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Abstract
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-

FTICR-MS) has proven to be a powerful technique revealing complexity and diversity of nat-

ural DOMmolecules, but its application to DOM analysis in grazing-impacted agricultural

systems remains scarce. In the present study, we presented a case study of using ESI-

FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-domi-

nated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds

(71.8–87.9%), with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S))

accounting for only minor fractions. All samples were dominated by molecules falling in

the lignin-like region (H/C = 0.7–1.5, O/C = 0.1–0.67), suggesting the predominance of

allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM for-

mulas in the two forest streams were more similar, based on Jaccard similarity coefficients

and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas

from the pasture streams were characterized by lower proportions of aromatic formulas and

lower unsaturation, suggesting that the allochthonous versus autochthonous contributions

of organic matter to streams were modified by pasture land use. The number of condensed

aromatic structures (CAS) was higher for the forest streams, which is possibly due to the

controlled burning in the forest-dominated watersheds and suggests that black carbon was

mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the

two pasture streams was altered to a greater extent than DOM from the forest streams, with

formulas with H/C and O/C ranges similar to protein (H/C = 1.5–2.2, O/C = 0.3–0.67), lipid

(H/C = 1.5–2.0, O/C = 0–0.3), and unsaturated hydrocarbon (H/C = 0.7–1.5, O/C = 0–0.1)

being the most bioreactive groups. Aromatic compound formulas including CAS were pref-

erentially removed during combined light+bacterial incubations, supporting the contention
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that black carbon is labile to light alterations. Collectively, our data demonstrate that head-

water DOM composition contains integrative information on watershed sources and pro-

cesses, and the application of ESI-FTICR-MS technique offers additional insights into

compound composition and reactivity unrevealed by fluorescence and stable carbon isoto-

pic measurements.

Introduction
Dissolved organic matter (DOM) in streams and rivers is derived from both watershed and
aquatic contributions, containing information integrating various biological sources and eco-
logical processes. As a complex mixture containing a multitude of components with varied
composition and reactivity, DOM plays a pivotal role in a variety of biogeochemical processes
within aquatic environments, including altering light regime, providing energy and substrate
to heterotrophic food webs, and influencing the forms of metal pollutants. Historically, the
chemical characteristics of natural DOM have been analyzed mostly through bulk methods,
including element compositions (particularly DOC:DONmolecular ratios), stable carbon iso-
topes of DOC (δ13C-DOC), and optical properties which can generate a series of source and
reactivity indices based on fluorescence and absorption [1–4]. These techniques capture DOM
as a whole but can be biased from averaging DOM constituents of various characteristics.
Using such methods, molecular-level understanding of DOM remains limited because low-res-
olution instrumental approaches cannot separate and identify complex molecules in natural
DOM.

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis is
increasingly recognized over the past decade as a powerful instrumental approach for charac-
terizing DOM at the molecular level [5]. FTICR-MS provides unparalleled resolution for iden-
tification of ionized organic compounds, and it can be coupled with atmospheric pressure
electrospray ionization (ESI) technique to ionize water-soluble, hydrophilic molecules with no
or negligible fragmentation [6–8]. Unsurprisingly, ESI-FTICR-MS has been more frequently
used to obtain more detailed and accurate compositional information on natural DOM. For
example, Sleighter and Hatcher [9], using ESI-FTICR-MS, successfully resolved thousands of
DOM components along a river-estuary-coastal ocean transect in lower Chesapeake Bay.
Through comparing FTICR-MS molecular families to fluorescence components derived from
excitation emission matrix-parallel factor analysis (EEM-PARAFAC) in 22 freshwater samples,
Stubbins and colleagues [8] show that fluorescence components represented less than half of
the total number of formulas identified using FTICR-MS, furthering demonstrating the need
to apply this technique to various systems for acquiring more robust information about the
diversity of natural DOM compounds.

A few recent studies have applied FTICR-MS to characterizing DOM in soils and natural
waters across a range of ecosystems [10–11]. To date, few FTICR-MS studies have been focused
on human-impacted watersheds, especially considering high spatiotemporal variability
observed across geographic regions and ecosystem types. In particular, detailed, molecular-
level chemical characterizations of DOM exported from grazing-impacted systems remain
scarce, although grazed lands account for around 45% of non-Federal rural lands in US. In the
present case study, we employed ESI-FTICR-MS to compare the composition of DOM from
temperate headwater streams draining watersheds dominated by forest and pasture land use.
Additionally, we conducted laboratory microbial and photochemical incubations to assess how
DOM composition influences the biodegradability and photodegradability. The study sites
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included four temperate streams of similar lithological and meteorological variables, and sam-
ples were collected at base flow. This sampling strategy minimizes DOM variations related to
geological, climatic, and hydrological differences but highlights those more due to watershed
land use differences.

Materials and Methods

Sample collection, filtration and incubation
Our study site included four headwater streams located 1–6 km apart, within the watershed of
Mattaponi River, a tributary of the York River discharging to the Chesapeake Bay, Virginia,
USA (Fig 1). Two of the streams (F1, F2) were situated within watersheds dominated by oak-
pine forest (hereafter referred to as “forest streams”); the other two streams, P1 and P2, drained
pasture-dominated watersheds (hereafter referred to as “pasture streams”), where pastures
were rotated annually between warm-season grasses (May–October) and cool-season grasses
(November–April) under the management of a local cattle farm. The study was carried out on
private land, and the owners gave permission to conduct this study on the sites.

All streams were sampled during base flow conditions in November, 2009. During the sam-
pling, a suite of in situ parameters was measured (Table 1). Stream water samples were col-
lected in 20 l acid-cleaned polycarbonate carboys (soaked in 10% acid for> 24 h and rinsed
extensively with Nanopure water) using a Masterflex1 E/S™ portable sampler (Cole-Parmer)
equipped with acid-cleaned silicone tubing. After collection, samples were stored on ice in the
dark for up to 6 hours until being filtered in the lab. Living and non-living particulate materials
were removed by filtering water through GF/F glass fiber filters (nominal pore size 0.7 μm, pre-
combusted at 500°C for 5 h) [3]. Laboratory incubations were started immediately after the fil-
tration process. All incubations lasted 15 days at 22±2°C, including two treatment types: 1)
bacteria-only treatment (i.e., 0.7 μm filtrate under dark conditions) for all the samples, and 2)
combined light+bacteria treatment (i.e., 0.7 μm filtrate under light conditions) only for samples
from the pasture streams. Combined light+bacteria incubations were performed in 500 ml
quartz flasks on a rotating light table, with the spectra of the light source having similar charac-
teristics to that of natural sunlight for UV wavelengths between 295 and 365 nm. The irradi-
ance was approximately one third of seasonally averaged daily solar irradiance in shallow water
at 40°N [12], and thus the amount of UV exposure during the 15 days of 24 h light incubations
was similar to 10 days of 12 h daylight at the sampling sites. Dark incubations were conducted
in one-liter amber borosilicate glass bottles, which were covered by dark bags to further prevent
light penetration. Throughout the incubations, subsamples were collected at the beginning and
end of the incubations (T0 and T15, respectively) as well as four to six intermediate time points
for the evaluation of DOC concentrations [3]. ESI-FTICR-MS analyses were performed on T0

and T15 samples.

ESI-FTICR-MS analysis
ESI-FTICR-MS analysis was performed at the College of Science Major Instrumentation Clus-
ter (COSMIC) Lab, Old Dominion University (Virginia, USA). The C18 extraction method was
used to concentrate DOM, which selectively retains non-polar, low-molecular-weight DOM
(<700Da) [13]. Solid phase C18 extraction disks (3M, Empore™, 47 mm diameter) were acti-
vated by LC-MS grade water and methanol before use. Sample waters were acidified to pH = 2
before passing through C18 disks under vacuum. Water and methanol (both LC-MS grade)
were used sequentially to elute materials retained on the C18 disks. The eluates were collected,
diluted with LC-MS grade water to a ratio of 50:50 (v/v) methanol:water for each sample.

ESI-FTICR-MS Characterizations of Headwater StreamWater DOM
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Fig 1. Map showing the study region and our sampling sites. Sampling streams are indicated by heavy black lines, and samples sites are indicated by
solid black circles. Other streams in this area are denoted by gray lines, and the light blues lines are 12-digit HUC watershed boundaries.

doi:10.1371/journal.pone.0145639.g001
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Ammonium hydroxide was then added to raise the sample pH to 8 in order to increase ioniza-
tion efficiency [9].

All samples were continuously infused into an Apollo II ESI ion source of a Bruker Dal-
tonics 12 Tesla Apex Qe FTICR-MS, using a syringe pump providing an infusion rate of
120μL/h. A solution of 0.1% ammonium hydroxide in 50:50 (v/v) LC-MS grade methanol:
water was analyzed between each sample, serving as a blank to check for sample cross-contami-
nation [14]. The samples and blanks were analyzed in negative ion mode, and electrospray
voltages were made effective for each sample. Ions accumulated in a hexapole for 1.0 s before
traveling to the ion cyclotron resonance cell. 300 or 350 transients were applied, yielding 4
mega word time-domain data for a total run time of 30 or 35 minutes, respectively. The
summed free induction decay signal was zero-filled once and Sine-Bell apodized prior to fast
Fourier transformation and magnitude calculation using the Bruker Daltonics Data Analysis
software.

Formula assignments and data visualization and interpretation
All masses were internally calibrated following the calibration method described by Sleighter
et al. [15], using fatty acid naturally present within our samples and other homologous peak
series identified by Kendrick mass defect (KMD) analysis, which spanned the entire mass
range of 200–700 m/z. Following the recommendation for data reproducibility [16], m/z values
with signal to noise ratios� 4 were considered for formula assignment. A molecular formula
calculator developed at the FTICR-MS Facility at the National High Magnetic Field Laboratory
of Florida State University (Molecular Formula Calc v.1.0 NHMFL, 1998) was used to generate
empirical formulas. The range of the number of different atoms for each formula was set as
1–50 for carbon, 2–100 for hydrogen, 0–30 for oxygen, 0–6 for nitrogen, and 0–2 for sulfur.

Data processing followed the method described in detail by Sleighter and Hatcher [9] and
Stubbins et al. [14]. Briefly, we selected chloride-free peaks whose measured mass and exact
mass of empirical formulas were within ±1 ppm, and then eliminated those empirical formulas
that did not comply with the basic bonding criteria of organic compounds[7, 14, 17]: 1) O/
C� 1.2; 2) 0.35�H/C� 2.25; 3) N/C� 0.5; 4) S/C� 0.2; 5) nitrogen rule (i.e., odd mass
weight containing even-electron N ions, while even mass weight containing odd-electron N
ions); and 6) Double Bond Equivalent (DBE) value being an integer� 0. The DBE is defined
as:

DBE ¼ ð2þ 2� C � H þ N þ PÞ � 2 ð1Þ
where C, H, N and P represent the number of carbon, hydrogen, nitrogen, and phosphorous

Table 1. Watershed land use, environmental parameters, and water parameters measured for the streams sampled in this study*.

Sampling
site

Watershed
land use

composition

Water
temperature

(°C)

Specific
conductivity

(μS)

pH Dissolved
oxygen
(mg/L)

DOC
concentration

(μM)

Water
column

chlorophyll-
a (μg/L)

Nitrate
(mg/L)

Ammonium
(mg/L)

Sulfate
(mg/L)

F1 100% forest 12.6 158.9 5 3.0 539 0.01 b.d. b.d. 37.9

F2 100% forest 12.6 56.9 5 7.8 562 0.05 b.d. b.d. 8.8

P1 70% pasture,
30% forest

12.6 210.4 6–7 7.9 675 0.14 2.29 2.49 14.4

P2 61% pasture,
39% forest

16.5 73.4 5 5.8 206 0.48 b.d. b.d. 1.1

*b.d. = below detection; nitrate, ammonium, and sulfate were measured by using a Dionex ion chromatography.

doi:10.1371/journal.pone.0145639.t001
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atoms in molecules, respectively. When multiple assignments were possible for a single m/z
value, the formula was assigned based on homologous series [15, 18–19].

Van Krevelen (VK) analysis classifies the DOMmolecules into different biochemical classes
based on their H/C and O/C atomic ratios [20–21]. Following the classification described by
Hockaday et al. and Ohno et al. [22–24], VK diagrams can be classified into six regions: 1)
lipid-like region (H/C = 1.5–2.0, O/C = 0–0.3); 2) protein-like region (H/C = 1.5–2.2, O/
C = 0.3–0.67); 3) lignin-like region (H/C = 0.7–1.5, O/C = 0.1–0.67); 4) carbohydrate-like
region (H/C = 1.5–2.4, O/C = 0.67–1.2); 5) unsaturated hydrocarbon-like region (H/C = 0.7–
1.5, O/C = 0–0.1); and 6) condensed aromatic ring structure (CAS) region (H/C = 0.2–0.7,O/
C = 0–0.67) (Fig 2).

Additionally, several indices were used to classify DOMmolecules with respect to their pos-
sible function groups. The modified aromaticity index (AImod), which assumes half of Os par-
ticipating in a double bond, was used to identify aromatic formulas (AImod between 0.5 and
0.67) and CAS (AImod > 0.67, a more conservative way to define CAS than VK classification as
described above) [25]:

AImod ¼
1þ C � 0:5O� S� 0:5H
C � 0:5O� S� N � P

ð2Þ

Formulas with AImod < 0.5 were classified as aliphatic and olefinic compounds such as
alkanes, alkenes, alkanoic acids, alenoic acids, alkanals, alkenals, and terpens [26].

Statistical analysis
Jaccard similarity coefficients, which have been shown to be a powerful approach to compare
FTICR-MS formulas across samples [27], were calculated to analyze formula similarity
between different samples based on compound presence/absence, where coefficient = 1 indi-
cates that two samples share the same formulas while coefficient = 0 indicates two samples hav-
ing no formulas in common. Additionally, nonmetric multidimensional scaling (NMDS) was
used to discern samples’ similarities and dissimilarities. The imputing matrix was Bray-Curtis
distance calculated according to compounds’ presence/absence. This method has also been
shown efficient in grouping samples in FTICR-MS studies [11, 28]. Reliability analysis was per-
formed prior to NMDS (Cronbach’s Alpha = 0.7; the two samples from the combined light+-
bacteria incubations were removed to increase the value of Cronbach’s Alpha), and three-
dimension solution was used (Kruskal’ stress = 0.01).

Results and Discussion

DOM formulas in T0 samples
For T0 samples, 1936–3083 compound peaks were assigned with molecular formulas, account-
ing for 64.5–70.8% of total peaks detected (Table 2). In all samples, CHO series dominated the
formulas (71.8–87.9%), and other series made up minor fractions: CHOS (3.0–14.0%), CHON
(2.9–9.2%), CHONS (0.2–2.0%), and CHOP (N,S) (1.4–6.3%) (Fig 3, S1 Appendix). The domi-
nance of CHOmolecular series has also been observed in other streams and rivers [11, 28].
The majority of compounds were aliphatic or olefinic (Table 2, Fig 2). Based on H/C and O/C
ratios, 69.2% to 79.0% of total formulas can be classified as lignin (S3 Appendix), although
these numbers were perhaps overestimated because many formulas fell in the aliphatic and ole-
finic region based on AImod (Fig 2), which is a more conservative method to identify aromatic
molecules. The large abundance of lignin-like formulas agrees with the previous EEM-PARA-
FAC data on these samples showing the dominance of terrestrially-derived, humic and fulvic-
like compounds in DOM [3], i.e., C10 and SQ1 peaks in the 13-component model [29]. Lignin
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is found in the cell wall of vascular plants and is a major residual component of decomposed
terrestrial plants [30–32]. Our observation supports the view that allochthonous inputs of OM
serve as the primary source of food and energy to food webs in low-order streams [4, 33–34].

Aromatic compounds including CAS were concentrated in the CHO and CHONmolecular
series, while S and P-containing compounds were mostly olefinic or aliphatic (Fig 3). For
CHON group, many formulas were not plotted in the protein-like region (i.e., H/C = 1.5–2.2,
O/C = 0.3–0.67). A large majority (85–98%) of sulfur-containing formulas had O/S values�4,
perhaps suggesting that these formulas represented organosulfates. Comparing the distribution
of molecular series across the T0 samples, the only noticeable pattern was that F1 had a higher
proportion and larger number of S-containing compounds than other samples (16% in F1 vs.
3.4–7.1% in other three samples; also see S1 Appendix), which could be due to a much higher
sulfate concentration in this stream (37.9 mg/L in F1 vs. 1.1–14.4 mg/L in other streams,
Table 1) that facilitated the formation of organosulfates.

Fig 2. Van Krevelen diagrams of DOM at T0. The light green solid line denotes the regression line through the minimumH/C and O/C values for formulas
with AImod = 0.5 (i.e., the majority of aromatic molecules are plotted below the line) and the black solid line denotes the regression line for formulas with
AImod = 0.67 (i.e., the majority of CASmolecules are below the line).

doi:10.1371/journal.pone.0145639.g002
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Based on the Jaccard similarity coefficients of DOM formulas, the two forest stream samples
(F1 and F2) were more similar than the two pasture stream samples (P1 and P2) (Fig 4). This
observation was also echoed by the NMDS based on Bray-Curtis distance (Fig 5), where sam-
ples from the forest streams were plotted tightly into a small region, relative to more wide-
spread samples from the pasture streams. DOM at T0 from the pasture streams was
characterized by lower mean DBE values (11.01 and 11.65 for the forest streams vs. 9.74 and
8.79 for the pasture streams), higher H/C values (1.17 and 1.13 for the forest streams vs. 1.30
and 1.34 for the pasture streams), and comparable O/C values (Table 2), indicating greater sat-
uration for the formulas in the pasture streams. These patterns are in agreement with the
results from VK classification and AImod analysis, showing DOM at T0 from the pasture
streams had lower numbers and percentages of aromatic formulas (Table 2, Fig 4). In addition
to greater contributions of high-molecular-weight, aromatic compounds derived from land
plants in the forest streams, these characteristics may be also related to light penetration, which
was greater to the pasture streams due to removal of riparian trees in some sections of the pas-
ture streams (personal observation). Light preferentially alters and remineralizes aromatic car-
bons with high DBE values [2, 14, 35].

FTICR-MS data cannot be used directly to derive information about compound abundance
because of varied ionization efficiencies across compounds. Nevertheless, we found that the rel-
ative abundance of formulas in our samples largely agrees with the EEM-PARAFAC data from
a companion study by Lu and colleagues [3]. EEM offers a relatively low resolution in com-
pound separation and identification, but it is viewed as a technique capable of offering DOM
compositional information in a quantitative manner [36, 37]. The higher percentages of aro-
matic formulas in F1 and F2 than in P1 and P2 (Table 2, Fig 4B) agree with the EEM data

Fig 3. Van Krevelen diagrams for molecular series in F1 and P1 at T0. The light green solid line denotes the regression line through the minimumH/C and
O/C values for formulas with AImod = 0.5 (i.e., the majority of aromatic molecules are plotted below the line) and the black solid line denotes the regression line
for formulas with AImod = 0.67 (i.e., the majority of CASmolecules are below the line).

doi:10.1371/journal.pone.0145639.g003
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showing that DOM from the forest streams had higher percent contributions of terrestrial ful-
vic and humic-like compounds than DOM from the pasture streams. Additionally, the EEM
data showed that the percentages of protein-like DOM were lower in the forest streams, which
was interpreted as evidence supporting that human activities likely increased autochthonous
contributions of DOM. Similar patterns have been noted in many EEM studies of DOM in
human-impacted streams and rivers [1, 2, 38]. However, this information cannot be derived
from the FTICR-MS data. Although the relative abundance of formulas falling in the protein
region (i.e., H/C = 1.5–2.2, O/C = 0.3–0.67) was higher in the pasture streams than in the forest
streams (S3 Appendix), a large majority of these compounds did not contain N and cannot be
classified as protein (Fig 3, S1 Appendix). Roth et al. [11] also reported that N-containing for-
mulas were relatively lacking in surface water in comparison to soil water in a study employing

Fig 4. a) Jaccard similarity coefficients of DOM formulas between different samples or incubation
time points; b) Relative abundance (%total formulas) of aromatic formulas in T0 samples.

doi:10.1371/journal.pone.0145639.g004
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the FTICR-MS technique, and explained this observation as a result of active microbial pro-
cessing of N-containing compounds. Several reasons could account for the divergent observa-
tions from FTICR-MS and EEMmeasurements: 1) low retention of protein compounds by C18

filters, which was used for solid phase extraction prior to FTICR-MS analysis; and 2) possible
overestimates of protein contribution by EEMmeasurements, on the basis that low molecular
weight, N-free compounds such as gallic acid could also contribute to protein fluorescence
peaks [39]. Divergent observations from FTICR-MS and EEM characterizations have also been
recently noted by Stubbins et al. [14], who found that of the FTICR-MS formulas correlating to
the classical protein-fluorescence peak in EEM-PARAFAC, only 31% contained N.

More CAS formulas were found in the forest streams than in the pasture streams (Table 2,
Fig 2), based on both VK classification and AImod index. Black carbon, or charcoal, is an impor-
tant source of molecules with CAS [22, 40–43], and they are produced by incomplete combus-
tion of biomass and fossil fuels [44]. Therefore, the black carbon in DOM form the forest
streams may be a result of controlled fire regularly used in the forested watersheds to suppress
fuel buildup. This observation supports a recent contention that black carbon can be mobilized
through dissolution and subsequently discharged to adjacent open water [43, 45].

Bacterial alterations to DOM compound formulas
In T15 compounds after the bacteria only-incubations, the relative abundance of molecular
series exhibited distributions similar to T0 samples, while no consistent pattern was observed
among the samples with respect to changes in the relative abundance of molecular series (S1
Appendix). CHO series were still the most abundant group (73.7–84.6%) and the majority
CHOS compounds (84.5–98.3%) had O/S� 4, indicating the presence of organosulfates. Fur-
thermore, no consistent changes were observed in the relative proportions of aromatic com-
pounds based on the AImod index analysis, despite that aromatic compounds were commonly

Fig 5. Nonmetric multidimensional scaling (NMDS) plot based on Bray-Curtis distances among the
samples.

doi:10.1371/journal.pone.0145639.g005
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Fig 6. Van Krevelen diagrams of refractory compounds a) ubiquitous for all samples in bacteria-only incubations; b) unique in F1 bacteria-only
incubation; c) unique in F2 bacteria-only incubation; d) unique in P1 bacteria-only incubation; e) unique in P1 bacteria-only incubation; and f)
ubiquitous for all samples in combined bacteria+light incubations. The light green solid line denotes the regression line through the minimum H/C and
O/C values for formulas with AImod = 0.5 (i.e., the majority of aromatic molecules are plotted below the line) and the black solid line denotes the regression line
for formulas with AImod = 0.67 (i.e., the majority of CASmolecules are below the line).

doi:10.1371/journal.pone.0145639.g006
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viewed as being more refractory to bacterial degradation [46]. F1, F2, and P1 showed a decrease
in %aromatic formulas, while P2 showed an increase in %aromatic formulas (Table 2).

Two compound groups were evaluated by comparing DOM prior to and after the bacteria-
only incubations: 1) biorefractory group that did not change during the incubations (i.e., pres-
ent at T0 and T15); 2) bioreactive group that existed only at T0 because they were remineralized
or altered over the course of the incubations. Overall, DOM from the pasture streams had
lower proportions of biorefractory formulas but higher proportions of bioreactive formulas
than DOM from the forest streams (Table 2). This pattern agrees with the results from Jaccard
similarity coefficient and NMDS analysis (Figs 4 and 5). The Jaccard similarity coefficients
between T0 and T15 samples were greater for DOM from the forest streams than from the pas-
ture streams (Fig 4), and T0 versus T15 samples were separated by smaller distances for the for-
est streams than for the pasture streams in the NMDS plot (Fig 5). Furthermore, the number of
formulas was reduced by less than 1% for the two forest samples but changed by more than
26% for the two pasture samples (Table 2). These observations all show that the molecular
compositions of the two pasture streams were altered to a greater extent than the two forest
streams during the bacteria-only, dark incubations, with the caveat that P1 was different from
the other three samples by demonstrating a large decrease in the number of compounds after
the incubation. This decrease may be related more to higher nutrient concentrations in this
sample (Table 1) than to DOM composition itself in stimulating microbial activity.

There were 567 compounds refractory to bacteria-only incubations (i.e., present in T0 and
T15 of all four samples, Fig 6A). These refractory compounds had H/C values ranging between
0.8 and 1.6 and O/C between 0.1 and 0.5, comparable to the ranges reported for formulas ubiq-
uitously present across a range of ecosystems (river, forest, grassland, and bog), which were
around 0.9–1.5 for H/C and 0.2–0.7 for O/C [11]. Biorefractory compounds unique to each
sample varied from 235 and 2084, and they displayed larger ranges in both H/C and O/C ratios
(Fig 6). Interestingly, the changes in the proportions of compounds falling in the protein-like
and lipid-like regions showed the best correlation with the Jaccard similarity coefficients
between T0 versus T15 samples for the bacteria-only incubations (Fig 7), indicating that these
compounds were primarily responsible for the changes in DOMmolecules under the influ-
ences of bacterial processing. This is consistent with overall lower proportions of formulas in
lipid-like and protein-like regions in biorefractory group (8.0±5.2% for lipid-like and 6.8±3.7%
for protein-like formulas) than in bioreactive group (12.4±3.6% for lipid-like and 12.3±7.9%
for protein-like formulas). Although the lability of proteins and lipids to microbial utilization
has been widely reported in aquatic environments and soil extracts [47–50], the formulas iden-
tified by VK classification are not necessarily proteins or lipids. Instead, our observation argues
for the lability of compounds with elemental makeup similar to proteins or lipids. Similarly,
the H/C and O/C ranges of those resistant, ubiquitous compounds in various ecosystems
reported by Roth et al. [11] did not include protein-like or lipid-like regions in VK diagrams.
Furthermore, although a number of studies have noted a positive correlation between %biode-
gradable DOC versus %protein fluorescence [51–54], this correlation was not found in our
study streams [3]. The FTICR-MS data here may provide an explanation—other formulas with
high H/C ratios (>1.5) including those in lipid-like and unsaturated hydrocarbon-like regions
also exhibited a positive correlation with the Jaccard similarity coefficients, indicating that they
were also bioreactive and can play an important part in determining DOM biodegradability
(Fig 7). This observation agrees with the previous finding that DOM with high H/C values was
a labile source for bacteria, on the basis that H/C was a positive predictor of bacterial produc-
tion in the Ogeechee River system [55]. Formulas in the carbohydrate-like region, however, did
not show changes corresponding to changes in DOM formula similarity. This observation,
rather than suggesting the refractory nature of carbohydrate-like compounds, is more likely a
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result of poor representation of carbohydrates in FT-ICRMS data related to their inefficient
ionization in negative-mode ESI [14] and/or the selective retention of non-polar compounds
through C18 filters [13].

Fig 7. Correlations between Jaccard similarity coefficients and absolute changes in the proportions
of the five Krevelen classified groups in the bacteria-only incubations. Solid lines represent linear trend
lines.

doi:10.1371/journal.pone.0145639.g007
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Combined light + bacteria alterations to DOM compound formulas
The two pasture stream samples were incubated under combined light and bacteria incuba-
tions. In both samples, the proportions of aromatic formulas and DBE decreased, and O/C val-
ues increased (Table 2). These characteristics are typical for light-induced DOM alterations,
where the addition of oxygen to DOM during photochemical oxidation may be a result of ioni-
zation yielding hydrated electrons and organic radicals that both can react with molecular oxy-
gen [35]. P1 and P2 shared 480 refractory compounds (present at both T0 and T15 of combined
light+bacteria incubations) which had H/C values varying from 1 to 1.7 and O/C values from
0.1 to 0.5 and comprised mostly aliphatic compounds (Fig 6). Relative to biorefractory com-
pounds, they had higher values of H/C and lower values of AImod. Correspondingly, the relative
percentages and absolute numbers of formulas falling in the region for unsaturated hydrocar-
bons were higher in reactive formulas (present only in T0 of the combined incubations) than in
refractory formulas—7.1±0.6% of reactive formulas versus 0.5±0.9% of refractory formulas.
These observations confirmed the sensitivity of unsaturated bonds (e.g., C = C, benzene rings,
conjugate systems) to light alterations [14, 56–58]. Similar observations have been made for
riverine and estuarine waters. For example, Kujawinski et al. [57] irradiated DOM samples
from the Suwannee river with light of wavelengths>305 and>360 nm and found that DOM
formulas with high DBE and low oxygen content were generally destroyed, resulting in lower
unsaturation and higher oxygen content in residual DOM. Notably, all CAS formulas were
removed after the combined bacteria+light incubations (Table 2), supporting the recent notion
that black carbon mobilized from soil to water can be further altered by light [14, 22, 42, 45], as
opposed to the conventional view that black carbon was inert in biogeochemical cycles due to
the abundant content of aromatic and graphitic C [59–61]. In our experiments, the decomposi-
tion occurred within days, consistent with the previous finding that all black carbon–like for-
mulas disappeared after 57 d photochemical incubations of Congo River DOM [14].

DOM similarity and diversity
The degree of alterations in DOMmolecules indicated by the Jaccard similarity coefficient or
Bray-Curtis distance did not correlate to %degradable DOC (Pearson r�0.03, P�0.94), indicat-
ing that heterotrophic microbes may be actively transforming DOM formulas without remov-
ing them through remineralization. This is not surprising as the similarity measures assess only
compositional information (compound presence/absence) that does not always correspond to
DOC quantity. Therefore, when interpreting DOM reactivity data from previous literature, one
should keep in mind that degradable DOC, a widely used proxy to estimate DOM lability to
microbes within lotic ecosystems [3, 62], may not always be an accurate proxy indicative of the
actual roles of DOM in supporting microbial food webs. Likewise, Herlemann and colleagues
[63] showed a decoupling between DOC concentration and DOMmolecular composition, i.e.,
4–10% DOC loss versus no significant changes in DOMmolecular composition during 28-day
incubation experiments.

We combined the number and similarity of DOMmolecules to indicate DOM diversity.
After the incubation experiments, the number of formulas decreased in all but one sample, but
the majority samples showed decreases in similarity coefficients (Fig 8). In agreement with this
pattern, T15 samples spread more widely than T0 samples in the NMDS plot (Fig 5), indicating
that light and/or bacterial processing led to more dissimilar DOM formulas. This is in contrast
to the previous notion that DOM compounds become more uniform with increasing degrees
of processing by light and bacteria, which was based primarily on the observation that photo-
chemical and microbial processing of DOM tends to leave behind compounds with similar
optical properties and carbon isotopic compositions across various systems (e.g., stream, river,
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and coastal waters) and sample types (e.g., surface water and soil solutions) [3, 35, 48]. Our
observations based on the FTICR-MS data remain to be verified and are unable to lead to gen-
eralizations on across-system patterns, largely due to the non-quantitative nature of this tech-
nique as well as the small sample size, which is a general feature for FTICR-MS studies owing
to arduous efforts and expensive instruments involved. Nevertheless, these observations dem-
onstrate the need to compare and synthesize high-resolution molecular data with isotopic and
optical measurements to yield more reliable understanding on molecular transformations in
lotic ecosystems.

Fig 8. Comparing DOM diversity prior to versus after the incubations through a) compound number, and b) DOM formula similarities indicated by
Jaccard similarity coefficients between T0 vs. T15 samples.

doi:10.1371/journal.pone.0145639.g008
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Conclusions
Through the use of ESI-FTICR-MS, we characterized DOM from headwater streams draining
pasture-dominated and forest-dominated watersheds, considering both molecular composition
and molecular transformation under the influence of microbial and photochemical processes.
In all the samples, the majority of the formulas fell within the lignin-like region, supporting the
dominance of allochthonous DOM in headwaters. Formulas in the two forest streams were
characterized by higher unsaturation and greater aromaticity than those in the two pasture
streams, suggesting larger contributions of terrestrial plant-derived DOM in the forest streams.
Larger numbers and percentages of CAS formulas were observed in the forest streams, indicat-
ing that soil black carbon resulting from controlled fires within the forest-dominated water-
sheds can be dissolved and discharged to open water. Bacterial processing altered DOM from
the pasture streams to a greater extent than DOM from the forest streams, where formulas fall-
ing in the H/C and O/C ranges for protein-like, lipid-like, and unsaturated hydrocarbon-like
regions were primarily responsible for DOMmolecular alterations. During the combined light
+ bacteria incubations, more unsaturated compounds were preferentially degraded, and all
CAS molecules were removed, supporting the liability of black carbon to photochemical alter-
ations. Based on compound number and formula similarities, light and bacterial processing
appeared to increase DOM formula diversity after the 15 d experiments. Overall, the use of
FTICR-MS technique provided additional information unrevealed by previous measurements
of DOC concentration, δ13C-DOC, and fluorescence properties, demonstrating the importance
of incorporating this sophisticated technique to identify qualitative changes in the sources and
fates of terrestrially derived DOM in aquatic systems. However, interpreting FTICR-MS data
from the perspective of extrapolating compound-level information to whole-DOM composi-
tional information has to rely closely on other more quantitative measures such as fluorescence
characterizations.
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