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Abstract
The predator-prey interactions in the offshore food web of Lake Superior have been well

documented, but the sensory systems mediating these interactions remain unknown.

The deepwater sculpin, (Myoxocephalus thompsoni), siscowet (Salvelinus namaycush
siscowet), and kiyi (Coregonus kiyi) inhabit low light level environments. To investigate the

potential role of vision in predator-prey interactions, electroretinography was used to deter-

mine visual sensitivity for each species. Spectral sensitivity curves revealed peak sensitivity

at 525 nm for each species which closely corresponds to the prevalent downwelling light

spectrum at depth. To determine if sufficient light was available to mediate predator-prey

interactions, visual sensitivity was correlated with the intensity of downwelling light in Lake

Superior to construct visual depth profiles for each species. Sufficient daytime irradiance

exists for visual interactions to approximately 325 m for siscowet and kiyi and 355 m for the

deepwater sculpin during summer months. Under full moon conditions, sufficient irradiance

exists to elicit ERG response to light available at approximately 30 m for the siscowet and

kiyi and 45 m for the deepwater sculpin. Visual interactions are therefore possible at the

depths and times when these organisms overlap in the water column indicating that vision

may play a far greater role at depth in deep freshwater lakes than had been previously

documented.

Introduction
Lake Superior is the largest of the Laurentian Great Lakes and home to 38 fish species, includ-
ing 19 nonnative species [1], with the majority of these fishes inhabiting the shallow, nearshore
waters or surrounding watersheds. The cold deep, oligotrophic offshore waters of Lake Superi-
or are relatively depauperate with fish density less than 6.9 kg/ha [2]. Although many invasive
aquatic species have disrupted and/or become integrated into shallow water community, the
deep waters of Lake Superior remain dominated by native species [3]. Piscivores such as burbot
(Lota lota) and siscowet lake trout (Salvelinus namaycush siscowet) dominate the highest
trophic levels and feed predominately on deepwater sculpin (Moxocephalus thompsonii) and/or
kiyi (Coregonus kiyi) [4]. The deepwater sculpin and kiyi, along with the cisco (Coregonus
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artedi) form the second trophic level, and prey on a wide variety of zooplankton such as mysis
(Mysis diluviana), scuds (Diporeia spp.), cladocerans, and copepods [3,5]. Thus, energy trans-
fer in the deep, oligotrophic water of Lake Superior is mediated through a relatively simple
food web (Fig. 1).

The diel vertical migrating (DVM) zooplankton,Mysis diluviana, is the primary conduit for
energy flow from benthic waters to the surface, as it feeds diurnally on benthic detritus and
switches to midwater phytoplankton and zooplankton during its nightly ascent [6,7]. Two
planktivorous fish, deepwater sculpin and kiyi, prey primarily on the mysis, with the deepwater
sculpin also consuming benthic amphipods (Diporea spp.) [3,8]. The siscowet is the most
abundant piscivore in the lake [2,9] and its feeding habits are dictated by diurnal vertical mi-
grations of the planktivores [7]. During the day, the siscowet remain in deepwater (>140 m)
and prey primarily on benthic sculpin, while at night, they vertically migrate to consume kiyi
which are following the migration of mysis [2,3,4,10,11].

Figure 1. Themain food web of the offshore waters of Lake Superior. The relative depth is plotted on the y axis with fish distribution shown both day (left)
and night (right). Arrows indicate predation on particular species.

doi:10.1371/journal.pone.0116173.g001
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Despite detailed information on the food web and diet of dominant species, little is known
about the role that vision plays in mediating deepwater predator-prey interactions. While ol-
factory and auditory cues may be used for long range detection of prey, short range interactions
usually are mediated by the mechanosensory lateral line or visual input [12]. Vision is often
the main sensory modality in shallow, sunlit waters while the lateral line may be dominant in
turbid and/or low light environments. To understand the role of vision, it is important to deter-
mine the visual and spectral sensitivity of the organism, and the intensity and spectral compo-
sition of downwelling irradiance. Predator-prey or population models often contain little
sensory information and by incorporating sensory physiology, future models will better predict
population structure and dynamics.

The fishes that comprise the deep water food web spend the majority of their time in a low
light level environment. Following a pelagic larval stage, deepwater sculpin transition to the
benthos and remain at depths ranging from 15 to 407 m [13,14,15,16] with the majority of the
Lake Superior population inhabiting depths below 70 m. In contrast, siscowet and kiyi are mid-
water water fish that undergo diel vertical migration (DVM) with siscowet depth distributions
ranging from the surface (night) to 407 m (day), while kiyi are found between 25 m (night) and
325 m (day) [7,10,17]. Therefore all three species spend the majority of their life in light limited
environments.

The visual pigment sensitivity hypothesis [18] suggests that fish visual sensitivity corre-
sponds with its light environment due to the adaptation of visual pigments. The spectral sensi-
tivities of numerous marine species support this hypothesis [19,20,21,22,23,24,25,26]; marine
organisms exhibit peak sensitivity to blue light as these are the predominate wavelengths at
depth due to the filtering properties of seawater [27]. Marine fish contain the rhodopsin visual
pigment, based on vitamin A1, which is well adapted for the detection of blue wavelengths.
However, freshwater systems favor the transmittance of green light due to the high concentra-
tion of chlorophyll and other particulate matter in the water column [27,28]. The visual pig-
ment porphyropsin, based on vitamin A2, is present in freshwater fish with its absorption
spectrum matched to the predominant green downwelling light [29]. Freshwater fish utilize
porphyropsin, or in conjunction with rhodopsin for detection [21,30].

Historically, deep sea fishes received more attention for their visual ability at depth than
freshwater fish, creating a gap in the knowledge of the visual characteristics among deep water
marine and freshwater fishes [28]. The clear, offshore waters of Lake Superior allow greater
light penetration compared to other freshwater systems, and offer an opportunity to examine
the visual sensitivity of deep water fishes in a freshwater system. The goal of the current study
was to characterize previously unmeasured visual sensitivity of deep water fishes in Lake Supe-
rior and to determine the potential role of vision in mediating predator-prey interactions.
Electroretinography was performed on three species of deep water fish found in Lake Superior
to determine dark adapted spectral sensitivity and to compare each visual system to the prevail-
ing light environment. The fishes’ visual sensitivity was combined with estimates of the trans-
mission of light in Lake Superior to model the depths at which vision may mediate predator-
prey interactions.

Materials and Methods

Fish Collection
Siscowet, deepwater sculpin, and kiyi were collected via daytime bottom trawls in the Apostle
Islands region of Lake Superior, east of Stockton Island (Lat: 6° 54.751 Long: 90° 30.611) on
November 13, 2012 and June 26, 2013 with the permission of the Wisconsin Department of
Natural Resources. No invasive species were collected during the trawl and no endangered
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species were harmed during the collection procedure. Fish were collected at depths ranging
from 100 to 117 m during 10 minute bottom trawls using a 12 m Yankee bottom trawl. Imme-
diately after removal from the net, fish were submerged in a solution of lake water consisting of
0.0024% tricaine methanesulfonate (MS-222, Sigma Chemical Co., St. Louis, MO), 0.026%
Stresscoat (Mars Fishcare North America Inc., Chalfont, PA), and 0.5% Instant Ocean (Aquari-
um Systems Inc., Mentor, OH) in 570 L plastic holding tanks in 6°C water. After 2 minutes,
kiyi and siscowet swim bladders were deflated using 14 gauge veterinary needles (QC Supply,
Schuyler, NE), the incisions treated with betadine (Purdue Products L.P., Stamford, CT), and
the fishes placed back in the holding tanks. After an additional five minutes, fish were trans-
ferred to two 285 L transportation tanks at 6°C containing lake water solutions of 0.0002% MS-
222, 0.026% Stresscoat, and 0.5% Instant Ocean. These tanks were then transported to the Uni-
versity of Minnesota Duluth. Throughout the entire capture and transport process, the water
was aerated with compressed O2 via 5” Deluxe Bubble Disks (Penn Plax, Hauppauge, NY).

At the University of Minnesota Duluth, the sculpin, kiyi, and siscowet were placed into
40 L, 575 L, and 1900 L aquaria, respectively, equipped with mechanical, chemical and biologi-
cal filtration using Penn-Plax Cascade 1500 canister filters. Prior to arrival, all tanks were aerat-
ed with compressed O2 for three days. Instant Ocean was added to all tanks to achieve 0.5%
salt concentration. Carbon filtration was used during oxygen treatment, but was removed
upon Stresscoat treatment. Tanks were treated with 0.026% Stresscoat one day prior to fish ar-
rival, and were aerated with pure oxygen for four days after arrival, and carbon filtration re-
sumed seven days post trawl. Water temperatures were maintained between 3 and 6°C. All
tanks were maintained in refrigerated dark rooms and were illuminated indirectly by dim red
light (Sunbeam 40W red light bulb) when necessary for observation, fish selection, and tank
maintenance. Water quality (pH, temperature, ammonia, nitrate, nitrite, and oxygen concen-
tration) was monitored twice daily for the first 2 weeks, daily for weeks 3 and 4, and twice
weekly thereafter. Feeding was initiated 48 hours after arrival and fishes were provided frozen
mysis, with kiyi and siscowet supplemented with live mysis and shiner minnows when
available. Food was provided every other day and uneaten food was removed from tanks within
24 hrs.

Electroretinogram Preparation
All experimental procedures were conducted in a dark room illuminated by dim red light
(15 W light bulbs with Kodak GBX-2 dark red safelight filter). All species underwent the same
protocol and each fish was anesthetized with buffered (4.5% sodium phosphate dibasic, 1.1%
potassium phosphate monobasic in diH2O, Sigma Chemical Co., St. Louis, MO) 0.002%MS-
222 with pH maintained between 7.0 and 7.4. A tail pinch was used to confirm that the surgical
plane for anesthesia was achieved [31]. The fish was then immobilized by an intramuscular in-
jection of pancuronium bromide (0.001 to 0.100%; 0.0004–0.0030% of body weight) dissolved
in 0.9% NaCl. The fish was placed on a moist sponge in a 45 × 11 × 9 cm experimental tank
and submerged up to the ventral border of the eyes. The experimental tank was housed within
an opaque metal Faraday cage (77 × 67 × 96 cm) to eliminate instrumentation light from inter-
fering with dark adaptation. Buffered 0.002%MS-222, maintained at 4°C (420W Teco SeaChill
Aquarium Chiller, Teco model SCTR20, Ravenna, Italy), was circulated continuously over the
gills through an intraoral tube to maintain the surgical plane of anesthesia throughout the ex-
periments. Upon completion of testing, organisms were either revived with fresh water (0.5%
salt concentration) or sacrificed by immersion in 0.5% MS-222 for 1 hr.

This study was carried out in strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
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approved by the Institutional Animal Care and Use Committee of the University of Minnesota
(Protocol: 1205A13881). All surgery was performed under MS-222 anesthesia, and all efforts
were made to minimize suffering.

Electroretinogram Collection
Light stimulus was provided by a 100 W quartz tungsten-halogen lamp (Newport model 6333,
Stratford, CT) powered by a constant current power supply (Newport model 68938). The
stimulus duration was regulated by an Oriel Electronic Shutter (model 76994) and Controller
(model 76995) that delivered a square wave light pulse with 3.0 ms delay, 3.0 ms rise time, and
5.0 ms fall time. The light was passed through a monochromator (Newport model 77250).
Neutral density filters (0.1 to 3.0) were used to regulate light intensity. A fiber optic light pipe
(Newport model 77632) was used to transmit the light to the eye. Light intensity was measured
using a radiant power energy meter (Ophir model 70260) and probe (Ophir model 70268). A
0.20 mm diameter silver-silver chloride recording electrode was inserted into the vitreous of
the eye through an incision at the limbus, and a reference electrode was placed in the center of
the frontal bone between the eyes. ERGs were amplified using World Precision Instrument,
Inc. amplifier (1000×, 1 Hz low pass, 3 kHz high pass, model DAM50; Sarasota, FL), filtered
using a 60 Hz notch filter, recorded with PowerLab 4SP (AD Instruments, Castle Hill, Australia),
and stored using Lab Chart7 (AD Instruments, Castle Hill, Australia) software on a portable
computer.

All fishes were dark adapted for 30 minutes prior to testing. A 200 ms flash of monochro-
matic light of different wavelengths was used to elicit the ERG. Wavelengths from 400 to
700 nm at 25 nm intervals were used as the stimulus with the presentation order randomly
determined. Stimulus intervals were determined for each species by presenting consecutive
flashes to control fish to determine the delay required to produce the same response amplitude
to minimize photobleaching. Interflash intervals ranged from 30 s for the kiyi to 190 s for the
deepwater sculpin. Experiments were attempted within the same time period each day to mini-
mize intraspecfic circadian differences. Deepwater sculpin and siscowet experiments were initi-
ated between 1030 and 1530. However, due to the compromised physiology of the kiyi,
experiments were initiated as soon as fish were transported to the lab which resulted in trials
being conducted between 0025 and 1030 within the first week following the trawl.

The b-wave amplitude (baseline to peak) of the ERG was used as the response criterion. The
minimal b-wave amplitudes were consistently encountered in response to short wavelength
light (� 425 nm) and therefore the b-wave amplitude at 400 nm was set as the minimal criteri-
on response for each fish. Although b-wave amplitudes ranged up to 71 mV, the amplitudes
were often less at the shorter wavelengths. Therefore the b-wave amplitude of 5 μV was set as
the criterion response at 400 nm. This amplitude insured that at least a 5 μV response was
attainable throughout the wavelengths tested. Wavelengths were reduced in intensity by neu-
tral density filters until the b-wave amplitude equaled 5 μV for each wavelength tested. The
corresponding irradiance to achieve the criterion response at each wavelength was used to gen-
erate spectral sensitivity curves for each species.

Light Attenuation Calculation
Existing measurements of downwelling light for Lake Superior are limited to relatively shallow
depths. Therefore, downwelling irradiance was calculated from sources of surface irradiance
and light attenuation coefficients for Lake Superior. Total surface irradiance on Lake Superior
in August ranged from 122 (afternoon) to 1832 (noon) μ einsteins m−2/sec−1 for photosyntheti-
cally active radiation (PAR) which measures the total energy for the visible light spectrum of
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400–700 nm [32]. Photoreceptors are photon detectors and not energy detectors, and therefore
it was necessary to convert the irradiance to photons−1 cm−2. The approximate middle of the
surface irradiance range, 1000 μ einsteins m−2/sec−1 was arbitrarily chosen as the daytime light
intensity. The following equation was used to convert this value to photons s−1 m−2:

E ¼ Eq � PARl � A � B Eq:1

E = energy in photon s−1 m−2

Eq = Energy in quanta units [32]
PARλ = percentage of incident solar radiation or moonlight for each wavelength [33]
A = 0.22; conversion of quanta to Wm−2 [34]
B = 5.05 x 1015 * λ; conversion of Wm−2 to photon s−1 m−2 at each λ (nm) [35]
Most available moonlight values for Lake Superior were reported in lux which corresponds

to human visual sensitivity and was not accurate to use for fish vision. It was not possible to
convert lux to irradiance without knowing the spectral sensitivity of the detector. Therefore,
moonlight intensities were used from Cramer et al. [36] who reported wavelength specific
surface irradiance for moonlight in Arizona (peak value of 2.67 μWm−2 at 600 nm). The
values were converted to Wm−2 and then transformed to photon s−1 m−2 using B in
equation 1.

To determine the depth at which sufficient irradiance was available to evoke the criterion
b-wave response, the Beer-Lambert law as used to calculate light attenuation at depth. The sur-
face intensity was calculated for each wavelength using equation 1 and the Beer-Lambert law
was used to calculate intensity available at depth:

Eðz;lÞ ¼ Eð0;lÞe
�½kðlÞz� Eq:2

E(z,λ) = spectral irradiance at depth z (m) and wavelength λ (nm)
E(0,λ) = incident surface spectral irradiance
k = spectral irradiance attenuation coefficients [33]
Seasonal changes in water clarity result in different kPAR values for Lake Superior with clear-

er water present in the spring and summer (kPAR = 0.1), and fall characterized by a reduction
in water clarity (kPAR = 0.3). Therefore different spectral irradiance attenuation coefficients
were used to determine light attenuation under different water conditions [33]. Data for winter
months were not available; however ice and snow cover, low sun angles, and shorter days can
limit surface irradiance [37] making winter the most probable time for minimal light availabili-
ty at depth.

Results
All species survived trawling and transport to the University of Minnesota Duluth. Despite re-
mediation of gas bladder expansion in the kiyi, fish continued to exhibit buoyancy problems
and survived less than a week in captivity. Therefore, all kiyi were tested within 4 days of cap-
ture. Although siscowet displayed minor buoyancy problems, these quickly disappeared within
one week of capture and both the siscowet and sculpin have been maintained over a year in
captivity indicating no long term physiological effects of trawling. Siscowet were tested within
3 weeks of capture and sculpin within 2 months of capture.

Spectral sensitivity
Deepwater sculpin were the most susceptible to short interflash intervals and needed a mini-
mum of 190 seconds between flashes to avoid transient “bleaching”. Lake trout required 80
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seconds, while 30 second interflash intervals were sufficient for kiyi to recover full sensitivity.
The dark adapted retinas displayed a strong b-wave and no evidence of an a-wave (Fig. 2).

Visual spectral sensitivity curves for dark adapted siscowet, kiyi, and deepwater sculpin
were constructed using ERG responses to monochromatic light of different wavelengths. All
three fishes exhibited maximum sensitivity at 525 nm with relatively broad sensitivity from 500
to 550 nm and markedly decreasing sensitivity to wavelengths< 475 nm and> 575 nm (Fig. 3).

Figure 2. An electroretinogramwith amplitude of the b-wave (mV) plotted vs time. The ERG was recorded from kiyi in response to 550 nm light. The
open rectangle indicates the onset and offset of the 200 ms flash.

doi:10.1371/journal.pone.0116173.g002

Figure 3. The average irradiance (1/photons cm−2s−1) needed to invoke the criterion response is
plotted versus wavelength (nm) for kiyi (black circles), siscowet (open circles), and deepwater sculpin
(triangles). Lines connecting the symbols are for illustrative purposes only. Error bars = 1 SE.

doi:10.1371/journal.pone.0116173.g003
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Visual depth profiles
To illustrate the differences in light attenuation for each wavelength and season (spring/summer
vs fall) the maximum depth at which solar irradiance was reduced to one percent of surface val-
ues in Lake Superior was plotted (Fig. 4). 475 to 500 nm light was maximally transmitted in the
spring/summer, while fall shifted the spectrum to slightly longer wavelengths with 550 nm light
showing maximum depth penetration.

Visual depth profiles were created to determine the maximum depth at which sufficient
irradiance is available to elicit the criterion ERG amplitude in the three species of fish tested to
approximate the depth at which fish can detect light. All three species had sufficient visual sen-
sitivity to detect 500 nm light at depths greater than 325 m during the day in spring/summer
(kPAR = 0.1) months (Fig. 5A). Longer wavelengths (� 625 nm) were rapidly attenuated and
not detectable deeper than 40 m. Deepwater sculpin displayed broader sensitivity between 475
to 550 nm than the other two species, but outside of these wavelengths, all fishes had similar
spectral sensitivity curves.

Visual depth profiles changed with decreased water clarity (kPAR = 0.3) with downwelling
daytime irradiance attenuating rapidly. Intensity was sufficient to elicit ERGs at maximum

Figure 4. The depth at which 1% of surface irradiance occurs under spring summer (kPAR = 0.1)
conditions (solid line) and fall (kPAR = 0.3) conditions in Lake Superior.

doi:10.1371/journal.pone.0116173.g004

Figure 5. Themaximal depth at which sufficient downwelling irradiance is available to elicit an ERG under full sun conditions is plotted versus
depth (m) for kiyi (black circles), siscowet (white circles), and deepwater sculpin (black triangles) for (A) spring/summer (kPAR = 0.1) and (B) fall
(kPAR = 0.3) conditions in Lake Superior.

doi:10.1371/journal.pone.0116173.g005
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depths of approximately 75 m for all species (Fig. 5B). Again, all species demonstrated similar
profiles with maximum sensitivity between 500 and 525 nm, with the deepwater sculpin retain-
ing a slight advantage in detection of wavelengths between 500 and 575 nm.

During the spring and summer months, kiyi and siscowet nocturnal visual sensitivity was
sufficient to detect 500 nm light, under full moon conditions to depths of approximately 30 m,
while deepwater sculpin could detect downwelling irradiance to 63 m (Fig. 6A). During the fall,
maximal moonlight penetration was less than 15 meters for sufficient intensity to elicit ERGS,
with depths estimated at 8 m for kiyi and siscowet and 14 m for the deepwater sculpin for
525 nm light (Fig. 6B). Sensitivity at either end of the visual spectrum was greatly reduced
under both diurnal and nocturnal conditions for all organisms.

Discussion
The deep water fishes of Lake Superior exhibited similar spectral sensitivities with peak sensi-
tivity at 525 nm that correlated to the predominant downwelling wavelengths. Based on visual
sensitivity and light attenuation estimates in Lake Superior, sufficient irradiance exists to medi-
ate visual interactions throughout most, if not all, of the species daytime depth distributions.
Additionally, sufficient downwelling irradiance is available under certain nighttime conditions
to provide sufficient intensities to elicit ERG responses in the DVM species during nocturnal
ascents.

Light exposure on the surface can transiently or permanently damage the retinas of mid
water animals [38,39] although its effect on fish remains to be determined. The fishes in our
study were trawled from 100 to 115 m during both day and night and were exposed to sunlight
or deck lights during capture and transport, and the effects of light exposure on the visual sen-
sitivities of these Lake Superior fishes are uncertain. However, every effort was made to main-
tain fish under dim red light conditions following capture, and during ERG testing. As all
animals displayed a robust ERG when stimulated, and displayed spectral sensitivity curves con-
sistent with other freshwater species, it appears that most, if not all retinal components were in-
tact. Control sculpins and siscowet were maintained for months in captivity without detectable
changes in visual or spectral sensitivity suggesting that any light damage that may have oc-
curred to the retina probably was minimal or transient. Kiyi proved less robust and buoyancy

Figure 6. Themaximum depth at which sufficient downwelling irradiance is available to elicit an ERG under full moon conditions is plotted versus
depth (m) for kiyi (black circles), siscowet (white circles), and deepwater sculpin (black triangles) for (A) spring/summer (kPAR = 0.1) and (B) fall
(kPAR = 0.3) conditions in Lake Superior.

doi:10.1371/journal.pone.0116173.g006
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issues due to trawling resulted in short survival times (generally less than one week). As such,
kiyi were maintained for a shorter recovery period under dim light before testing. All kiyi ex-
hibited a strong response to monochromatic light indicating retinal function was maintained,
however, given their compromised physiology, their results should be treated with a degree of
caution.

Due to both specialized morphological retinal adaptation and the optical clarity of open
ocean water, it has been estimated that mid water fish can detect downwelling light to 1000 m
[40,41]. However, most lakes contain more particulate matter, such as non-algal particulates
and colored dissolved organic matter [42,43] that increase light attenuation and shift the down-
welling spectral irradiance to longer wavelengths than in salt water. Specialized retinal adapta-
tions to increase visual sensitivity, such as a multi-layer retina, have not been identified in
freshwater fish. Estimates of fish visual sensitivity at depths greater than 100 m are rare for
freshwater fishes. The deep, oligotrophic Lake Superior provided an excellent venue to examine
fish visual capabilities in deep freshwater systems.

Many papers on fish vision report surface or underwater light intensities in photometrics
(lux) which are based on human visual perception and not accurate for most animal species
[35]. Therefore irradiance values on Lake Superior were obtained from Fahnensteil et al. [32].
However, the spectral distribution of light is not constant from 400 to 700 nm and therefore
the percentage of energy for each wavelength was obtained for Jerome et al. [33] as well as the
extinction coefficients for water. As nocturnal irradiance for Lake Superior was not available
outside of photometric units, moonlight irradiance recorded in southern Arizona was substi-
tuted as the study provided a detailed irradiance for each wavelength tested [36].

The ERG has long been used to assess spectral sensitivity by determining the electrical po-
tential of the retina. In light adapted retinas, ERG waveforms include an a-wave generated by
the photoreceptor hyperpolarization upon initiation of a light stimulus, and a b-wave, originat-
ing from Müller cell and bipolar cell depolarization [44]. When dark adapted, the a-wave is ab-
sent and allows a more precise determination of the b-wave amplitude. As the Lake Superior
fish inhabit minimal light environments, the dark adapted retina was more consistent with en-
vironmental conditions and was used to assess spectral sensitivity. Therefore given the low
light intensities used for stimulation and the dark adapted condition of the retinas, the infor-
mation presented is limited to scotopic visual sensitivity most likely mediated by the rod
photoreceptors.

The ERG provides a mechanism for minimally invasive sampling and allows the fish to be
used also in behavioral studies. While it is an effective tool to measure spectral sensitivity, it
does not assess the central visual pathways and brain centers involved in image formation, and
therefore cannot be directly correlated with image formation. However, for the b-wave to be
induced, sufficient light must be absorbed by the photoreceptors to stimulate the bipolar and
Müller cells to allow the electrical potential of the retina to be detected, strongly suggesting that
fish can centrally process this light. Additionally, the current path to the differential extracellu-
lar electrodes, one in the vitreous and one on the epidermis, necessitates that the electrical sig-
nal must travel through different tissue and unlike intracellular electrodes, some current will be
lost before detection. Therefore, it is highly probable that visual sensitivity may be greater than
values reported. However, given the challenge of capturing and maintaining these deep water
species, the ERG provides the best proxy to assess visual sensitivity in these fishes. Therefore,
for the purposes of this paper, visual sensitivity is defined as the minimal irradiance sufficient
to elicit the criterion b-wave amplitude in a dark adapted retina.

The spectral sensitivity curves showed all three species had broad spectral sensitivities that
correlate with prevailing downwelling light in Lake Superior. The spring and summer water
column is clearer and contains less particulate matter than fall, thus allowing greater light
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transmission to depth with 500 nm wavelengths penetrating the furthest. In the fall, the greater
suspension of particulate matter increases light absorbance and shifts the deepest penetrating
light to 550 nm. Thus, the peak spectral sensitivity of 525 nm is well adapted for the seasonal
differences in downwelling light. The reduced spectral sensitivity to the longer wavelengths is
consistent with their deep water environment because red light is quickly attenuated in Lake
Superior [25,27]. Similarly, shorter wavelengths are absorbed relatively close to the water’s sur-
face in freshwater systems, although attenuation of 400 to 450 nm light occurs more slowly
than red wavelengths [18,25,27]. Thus the visual pigments in the fish are adapted to seasonal
changes in the prevailing downwelling spectrum; the broad sensitivity range exhibited between
500 and 550 nm is consistent with Clarke’s sensitivity hypothesis that visual pigments are
matched to downwelling light.

These findings offer a unique opportunity to explore possible visually mediated behavior in
a deep lake system by correlating spectral sensitivities to the estimated irradiance at depth.
Many studies of fish vision have investigated spectral sensitivity using electroretinography [45]
or microspectrophotometry to understand the maximum wavelength of perception for retinal
components [19,23,46,47,48,49], however, few have compared the visual sensitivities of fishes
to a detailed profile of the light available in the natural environment [50,51,52].

Deep water marine fishes are often physiologically compromised both by the physical im-
pacts of the trawl net and/or pressure differentials encountered during retrieval. Due to the
challenges of capturing marine fish in good condition and maintaining these often moribund
fish long enough to perform electrophysiology, the spectral sensitivity and visual depth profiles
have often been extrapolated from retinal histology or microspectrophotometry. While these
techniques have provided a wealth of information on the evolutionary adaptation of fish visual
systems to low light levels, they do not provide empirical information about visual sensitivity at
depth.

Many estimates of fish vision at depth are based on indirect evidence or extrapolations of
non physiological experiments. Clarke [18] extrapolated from psychophysical visual experi-
ments the depths in which the freshwater sunfish could see in both freshwater and marine
environment and suggested visual capabilities down to 430 m in the Sargasso Sea (an environ-
ment that the fish do not inhabit) and to approximately 110 m depth in Lake Superior. Nicol
[53] suggests that retinal adaptation of midwater fish allow vision to 1000 m in the open ocean.
However, physiologically determined minimum light responses have been rare due to previ-
ously mentioned issues. The ability to retrieve and maintain fish under low light level condi-
tions for several months after capture allowed investigation of visual sensitivities of deep
dwelling fresh water fish. Combined with surface irradiance and the attenuation coefficients of
Lake Superior, it provided the opportunity to model visual sensitivity based on retinal responses.
As the deep water food web is an important component of the Lake Superior ecosystem, it is im-
perative to understand the sensory physiology of the animals to produce accurate predator-prey
models.

The deepwater water sculpin proved exceptionally sensitive to light stimuli with over 3 min-
utes required between flashes to obtain successive equal amplitude ERGs. Direct interspecific
comparisons of maximum visual sensitivity are not possible using the ERG as eye size and elec-
trode position can influence b-wave amplitudes between fishes, however, the long interflash in-
terval needed to regain full ERG amplitudes indicates that the deepwater sculpin maybe the
most sensitive of the three species. This is consistent with its deepwater benthic adult phase
which places it in a low intensity light environment. The models show sufficient visual sensitiv-
ity to potentially mediate predator-prey interactions throughout the majority of its range. As
the deepwater sculpin is the preferred prey of siscowet, its greater visual sensitivity may allow it
to detect the siscowet at sufficient range to evade predation. Its benthic position provides an
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additional advantage as it can discern the predator silhouettes illuminated by the downwelling
light while the siscowet faces the more difficult task of visualizing benthic prey against a dark
background. Although at its average depth insufficient light is available for visual function at
night, its main predator undergoes DVM and therefore vision may not be necessary during
this time.

In contrast, the siscowet and kiyi visual sensitivities are sufficient to allow daytime vision
throughout most of these fishes’ diurnal depths and full moonlight could provide sufficient ir-
radiance to allow vision from 30 to 60 m depth. Depending on the intensity of the isolume that
they follow, both species may have sufficient visual sensitivity to use vision to feed or avoid pre-
dation at night.

The three fish species that comprise the offshore food web of Lake Superior have evolved
spectral sensitivity to match the prevailing downwelling light. Their visual sensitivity appears
sufficient to utilize visual cues for predator avoidance and prey capture. While other sensory
modalities may be important for long range detection, most short range predator-prey interac-
tions are mediated by the mechanosensory lateral line and/or vision. Teleosts are certainly ca-
pable of finding prey in complete darkness, although, at best range, the mechanosensory lateral
line range is estimated to be one or two body lengths with neurophysiological studies on free
swimming fish feeding on natural prey suggesting even shorter distances of less than a body
length [54]. Vision can greatly extend this range; however, optical conditions in the aquatic en-
vironment can be highly variable. Future studies implementing these spectral sensitivity find-
ings can be incorporated into laboratory studies investigating fish reaction distance under
diminishing light intensities. By simulating environmental conditions, foraging mechanisms
for offshore fish can be further understood.
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