0.5 1.5 2.8 1.2 3.8 0.9 3.3 36.8

Mean 0–10 2.0 -20.5 5.6 0.7 2.0 2.5 1.3 4.1 0.6 3.6 105.1

CI (<0.1) (1.1) (0.1) (0.2) (0.6) (0.6) (0.3) (1.0) (0.2) (1.3) (108.8)

2009 10–12 2.0 -20.4 5.5 1.1 1.7 2.5 1.2 3.5 1.4 4.5 42.9

2008 12–14 2.0 -20.6 5.4 0.8 1.5 2.9 1.2 3.7 1.0 5.9 42.8

2007 14–16 2.0 -20.3 5.5 0.8 2.1 3.0 1.3 3.6 0.7 5.5 43.9

2006 16–18 2.0 -20.7 5.4 0.4 30.0 2.9 0.9 4.9 0.6 2.2 54.5

2005 18–20 1.9 -20.6 5.4 0.6 1.7 2.9 0.8 4.5 0.6 2.7 43.5

2003 20–25 1.9 -20.7 5.2 0.9 1.5 3.5 1.7 4.0 1.3 11.4 17.9

2000 25–30 2.0 -20.6 5.1 0.6 2.0 3.1 1.3 3.8 0.6 3.5 31.5

1996 30–35 1.8 -20.8 5.2 1.0 1.8 3.1 1.5 3.7 1.4 10.0 13.3

1993 35–40 1.9 -20.7 5.2 0.0 2.6 3.3 1.5 3.7 0.9 10.9 16.7

1990 40–45 1.9 -20.7 4.9 0.0 3.2 3.5 1.8 3.9 0.6 8.7 15.1

1985 45–50 1.8 -20.9 5.0 0.0 2.9 3.5 1.9 3.9 0.8 10.0 11.4

1983 50–55 1.8 -20.9 5.0 0.0 3.3 3.6 1.6 4.3 0.7 7.5 12.4

1979 55–60 1.8 -20.8 5.1 1.2 2.1 3.3 1.4 4.2 1.0 6.5 7.0

Mean 10–60 1.9 -20.7 5.2 0.6 4.4 3.2 1.4 4.0 0.9 6.9 27.1

CI (<0.1) (0.1) (0.1) (0.2) (4.2) (0.2) (0.2) (0.2) (0.2) (1.7) (8.9)

(Continued)
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general trends observed in the bulk measurements indicate higher variation of organic carbon
sources and inputs in 2010 at DSH08 and PCB06, and 2011 at DSH10 compared to
previous years.

Aliphatics in sediments
Total concentration of aliphatics in the DeSoto Canyon varied from 5 to 337 μg g-1. Higher
concentrations were observed in 2010 for shallower sites (up to 337 and 35 μg g-1 for DSH08
and PCB06, respectively; Fig 3) and in 2011 for the deeper site (up to 46 μg g-1 for DSH10; Fig
3). There was a sharp increase in aliphatic concentration in most sediment intervals corre-
sponding to 2010 (in DSH08 and PCB06) and 2011 (in DSH10 and DSH08). The intermittent
increase in concentration observed in the surface sediments is indicative of a recent sedimenta-
ry depositional event (Fig 1). This is supported by the trend observed in UCM (unresolved
complex mixtures of hydrocarbons) (Table 1). Elevated concentrations of UCM are generally
attributed to petroleum hydrocarbons in contaminated sediments [48–50]. The presence of
UCM was observed in all sites in nearly all years, but higher concentrations of at least one

Table 1. (Continued)

Site Year Depth Interval (mm) TOC (%) δ13C (‰) δ15N (‰) n-alkanes UCM (μg g-1)

C17/Pr C18/Phy Total CPI14-35 CPI14-23 CPI26-35 C�25 (μg g-1) C �26 (μg g-1)

PCB06 2011 0–2 1.9 -20.9 6.1 0.0 3.4 1.9 1.2 1.9 0.3 0.4 24.4

2010 0–2 1.3 -20.5 4.5 n.d. 1.7 3.0 1.3 3.5 0.2 1.4 33.4

2010 2–4 1.2 -20.6 4.0 2.0 1.7 3.8 1.8 4.5 0.2 1.3 20.6

2010 4–6 1.2 -20.5 4.2 1.1 1.3 2.5 1.4 2.8 0.2 1.7 27.3

2010 6–8 1.2 -20.4 4.3 n.d. n.d. 2.4 1.4 2.7 0.1 1.1 18.9

Mean 0–8 1.2 -20.5 4.2 1.5 1.6 2.9 1.5 3.4 0.2 0.2 25.1

CI (<0.1) (0.1) (0.2) (1.1) (0.5) (0.2) (0.7) (0.1) (0.2) (6.5)

2009 8–10 1.2 -20.5 4.3 0.3 2.9 4.0 1.8 4.7 0.3 3.3 13.2

2008 10–12 1.2 -20.6 4.4 0.6 1.6 2.7 1.6 3.1 0.4 2.6 17.6

2006 12–14 1.3 -20.6 4.1 0.1 2.9 2.9 1.7 3.1 0.3 3.4 15.9

2005 14–16 1.3 -20.3 4.1 0.4 1.7 2.6 1.9 2.7 0.3 3.5 17.2

2004 16–18 1.4 -20.7 4.2 n.d. 1.3 4.3 2.0 5.0 0.3 3.4 12.3

2002 18–20 1.5 -20.7 3.8 n.d. 1.1 3.0 1.7 3.3 0.2 2.2 14.8

2001 20–22 1.5 -20.5 5.1 n.d. 1.8 3.3 1.5 4.1 0.5 3.3 9.6

2000 22–24 1.4 -20.5 5.1 n.d. 2.0 2.2 1.1 2.7 0.3 1.5 9.2

1998 24–26 1.3 -20.3 4.7 n.d. 2.3 3.4 1.7 4.0 0.2 2.0 8.8

1997 26–28 1.3 -20.5 4.9 n.d. 1.8 3.5 1.5 4.5 0.1 0.9 7.5

1996 28–30 1.4 -20.4 4.9 n.d. n.d. 2.6 1.5 2.9 0.2 1.8 12.3

1993 30–35 1.5 -20.5 4.8 n.d. 1.2 3.8 2.0 4.3 0.6 5.6 2.4

1989 36–38 1.4 -20.5 4.6 n.d. 1.3 3.6 2.1 4.0 0.6 6.0 0.8

1986 40–45 1.7 -20.6 4.2 n.d. 1.5 3.9 2.0 4.4 0.4 4.6 2.3

1982 45–50 1.5 -20.3 4.4 2.6 3.3 2.6 1.7 2.8 0.3 3.5 2.0

1978 50–55 1.3 -20.2 4.5 n.d. 1.2 4.6 2.0 5.5 0.4 4.5 0.9

1974 55–60 0.9 -20.1 4.2 1.4 3.5 3.2 1.1 4.5 1.3 7.4 0.0

1970 60–65 1.4 -20.4 n.d. n.d. 1.9 3.0 1.5 3.6 0.4 2.3 2.3

Mean 8–65 1.7 -20.5 4.5 0.9 2.0 3.3 1.7 3.9 0.4 3.4 8.3

CI (0.1) (0.1) (0.2) (0.4) (0.4) (0.3) (0.3) (0.9) (0.1) (0.8) (2.9)

NT1200 Mean 0–22 n.d. n.d. n.d. 0.9 n.d. 3.0 1.7 3.8 0.2 1.8 n.d.

CI (0.3) (0.4) (1.5) (0.8) (0.1) (0.4)

DWH oil Mean n.d. -27.4 n.d. 1.6 2.3 0.9 1.6 0.9 45.0 9.9 n.d.

CI (0.1) (0.2) (<0.1) (<0.1) (<0.1) (2.2) (0.8)

Averages shown as arithmetic mean ± CI. CPI (Carbon preference index) = ∑ odd Cn / ∑ even Cn, for each specific range of n-alkanes.

doi:10.1371/journal.pone.0128371.t001

Hydrocarbons in Deep-Sea Sediments, Northeast Gulf of Mexico

PLOS ONE | DOI:10.1371/journal.pone.0128371 May 28, 2015 8 / 23



order of magnitude were found in some sediment intervals during 2010 (Table 1). Moreover,
there were still high concentrations of UCM in 2011 for two sites (DSH10 and PCB06).

Long-chain (C� 26) and short-chain (C� 25) n-alkanes varied in concentration (Table 1).
In a consistent pattern, long-chain n-alkanes accounted for>80% of the total n-alkanes in all
years for all sites indicating dominance of terrestrial inputs. Similarly, calculations of the value
of CPI14-35 indicated a predominance of odd-numbered carbon chains in all years (Table 1)
typical of compounds from terrestrial vascular plants [50–52].

Isoprenoids (Pr and Phy) are more resistant to degradation than n-alkanes resulting in a de-
crease of the ratios C17/Pr and C18/Phy in weathered samples [52–54]. Lower C17/Pr and C18/
Phy ratios were observed in more recently deposited sediments (corresponding to 2010) than
in downcore sediments, probably due to a rapid deposition of weathered hydrocarbons

Fig 2. TOC rates, 2–3 ring (lowmolecular weight, LMW) and 4–6 ring (highmolecular weight, HMW)
PAH concentrations, and PAH composition profiles (2-, 3-, 4-, 5-, 6-ring) for each study site (DSH10,
DSH08, PCB06).Data shown are for cores collected in 2010 (interval: 2010 to 2006) and 2011 (only 2011
data). 2-ring: Naphthalene and alkylated homologues; 3-ring: Acenaphthylene, Acenaphthene, Fluorene,
Dibenzothiophene, Phenanthrene, Anthracene, and alkylated homologues; 4-ring: Fluoranthene, Pyrene,
Benz[a]anthracene, Chrysene, and alkylated homologues; 5-ring: Benzo[b]fluoranthene, Benzo[k]
fluoranthene, Benzo[a]pyrene, Dibenz[a,h]anthracene, and alkylated homologues; 6-ring: Indeno[1,2,3-cd]
pyrene, Benzo[ghi]perylene.

doi:10.1371/journal.pone.0128371.g002
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(Table 1). In 2011, isoprenoid ratios changed for all sites suggesting a different source of organ-
ic matter. In some 2011 samples high ratios are present (>2) indicating a more biogenic input
to the surface sediments. In downcore sediment layers corresponding to 2006, high values were
observed in C18/Phy and low values in C17/Pr for the shallower sites (DSH08 and PCB06) sug-
gesting a high deposition of biogenic material post Hurricane Katrina.

The general trends observed in the aliphatic fraction indicate a mixture of organic carbon
sources and increased concentrations in 2010 (DSH08 and PCB06) and 2011 (DSH10) in con-
trast to previous years. In contrast, similar organic carbon sources and low concentrations
were observed in all depth intervals (2011 to 1990) in the control site, NT1200 (Table 1, S1
Fig). Aliphatic ratios in the control site are similar to data from prior years to 2010 observed in
the other study sites (Table 1).

PAHs in sediments
Total PAH concentration in the DeSoto Canyon varied from 70 to 524 ng g-1. Higher concen-
trations were observed in 2010 for the shallower sites (up to 524 and 329 ng g-1 for DSH08 and
PCB06, respectively) and in 2011 only for the deeper site (up to 373 ng g-1 for DSH10)
(Table 2, Fig 2). Also, a disparity between TOC input and PAH concentrations of LMW and

Fig 3. Geochemical profiles for cores collected in 2010 and 2011 at the study sites (DSH08, DSH10, PCB06). Downcore depth intervals for each year
are in Table 2.

doi:10.1371/journal.pone.0128371.g003
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HMW compounds was observed in 2010 and 2011 (Fig 2). For PCB06, LMW PAHs were
higher at the 4–8 mm interval followed by an increase of TOC flux at the 0–4 mm interval. For
DSH08, LMW PAHs showed two peaks (the 0–2 mm and 4–6 mm intervals) concurrent with a
high TOC flux (0–8 mm). In contrast, LMW PAHs at DSH10 show an increase in 2011 at the
2–4 mm interval when TOC flux is low. DSH10 was the only location with higher HMW than
LMW PAH concentrations and the HMW PAHs consistently increased from the end of 2010
to 2011 when TOC flux was high (Fig 2). In contrast, for the control site (NT1200) LMW and
HMW PAHs were consistently low in all depth intervals (Table 2, S1 Fig).

The intermittent increase in concentration observed only in the surface of all sediment
cores except NT1200, indicates a recent sedimentary depositional event in the DeSoto Canyon.
This is supported by the notion that PAHs are known to be relatively persistent in sediments
due to their hydrophobicity and particle adsorption affinity [55]. PAH preservation in the sedi-
mentary environment occurs on a decadal time scale [56,57] while LMW PAHs have a half-life
of days (e.g. anthracene) [56]. In our study, we observed some LMW PAH compounds with
higher levels downcore in the years between 2004 to 2009 (Table 2) suggesting that degradation
of these compounds may be low at these sites.

Additionally, the relative composition of PAHs by their number of rings showed a larger
variation in 2010 and 2011 than in previous years. DSH10 showed a distinct distribution of
PAHs in 2011 (~15% increase in 4-rings, up to 25% increase in 3-rings, ~10% decrease in
6-rings; Fig 2) with diagnostic ratios suggesting a mixed source of pyrogenic (abundant HMW
PAHs) and petrogenic PAHs (Table 3). Also, there were differences in the relative composition
of PAHs at DSH08 in 2010 and 2011 (~16% increase in 3-rings, ~10% decrease in 4-rings; Fig
2), but PAHs present were primarily from a petrogenic origin (Table 3). There was also a dis-
tinct variation in the composition of PAHs at PCB06 in 2010 (up to ~20% increase in 2-rings,
~10% increase in 3-rings, and ~15% decrease in 4-rings; Fig 2) also primarily composed of
PAHs from a petrogenic origin (Table 3).

Hopanes in sediments
Total concentration of biomarkers in the DeSoto Canyon varied from 41 to 776 ng g-1 (Fig 4).
Higher concentrations of hopanes (up to 317 and 457 ng g-1 for DSH08 and PCB06, respective-
ly), steranes (up to 247 and 274 ng g-1 for DSH08 and PCB06, respectively), and diasteranes
compounds (up to 105 and 115 ng g-1 for DSH08 and PCB06, respectively) were observed in
2010–2011 for the shallower sites. Higher concentrations of biomarkers at the deeper site
(DSH10) were observed only in 2011 (up to 139, 116 and 44 ng g-1 for hopanes, steranes and
diasteranes, respectively). In contrast, for the control site (NT1200) biomarkers were consis-
tently low in all depth intervals (up to 60, 20.6 and 5.2 ng g-1 for hopanes, steranes and diaster-
anes, respectively; S1 Fig). Higher concentrations were only observed in the surface intervals of
all sediment cores except NT1200, indicating a recent sedimentary depositional event in the
DeSoto Canyon, as suggested as well by aliphatic and PAH compounds (Fig 1). A less pro-
nounced peak was observed downcore (at ~2006) in the shallower sites in the DeSoto Canyon
indicating a depositional event post Hurricane Katrina.

Elevated concentrations of biomarkers are generally attributed to petroleum hydrocarbons
in contaminated sediments due to their recalcitrant nature and source-specific compound dis-
tribution. The distribution profiles of biomarkers in our samples and in GoM oils are dominat-
ed by 17α(H), 21β(H)-hopane compound. In addition, C27–C29 diasteranes compounds are
abundant with the 20R isomers more abundant than the 20S isomers. Typical biomarker ratios
used in forensic analysis have shown to be useful in identifying the DWH event as the source-
oil in samples collected from beaches (sand, rocks, tar balls) [45,46]. However, some biomarker
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Table 3. PAH diagnostic ratios for the cores collected in 2010 (interval: 2010 to ~2002) and 2011 (only 2011 data) at the studied sites, DWH oil, and
a sediment sample (GoM sed.) reported by OSAT 1 (2010).

Site Year Sed. Depth (mm) PI An/(Phe+An) HMW/LMW Parental/Alkyl (ID+C)/HMW (BAP+BGP)/HMW

DSH10 2011 0–2 0.42 0.08 2.8 0.7 0.12 0.07

2011 2–4 1.01 0.72 1.0 1.7 0.19 0.17

Mean 0–4 0.72 0.40 1.9 1.2 0.15 0.12
2010 0–2 0.50 0.10 3.2 0.7 0.12 0.10

2010 2–4 0.76 0.11 2.4 1.2 0.18 0.13

2010 4–6 0.66 0.10 2.4 1.1 0.18 0.13

Mean 0–6 0.64 0.10 2.7 1.0 0.16 0.12
CI (0.15) (0.01) (0.6) (0.3) (0.04) (0.02)

2009 6–8 0.77 0.12 2.9 1.1 0.19 0.13

2007 14–16 1.16 0.10 1.9 1.9 0.23 0.20

2004 24–26 1.21 0.18 1.6 2.1 0.26 0.20

Mean 6–26 1.05 0.13 2.1 1.7 0.23 0.17
CI (0.28) (0.04) (0.8) (0.6) (0.04) (0.05)

DHS08 2011 0–2 0.28 0.09 0.8 0.5 0.15 0.08

2011 2–4 0.26 0.06 0.5 0.5 0.17 0.14

Mean 0–4 0.27 0.08 0.7 0.5 0.16 0.11
2010 0–2 0.15 0.13 0.4 0.3 0.16 0.07

2010 2–4 0.40 0.06 0.7 0.7 0.17 0.08

2010 4–6 0.43 0.00 0.7 0.8 0.19 0.17

2010 6–8 0.43 0.07 0.8 0.7 0.16 0.10

Mean 0–8 0.35 0.06 0.7 0.6 0.17 0.10

CI (0.13) (0.05) (0.2) (0.2) (0.01) (0.04)
2009 10–12 0.30 0.15 0.7 0.5 0.18 0.11

2006 16–18 0.53 0.21 0.9 0.9 0.12 0.09

Mean 10–18 0.42 0.18 0.8 0.7 0.15 0.10

PCB06 2011 0–2 0.12 0.00 0.6 0.2 0.08 0.09

2010 0–2 0.27 0.06 0.8 0.4 0.15 0.11

2010 2–4 0.35 0.07 0.7 0.5 0.22 0.13

2010 4–6 0.27 0.04 0.5 0.5 0.20 0.15

2010 6–8 0.18 0.04 0.3 0.3 0.18 0.12

Mean 0–8 0.27 0.05 0.6 0.40 0.18 0.13

CI (0.07) (0.02) (0.2) (0.1) (0.03) (0.02)
2009 8–10 0.57 0.09 1.3 0.8 0.18 0.14

2002 14–16 0.38 0.05 0.7 0.6 0.21 0.16

Mean 8–16 0.48 0.07 1.0 0.7 0.20 0.15

NT1200 Mean 0–22 0.30 0.03 0.3 2.2 0.25 0.13
CI (0.16) (0.05) (0.2) (1.1) (0.23) (0.12)

References DWH oil 0.01 0.03 0.1 0.2 0.06 0.00

GoM sed.(1) 3.92 0.28 4.0 4230 0.15 0.17

Petrogenic source <0.30 <0.10 <1.0 <1.0 <0.15 <0.17

Pyrogenic source >0.30 >0.10 >1.0 >1.0 >0.15 >0.17

Averages shown as arithmetic mean ± CI.

(1) GoM sediment data from sites with evidence of pyrogenic input collected in 2010 (OSAT 1, 2010).

doi:10.1371/journal.pone.0128371.t003
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compounds can degrade compromising their use to some extent for source oil identification
[45,52]. We found diagnostic ratios of known recalcitrant biomarkers (Table 4) to vary between
crude oil (MC252 oil, NIST standard) and contaminated sediment samples (see the method
section for details). Vertical transport of spilled oil through the 1.5 km water column and hori-
zontal transport to the study sites weathered biomarker compounds, as observed in a deep-
water coral community [28]. Thus, biomarker ratios from deep-sea samples should be inter-
preted with caution. Most ratios determined for 2010–2011 samples lie within the values of
MC252 oil and contaminated sediment samples (with ±20% analytical uncertainty), indicating
a match with DWH oil (Table 4). Specifically, DSH10 showed a match with MC252 oil, DSH08
matched both with MC252 oil and contaminated sediments, and PCB06 mostly matched
MC252 oil. In contrast, most ratios determined for pre-2010 samples did not match MC252 oil
or the contaminated sediment samples, indicative of other sources for biomarkers. Similarly,
the control site (NT1200) did not match MC252 oil or the contaminated sediment samples in
all depth intervals (Table 4).

Discussion

Hydrocarbon concentrations
The results from the sites in the DeSoto Canyon indicate that higher amounts of hydrocarbons
reached deepwater sediments in the study area in 2010–2011 for the shallower sites (DSH08
and PCB06) and in 2011 for the deeper site (DSH10) than in previous years. Specifically,

Fig 4. Biomarker profiles for the cores collected in 2010 and 2011 at the studied sites (DSH10, DSH08,
PCB06).

doi:10.1371/journal.pone.0128371.g004
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aliphatic, PAH and biomarkers concentrations were higher in 2010–2011 (up to 337 μg g-1, 525
ng g-1, and 776 ng g-1, respectively) compared to previous years (up to 50 μg g-1, 320 ng g-1,
and 523 ng g-1respectively) and the control site (up to 30.4 μg g-1, 45.0 ng g-1, and 85.9 ng g-1re-
spectively) (Figs 2, 3 and 4; S1 Fig). Comparison with previous studies using similar analytical
methods and target PAHs (parent and alkylated homologues) indicates surface sediments in
the DeSoto Canyon during 2000–2002 contain lower levels of PAHs (114 ± 47 ng g

-1

) [58] rela-
tive to the elevated concentrations we observed in 2010 and 2011. Also, elevated concentrations
in 2010–2011 are close to historical data from shallow water sites adjacent to and in the Missis-
sippi River Delta (PAHs concentration decade 2000: ~600 ng g-1, decade 1980: ~800 ng g-1)
[59,60] but lower than urbanized and industrialized areas worldwide (only parental PAH con-
centration: ~1200–11000 ng g-1) [61,62].

Overall, the levels of hydrocarbons reported in our study for 2010–2011 can be classified as
low to moderately polluted based on the proposed range of potential impact of 10–100 μg g-1

for aliphatics and 100–1100 ng g-1 for PAHs [63,64]. Also, the observed PAH concentrations
in our study area are lower than the “low limit” of PAH concentration ranges (ERL) associated
with biologically adverse effects in shallow sediments [65]. However, calculation of PAH inputs

Table 4. Biomarker diagnostic ratios for the cores collected in 2010 (interval: 2010 to ~2002) and 2011
(only 2011 data) at the studied sites.

Site Year Sed. Depth (mm) n Ts/Tm C29ααS/H C29ββ(S+R)/C29αα(S+R)

DSH10 2011 0–4 2 1.06 0.47 1.2

2010 0–6 3 1.14 0.46 1.15

-0.46 -0.04 -0.22

Pre-2010 Jun-90 19 0.77 0.27 1.22

-0.21 -0.05 -0.19

DHS08 2011 0–4 2 0.87 0.29 1.63

2010 0–8 5 0.78 0.34 1.34

-0.18 -0.06 -0.21

Pre-2010 Oct-60 19 0.73 0.28 1.3

-0.07 -0.04 -0.12

PCB06 2011 0–2 1 0.39 0.65 1.16

2010 0–8 4 1.1 0.39 1.32

-0.77 -0.04 -0.34

Pre-2010 Aug-65 18 0.55 0.31 1.16

-0.09 -0.03 -0.15

NT1200 2011–1990 0–22 7 0.61 1.58 0.25

-0.11 -0.3 -0.07

References NIST(1) 3 1.15 0.4 1.38

-0.22 -0.03 -0.15

MC252(2) 3 1.29 0.58 1.37

-0.19 -0.22 -0.35

DWH sed(3) 1 1.14 0.45 1.14

DWH sed(4) 1 0.81 0.37 1.07

Averages shown as arithmetic mean ± CI.

(1)Reference oil: NIST 2779

(2)Reference oil: British Petroleum (sample No. SOB-20100622-084)

(3)Contaminated sediment sample collected at DWH wellhead

(4)Contaminated sediment sample collected at DWH wellhead.

doi:10.1371/journal.pone.0128371.t004
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using total PAH concentrations and TOC fluxes (e.g. [66]) shows high inputs of toxic hydrocar-
bons in 2010 (DSH08: 9816 μg m-2 y-1, PCB06: 4032 μg m-2 y-1) and 2011 (DSH10: 1368 μg m-2

y-1) compared to previous years (DSH08: 132–146 μg m-2 y-1, PCB06: 242–338 μg m-2 y-1,
DSH10: 66–95 μg m-2 y-1) suggesting a potential ecological risk to deep-water environments.
Fluxes in the DeSoto Canyon from 2010 are higher than previously observed in surface sediments
close to the Mississippi River for PAHs (2500 μg m-2 y-1) [60] and TOC (0.9–54 g m-2 y-1) [1].

Hydrocarbon sources
Organic matter in the continental shelf sediments of the GoM is derived from marine primary
productivity, terrestrial and aged soil from watershed runoff from the Atchafalaya and Missis-
sippi Rivers, and coastal plants debris and resuspended sediments [4,67,68]. Most of the sus-
pended particulate material is deposited within 30 km off the Mississippi River and a gradient
of terrestrial vs. marine sources is observed towards deeper environments [68]. At ~200 km
from the Mississippi River delta in the DeSoto Canyon terrestrial inputs continue to dominate
[69] as observed in the sediment cores from our study sites with n-alkanes typical of terrestrial
sources (Table 1). Transport and deposition of pyrogenic PAHs also occur along with sediment
deposition near the Mississippi River mouth and transported elsewhere in the GoM [68,70], as
observed downcore in our samples (1970–2009) with HMW PAH concentrations higher or
similar to LMW PAH concentrations.

Petroleum derived hydrocarbons in GoM sediments are consistently present and are sug-
gested to originate from natural seeps, gas hydrate deposits, and oil exploration [6,71–74]. Nat-
ural seeps can account for most of the annual input of oil in the GoM (~73%) [7], and their
significant presence in the environment can be detected when depleted stable carbon isotope
values are observed in sediments (-24.1‰) [75]. Downcore samples prior to 2010 in our study
(1970–2009) indicate sedimentary δ13C values of -20.6 ± 0.1‰, typical of a mixed organic car-
bon source including terrestrial-derived organic carbon from the Mississippi river drainage
basin found in deep water sediments [67,76]. Previous studies indicate as well absence of seeps
at specific sites in the DeSoto Canyon [58]. We conclude that during the period covered in our
study (1970–2011) concentration and composition of hydrocarbon compounds at our study
sites were not influenced directly by hydrocarbon inputs from natural seeps.

Petroleum derived hydrocarbons, distinct from DWH oil, were observed downcore (pre-
2010) in all sites indicating the constant presence of oil at lower levels that enters the GoM
annually through natural and anthropogenic activities [7]. Recalcitrant compounds such as
biomarkers are useful for estimating background conditions in the GoM sedimentary environ-
ment. Mean background concentrations were 13 ± 3 ng g-1 for 17α(H)21β(H)-hopane, and
96 ± 18 ng g-1 for total biomarkers (N = 19) at ~1500 m depth, and 40 ± 7 ng g-1 for 17α(H)21β
(H)-hopane, and 301 ± 46 ng g-1 for total biomarkers (N = 37) at 1000–1200 m depth in the
DeSoto Canyon. Depth variability rather than location in the DeSoto Canyon has a larger influ-
ence on the magnitude and time of hydrocarbon deposition during the period covered in our
study. Similarly, depth-related gradients of deposited organic matter have been observed else-
where in the northern GoM [1,3].

Elevated concentrations of aliphatic, PAH and biomarker compounds were observed in
most sediment depth intervals corresponding to the period 2010–2011. These compound
groups indicate a mixture of hydrocarbons sources deposited during 2010–2011 that includes
terrestrial, planktonic and weathered oil. Long-chain n-alkanes distribution suggests predomi-
nance of terrestrial sources, while higher concentrations of UCM, PAHs, and biomarkers indi-
cate oil-derived hydrocarbons (Figs 2, 3 and 4). Furthermore, diagnostic ratios of biomarker
compounds suggest DWH oil reached the seafloor in the DeSoto Canyon during 2010–2011

Hydrocarbons in Deep-Sea Sediments, Northeast Gulf of Mexico

PLOS ONE | DOI:10.1371/journal.pone.0128371 May 28, 2015 16 / 23



(Table 4). However, highly weathered deposited hydrocarbons as indicated by the isoprenoids
ratios (Table 1), complicate the use of diagnostic ratios for source oil identification. Spilled oil
from the DWH wellhead underwent weathering during both lateral and vertical transport pri-
marily from partitioning of the more soluble compounds into the water column [10–12,14]
and enhanced microbial activity [16,17,77]. Nevertheless, the time series data revealed elevated
concentrations of hydrocarbons (from more degradable to recalcitrant compounds) at specific
intervals in the surface of the seafloor, indicating a depositional event at all sites in the DeSoto
Canyon during 2010–2011, post DWH event.

Transport pathways of hydrocarbons
Two mechanisms of hydrocarbon deposition to the seafloor have been proposed: a sedimentary
depositional pulse driven by the formation and rapid settling of contaminated particles (“floc-
culent blizzard” hypothesis), and the direct contact of the deep plume with the continental
slope surface sediments at depths between 1000–1200 m (“bathtub ring” hypothesis). In our
study, we found several different lines of geochemical evidence that support each of these hy-
potheses and explain how hydrocarbons reached the sedimentary environment in the DeSoto
Canyon during 2010–2011.

Aggregation of suspended particulate material with dispersed crude oil and dissolved hydro-
carbons in the water column promotes transport of spilled oil in the environment and toxicity
in sediments. This phenomenon of oil-mineral interaction and sedimentation has been studied
and documented since the 1970’s in the Exxon Valdez and Arabian Gulf oil spills and in labo-
ratory experiments [78,79]. It is believed that oil-mineral aggregates are insignificant in loca-
tions far from coastal areas due to minimal suspended particulate material concentrations [78].
However, in 2010 the increased release of water from the Mississippi River with nutrients and
fine-grain clays coupled with the long trajectory of DWH oil to the sea surface, and the abun-
dance of oil in the water column (~5.5x106 kg of hydrocarbons at the deep plume) [10] may
have enhanced oil-mineral aggregation and enhanced the observed depositional event. Addi-
tionally, the increase in microbial activity after the DWH blowout [20,77] stimulated the for-
mation of a large marine snow event in the GoM that also may have promoted the formation
of oil-mineral aggregates [16,17]. This explains the presence of flocculent material on top of
deep corals [28], impact on benthic communities [27], and hydrocarbon inputs to the seafloor
(this study).

The observed marine snow during the summer of 2010 in the GoM consisted of phyto-
plankton cells, bacteria, and oil-particle aggregates [16]. Our sediment analyses from the Des-
oto Canyon indicate deposition of oil-particle aggregates (-23.1‰ at DSH10 in 2011, and
-22.5‰ at DSH08 in 2010), biogenic material (abundant n-alkanes C�25 in all sites, domi-
nance of marine inputs at DSH08 in 2010 with δ13C-TOC = -19.1‰), and degraded oil and or-
ganic matter (all sites) at specific depth intervals corresponding to 2010–2011. Chronological
comparison (before and after the DWH event) of source inputs using aliphatics composition
indicates little variation, therefore high inputs of background algal and terrestrial biomass in
2010–2011. As hypothesized, the sinking of oil-particle aggregates (“flocculent blizzard”) may
have purged the water column from particles and DWH oil, leading to the deposition of natural
and petroleum derived hydrocarbons to the seafloor.

Additionally, oil-particle aggregates in 2010–2011 may have formed with hydrocarbons dif-
ferent from crude or dissolved oil in the water column. We observed elevated concentrations of
HMW PAHs at DSH10, the deepest site in 2011 (Table 2). Although HMW PAHs (pyrogenic)
that are associated with atmospheric deposition and riverine inputs have been observed in sedi-
ment cores from other regions in the GoM [59,70] PAH source identification in deepwater
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sediments in the GoM are yet to be fully understood. PAH composition at DSH10 site does not
indicate atmospheric deposition during 2010–2011 based on the ratio (BaP+BGP)/HMW
(Table 3) used as an indicator for traffic-related pollution [80,81]. Therefore, there are three
possible sources that can explain the elevated concentrations of HMW PAHs in 2011: 1) the
large extent of the surface oil slick in 2010 was exposed to relatively high summer temperatures
(25–30°C) [82] that enhanced the evaporation of the oil released [10]. Moderate evaporation of
oil mousse was observed with preferential loss of LMW PAHs and<C14 n-alkanes [82] leaving
a heavier residue (high in HMW PAHs) in the environment that formed oil-particle aggregates
that sink. 2) Another possibility is deposition of burned products produced by in situ combus-
tion of surface oil slicks during the summer of 2010 (6% of the leaked mass or 222,000–313,000
barrels) [10,83]. Burn residues are known to leave residues rich in HMW PAHs [40]. To our
knowledge, there are no specific PAH ratios that identify burned residues from in situ combus-
tion of DWH oil. 3) Diesel exhaust from thousands of vessels operating in the area during sum-
mer of 2010 (up to ~6000 vessels in July 2010) may have been a source of HMW PAHs to the
aquatic environment based on the diagnostic ratio (ID+C)/HMW [80,81] observed at DSH10
site (Table 3).

Poor correlation between TOC fluxes and hydrocarbon concentrations, and differential
PAH abundance between HMW and LMW compounds at PCB06 site located at 1043 m depth
(Fig 2) suggest the sinking of oil-particle aggregates was not the only transport pathway in
2010. Another possible depositional mechanism is the advective transport and subsequent con-
tact of the deep plume with the continental slope surface sediments (“bathtub ring” hypothe-
sis). At PCB06 site, specific sediment intervals in 2010 showed a dominance of LMW over
HMW PAHs (Fig 2). Typically in surface oil spills, LMW compounds are lost through rapid
evaporation limiting its dissolution into the water column, contrary to observations in the
DWH deep plume [10,14]. Insoluble non-volatile compounds formed surface slicks while
more soluble compounds were entrained in the subsurface plume [10]. Therefore, the concen-
tration of LMW PAHs is a promising utility to track plume-derived hydrocarbons to deep-sea
sediments, contrary to only using one insoluble compound not abundant in the plume such as
17α(H)21β(H)-hopane to describe this transport pathway [84]. Because there was no observed
increase in sediment deposition rates at the time LMW PAHs were higher in concentration in
PCB06 (4–8 mm interval in 2010), a direct contact of the deep plume with the surface sediment
might have occurred. This is supported by an oil droplet model that suggests the deep plume
impinged on the continental slope in the DeSoto Canyon [85] near the two shallower sites in
our study (PCB06, DSH08). In addition, it is possible that the two proposed mechanisms of hy-
drocarbon deposition can occur simultaneously. For example, DSH08 at 0–2 mm in 2010 pre-
sented increased concentration of LMW PAHs as well as TOC rates indicating a possible
hydrocarbon input from sinking oil-particle aggregates and from the direct contact of the deep
plume with the surface sediments (Fig 2).

Conclusion
The analyses of DeSoto Canyon sediments show the contribution of the DWH event to sedi-
ment hydrocarbon content and composition, and provides insight into the transport pathways
for hydrocarbons to the seafloor and their fate during 2010–2011. Higher hydrocarbon concen-
trations, and associated mixed hydrocarbon compositions from various sources (including bio-
genic n-alkanes, and petrogenic and pyrogenic PAHs) were observed during 2010–2011 in the
DeSoto Canyon. Evidences were found for two hypothesized transport pathways of hydrocar-
bons: sinking of oil-particle aggregates and the direct contact of the deep plume with the sedi-
ment surface. Our results underline the complexity of hydrocarbons deposition due to
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weathering during transport, multiple sources, variable concentrations, and spatial (depth-re-
lated) variability in the DeSoto Canyon in 2010–2011. Further understanding of the interplay
between the water column and sedimentary environments and the relative proportion of com-
pounds deposited is critical for predicting the long-term fate of hydrocarbons from deep-water
blowout events.
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