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Abstract

Recent improvements in online information communication and mobile location-aware tech-
nologies have led to the production of large volumes of volunteered geographic information.
Widespread, large-scale efforts by volunteers to collect data can inform and drive scientific
advances in diverse fields, including ecology and climatology. Traditional workflows to
check the quality of such volunteered information can be costly and time consuming as they
heavily rely on human interventions. However, identifying factors that can influence data
quality, such as inconsistency, is crucial when these data are used in modeling and deci-
sion-making frameworks. Recently developed workflows use simple statistical approaches
that assume that the majority of the information is consistent. However, this assumption is
not generalizable, and ignores underlying geographic and environmental contextual vari-
ability that may explain apparent inconsistencies. Here we describe an automated workflow
to check inconsistency based on the availability of contextual environmental information for
sampling locations. The workflow consists of three steps: (1) dimensionality reduction to
facilitate further analysis and interpretation of results, (2) model-based clustering to group
observations according to their contextual conditions, and (3) identification of inconsistent
observations within each cluster. The workflow was applied to volunteered observations of
flowering in common and cloned lilac plants (Syringa vulgaris and Syringa x chinensis) in the
United States for the period 1980 to 2013. About 97% of the observations for both common
and cloned lilacs were flagged as consistent, indicating that volunteers provided reliable
information for this case study. Relative to the original dataset, the exclusion of inconsistent
observations changed the apparent rate of change in lilac bloom dates by two days per
decade, indicating the importance of inconsistency checking as a key step in data quality
assessment for volunteered geographic information. Initiatives that leverage volunteered
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geographic information can adapt this workflow to improve the quality of their datasets and
the robustness of their scientific analyses.

Introduction

The contribution of volunteers to the production of information about geographic phenomena,
such as the impacts of climate change, is not new. For example, the Christmas Bird Count has
studied the impacts of climate change on spatial distribution and population trends of selected
bird species in North America since 1900 [1]. However, improvements in online information
communication and mobile location-aware technologies have led to a dramatic increase in the
amount of volunteered geographic information (VGI) in recent years [2-5]. VGI, a term
coined by Goodchild [2], refers to "the harnessing of tools to create, assemble, and disseminate
geographic data provided voluntarily by individuals". VGI is a practical approach to acquire
timely and detailed geographic information at low cost across a variety of spatial and temporal
scales [6]. Because of this, VGI is used to understand and manage important emerging prob-
lems in many fields such as conservation biology [7], urban planning [8], disaster management
[9] and earth observation [10-12].

Despite the wide applicability and acceptability of VGI in science [4, 13], many studies
argue that the quality of the observations provided by volunteers remains a concern [6, 14-21].
This is because VGI does not often follow scientific principles of sampling design, and levels of
expertise vary among volunteers [22, 23]. Moreover, unlike traditional authoritative geographic
information, VGI typically lacks automated quality checking mechanisms [24-28]. Among the
different data quality aspects, consistency of VGI is considered key for most studies, where
inconsistent VGI are observations that are implausible regarding the conditions, geographic
location or time they were obtained. Such inconsistent observations can bias analysis and
modeling results because they are not representative for the variable studied, or because they
decrease the ratio of signal to noise. Hence, the identification of inconsistent observations
would clearly benefit VGI-based applications and provide more robust datasets to the scientific
community.

The approaches to check VGI quality can be categorized into three main types [6, 20]: 1)
crowdsourcing where volunteers validate and thus refine the quality of observations by them-
selves, 2) social which relies on a hierarchy of trusted people who act as moderators, and 3)
geographic, where given the location of the volunteered observations, one can use certain geo-
graphic rules to assess quality, e.g., Tobler's “first law of geography” which states that “all things
are related, but nearby things are more related than distant things” (Tobler, 1970). The geo-
graphic approach is more readily machine-automated than the other two approaches (which
rely on human subjectivity) [6], and is therefore the focus of this study.

As an example, eBird, a popular VGI-based initiative for bird monitoring, uses the geo-
graphic approach to automatically verify new observations, using historical observations, prior
to human moderation [29]. The eBird quality filter relies on substantial prior knowledge about
a given organism, geography or time (e.g., a measure of how frequently a species is reported in
a region during a specific time period), as well as information about volunteer expertise levels
[25]. Such information is not always available for VGI-based initiatives.

Schlieder and Yanenko [30] used spatiotemporal proximity and social distance (i.e. the dis-
tance between the observers in the social network of observers on the web) to define constraints
for checking the inconsistency of observations. The hypothesis was that spatiotemporally and
socially close observations presumably referred to the same event so would more likely be con-
sistent. Their workflow was used to formulate general rules and to find observations that have
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low confirmation. This workflow was further developed using constraint satisfaction approach
to produce more sophisticated results [31]. However, the improved workflow still uses spatial
distance as the only criterion to connect observations. Moreover, this workflow is useful only
when sequential order of volunteered observations is available at a given location.

Yet another geographic workflow was proposed by Ali and Schmid [32] based on machine
learning for identifying wrongly-categorized Open Street Map observations. These authors
trained a classifier using contributed entities and their associated class labels (e.g., park or gar-
den). However, their model was only concerned with the inconsistency of areal entities (i.e.,
extended geometric entities such as buildings) regarding administrative boundaries and
semantic classifications.

There is a lack of standardized workflows that address VGI inconsistency. Current inconsis-
tency workflows primarily rely on human review, or simple statistical deviation from an
expected probability distribution. Human-dependent workflows can be costly and time-con-
suming, and are impracticable in some situations, e.g., in cases where events persist only for
short periods of time. The statistical workflows assume that the majority of the observations
are consistent and, therefore, that these can be used to check for inconsistency. Moreover exist-
ing workflows do not optimally use environmental contextual data. This raises the question of
how to address inconsistency using a more objective, efficient and automated workflow.

This paper describes a novel automated workflow to identify inconsistency in VGI. A robust
identification of inconsistent observations allows testing their potential impact on VGI-based
studies. The workflow relies on the availability of contextual information and is built using a
combination of dimensionality reduction, clustering and outlier detection techniques and it
was illustrated using observations on the timing of the first flower of lilac plants collected by
volunteers. While some inconsistent observations may reflect real, unusual events, here we
demonstrate that these observations bias the trends (advancement rates) of the date of lilac
flowering onset. This shows that identifying inconsistent observations is a pre-requisite to
study and interpret the impact of climate change on the timing of life cycle events [33, 34].

Materials and Methods
Phenological VGI

Phenology is the science of the study of periodic plant and animal life cycle events and how sea-
sonal and inter-annual variations in climate affect them. Phenological studies are important to
understand the impact of global change in our planet [35-38]. Worldwide, several VGI-based
initiatives collect or have collected phenological data [39, 40]. One VGI-based initiative, the
USA National Phenology Network (USA-NPN; www.usanpn.org), has recently released a
curated dataset of lilac leafing and flowering observations across the continental United States
for the period 1956 to 2014 [41]. From this dataset we extracted flowering records for common
lilac (Syringa vulgaris) and cloned lilac (S. x chinensis ‘Red Rothomagensis’). Considering data
completeness and the availability of environmental contextual data, we concentrated our analy-
ses on flowering onset dates for the period 1980 to 2013, for cloned lilacs (with 2174 observa-
tions) and common lilacs (with 2682 observations) separately.

Widespread and readily observable, lilac plants have been observed across the continental
United States since the 1950’s, as a complement to cooperative weather data collection [42].
Observations of lilac leafing, flowering and fruiting have been used for a variety of applications,
including understanding trends and variations in the onset of spring and tracking the impacts
of climate change on natural resources[43]. Although lilacs are ornamental plants, their phe-
nology and response to climate have been shown to closely track native species and crops [33].
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The following attributes were used to check inconsistency for cloned and common lilac
flowering dates: (1) a unique ID for each record, (2) the year when the flowering occurred, (3)
the day of the year (DOY) when the flowering occurred and (4) geographic location where the
phenological phase was reported (latitude, longitude and elevation). It is important to note that
since 2009, volunteers report the status of each phenological phase with”Yes” when it is visible
and “No” when it is not visible [44]. This status monitoring approach allows for the quantifica-
tion of uncertainty in flowering onset DOYs (i.e., number of days between the “Yes” and the
preceding “No”). Thus, the status monitoring provides additional information on the occur-
rence of multiple flowering events in a year for individual plants. When a “Yes” report was fol-
lowed by at least one “No” report and then a subsequent “Yes” record was present on an
individual plant, all corresponding DOYs to “Yes” reports were flagged and stored as multiple
“Yes” observations in the dataset.

Environmental contextual data

The proposed workflow requires environmental contextual data to characterize observation loca-
tions. In phenology, cumulative climatic parameters are the most relevant contextual datasets,
because most phenological processes are driven by climate conditions [37, 45, 46]. Therefore, we
extracted climate parameters for the period 1980 to 2013 from DAYMET, a dataset that provides
1 km by 1 km gridded estimates of daily climatic parameters for North America [47].

Cumulative climatic variables were created for each geographic location by summing
parameter values from the 1 January for the year of the observation to the reported DOY of
flowering. Cumulative variables calculated include: maximum daily temperature (degrees C),
minimum daily temperature (degrees C), daily precipitation (mm/day), daily water vapor pres-
sure (Pa), daily solar radiation (W/m?), daily day length (s/day) and daily snow water equiva-
lent (kg/m?). In addition, using the daily maximum and minimum temperatures, we calculated
daily average temperatures and cumulative average daily temperature (degrees C). Thus, a total
of 11 contextual variables (i.e., 8 cumulative climatic variables and the 3 geographic variables of
latitude, longitude and elevation) were associated with each phenological observation
expressed as DOY (Table 1).

Table 1. Mean and standard deviation of the geographic and climatic parameters for cloned and common lilacs.

Variable

DOY (of flowering)

Latitude

Longitude

Elevation

Cumulative maximum daily temperature
Cumulative minimum daily temperature
Cumulative average daily temperature
Cumulative daily day length

Cumulative daily precipitation
Cumulative daily solar radiation
Cumulative daily snow water equivalent
Cumulative daily water vapor pressure

doi:10.1371/journal.pone.0140811.t001

Cloned lilac Common lilac

Mean Standard deviation Mean Standard deviation
133 21 123 22

42.42 2.46 42.13 415
-79.38 9.73 -105.60 12.99
255.86 252.79 917.51 1051.14
934.59 535.02 1058.95 406.49
-547.59 465.42 -522.19 469.43
542.89 372.66 506.69 207.62
5512631 1044335 5000749 1083965
348.47 151.50 222.39 205.54
43261.2 8504.76 40775.14 11737.74
5321.42 6187.48 3106.81 7462.61
69509.64 31508.84 52258.41 19946.21
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The context-aware workflow

The proposed context-aware inconsistency check workflow builds upon elements from existing
workflows. More precisely, it relies on the wide availability of contextual (environmental and geo-
graphic) information, enabling us to characterize complex differences between observation loca-
tions in space and time. When this characterization results in a high-dimensional dataset, the data
are mapped to a low-dimensional space to facilitate the subsequent analysis of the data and the
visualization of the results. Next, observations are clustered into contextually homogenous subsets.
Finally, inconsistent observations are identified by analyzing the outliers present in each cluster.

Dimensionality reduction. The t-distributed stochastic neighbor embedding (t-SNE)
algorithm [48] was selected to reduce the dimensionality of the contextual information. This
algorithm maps the data to a low-dimensional space, typically two or three dimensions, so that
data visualization is possible. It retains the local structure of the data which means that similar
objects are mapped to nearby points in the low-dimensional space. Moreover, the model-based
clustering step of the workflow has limited ability to deal with high-dimensional data, which
further justify the use of the t-SNE algorithm.

The t-SNE defines a probability distribution over pairs of data points in the high-dimen-
sional space so that similar ones have a high probability of being selected. Next, the t-SNE
defines a similar distribution over the data points in the low-dimensional space in such a way it
minimizes the information lost when such distribution is used to approximate the distribution
in high-dimensional space. In particular, t-SNE uses the Kullback-Leibler divergence [49]
which quantifies the difference between the two probability distributions (in this case, those of
the original and of the low dimensional data points).

The t-SNE algorithm requires the definition of the perplexity value, which is a smooth mea-
sure of the effective number of neighbors used to define the probability distribution in the
high- and low-dimensional spaces. However, typical perplexity values are located in a limited
interval (between 5 and 50) so optimizing its value is relatively easy. We used the “t-SNE” R
package to perform all calculations in this study [50].

Model-based clustering. Model-based clustering [51, 52] was selected to cluster the con-
textual information because it automatically identifies the number, shape and size of the clus-
ters present in a dataset. This increases the objectivity of the analysis by reducing the need for
human intervention and facilitates its use for multiple applications. The automated identifica-
tion of cluster characteristics is realized by sequentially fitting several mixture models [53] to
the dataset and selecting the one that maximizes the Bayesian Information Criterion (BIC)
[54]. We calculated the BIC values for ten Gaussian mixture models currently available in the
R package, “mclust” [55].

The uncertainty of the clustering was calculated (by subtracting the probability of the most
likely group for each data point from one) and analyzed to determine its impact on the identifi-
cation of inconsistent observations. Data points with an uncertainty value of more than 0.5
were ignored as they could be either an inconsistent or a mis-clustered observation.

The model-based clustering method implemented in “mclust” uses the Expectation Maxi-
mization (EM) algorithm [56]. The EM, an iterative method, is used to find maximum likeli-
hood parameters of a mixture model, specifying the mixture component to which each data
point belongs. This algorithm is relatively robust but its efficiency is negatively affected by the
dimensionality of the input data because the number of parameters that need to be estimated is
proportional to the dimensionality of the data [55].

Intra-cluster outlier detection. The identification of inconsistent observations requires
defining objective and easily automatable rules. Here we used the Tukey boxplot as a main tool
to highlight inconsistent observations [57]. The boxplot is a hybrid non-parametric method
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Q1 Q3

1.5 x IQR Q3+15
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Fig 1. The Tukey boxplot.
doi:10.1371/journal.pone.0140811.g001

that displays variation and outliers in numerical data by visually indicating its degree of disper-
sion and skewness in the data (Fig 1). The bottom and top of the box represent the first (Q;)
and third (Qs) quartiles of the data respectively, and the band inside the box represents the sec-
ond quartile (the median).

In the Tukey boxplot the whiskers cover 150% of the interquartile range (i.e. 1.5 x IQR). If
the numerical data are normally distributed, points larger or smaller than the values repre-
sented by the whiskers are 0.7% of the data and are typically considered outliers [57]. In this
study, these outliers are highlighted as inconsistent observations. The outlier detection is also
done using the built-in function of boxplot in the R software package to create an automated
and clean workflow that can be re-used for multiple applications.

Impact of inconsistent observations. To investigate the impact of the inclusion of incon-
sistent observations in an analysis of phenological patterns, we used linear regression to model
the trend in the flowering onset DOY-with and without inconsistent observations—over the com-
plete study period. Regression models were developed for pooled observations of cloned and
common lilacs, and separately for each type of lilac. Finally, we used analysis of covariance [58]
to test the effect of the inconsistency of observations (i.e., consistent and inconsistent) on flower-
ing onset DOY while controlling for the effect of the year of observations. This analysis is used to
statistically test for differences in slopes among regression models. The regression modeling and
the covariance analysis were done using built-in functions of the R software package.

Results and Discussion

The eleven-dimensional data space that characterizes the phenological observation was trans-
formed to a two-dimensional space (Fig 2) while testing several perplexity values (5 to 50 in

Dimension 2
Dimension 2

Dimension 1 Dimension 1

Fig 2. The results of applying t-SNE on contextual information. The transformed contextual information
for (A) cloned lilac and (B) common lilac.

doi:10.1371/journal.pone.0140811.9002
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steps of 5 units). The optimal perplexity value was chosen as the one that maximizes clustering
(i.e. the one that better “spreads” and “separates” the observations into distinct groups). For
both datasets, the perplexity value equaled 35, which led to the maximum number of clusters
that the EM algorithm could identify.

A visual inspection of the transformed data space in Fig 2 shows that the environmental
conditions of the observation sites for cloned lilac are similar to each other, as the majority of
points formed a cloud shape. It also shows that the observation sites for the common lilac are
more clustered, indicating that these observations are made in more contrasting environments
[59] relative to the cloned lilacs [60]. This is consistent with the fact that cloned lilacs were only
observed in the Eastern U.S. [57], which is characterized by less environmental variability than
the Western U.S. (Table 1).

As expected from the t-SNE results, the number of clusters for the common lilac (47 clus-
ters) is larger than for the cloned lilac (12 clusters). These results (Fig 3) demonstrate that a
diagonal Gaussian mixture distribution—-with equal shape, variable volume and coordinate
axes orientation—-fits best the contextual information for both cloned and common lilacs
(Table 2).

The phenological observations belonging to each cluster were projected into the geographic
space to study their geographic distribution (Figs 4 and 5). For both types of lilac, the observa-
tion sites that belong to the same cluster are often spatially clustered (i.e., clusters tend to be
compact). Nevertheless, there are some sparse clusters (e.g., cluster 7 and 10 of cloned and clus-
ters 29,31, 32, 36 and 40 of common lilac) that indicate geographically distant observation sites
with similar climatic context.

The variability across the interquartile ranges and median values of the clusters for common
lilacs is greater than for cloned lilac (Fig 6). The greater variability in observations on common
lilac reported from the Western U.S. was expected based on the clusters described above, and
has been noted in other studies [22, 61]. The outliers identified by the boxplots were
highlighted as inconsistent phenological observations in this study.

Inconsistent observations were found in both pre- and post-2009 phenological observations
(Fig 7). For both types of lilacs, the highlighted inconsistencies accounted for about 3% of phe-
nological observations (3.1% and 2.9% of phenological observations on cloned and common
lilac respectively). 53% of the inconsistent observations on cloned lilacs have greater than one
week uncertainty (>7 days between the prior “No” and the first “Yes” observation) whereas
less than 15% of inconsistent observation on common lilac have greater than one week uncer-
tainty in the estimated onset DOYs. Moreover, 41% of the inconsistent observations of cloned
lilac and 50% of the common lilacs are associated with sites that report multiple flowering in a
year (post 2009, when reports of repeat flowering were allowed, e.g., to account for flowering
activity after frosts).

The unusually late “Yes” observation are not necessarily a result of erroneous data collec-
tion, because lilacs can also flower in the autumn (which may be associated with different envi-
ronmental factors). In addition, unusually early “Yes” reports preceded by a second consistent
“Yes” spring record might point to mild winter in which lilacs start flowering early, experience
frost, and then set flower again. For example, in 2012 in Charlottesville, Virginia, first flowering
of a cloned lilac shrub was reported in February (i.e., early relative to other observations at the
site). The flowering of the shrub was also reported later, on April 7, which is more consistent,
as determined by the workflow.

For cloned lilacs, the rate of change in flowering onset DOY (i.e., the slope of the regres-
sions) significantly (P < 0.001) changed from -0.19 to -0.37 when inconsistent observations
were excluded. In other words, using the cleaned dataset for the trend analysis resulted in two
days additional advancement per decade in flowering onset of cloned lilac compared to the raw
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Fig 3. The results and uncertainty of model-based clustering. Clusters of the transformed contextual information about (A) cloned lilac and (B) common
lilac. The uncertainty in clustering of transformed contextual information about (C) cloned lilac and (D) common lilac. In uncertainty plot, the symbols have the
following meaning: large filled symbols, 95% quantile of uncertainty; smaller open symbols, 75-95% quantile; small dots, first three quartiles of uncertainty.

doi:10.1371/journal.pone.0140811.g003

dataset. Likewise, for common lilacs, excluding inconsistent observations affected the regres-
sion slope, but to a lesser degree (from 0.12 to 0.9; P = 0.06) than in the cloned lilacs. For the
pooled observations, the slope changed from -0.02 to -0.12 (P < 0.001) when the inconsistent
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Table 2. The fitted mixture models currently in the “mclust” package and their corresponding BIC values.

Distribution

Spherical
Spherical
Diagonal
Diagonal
Diagonal
Diagonal
Ellipsoidal
Ellipsoidal
Ellipsoidal
Ellipsoidal

Volume
Equal
Variable
Equal
Variable
Equal
Variable
Equal
Equal
Variable
Variable

doi:10.1371/journal.pone.0140811.t002

Shape Orientation BIC of cloned lilac BIC of common lilac
Equal - -40096 -49152
Equal - -39977 -48801
Equal Coordinate axes -40130 -49124
Equal Coordinate axes -39905 -48768
Variable Coordinate axes -40091 -49307
Variable Coordinate axes -40082 -48950
Equal Equal -40119 -49172
Equal Variable -40115 -49203
Equal Variable -40130 -48960
Variable Variable -40036 -49268

Fig 4. The geographic distribution of the clusters in context condition of cloned lilac.

doi:10.1371/journal.pone.0140811.9004

Fig 5. The geographic distribution of the clusters in context condition of common lilac.
doi:10.1371/journal.pone.0140811.9005

observations were removed, resulting in one additional day advancement per decade in flower-
ing onset across the U.S.. Thus, the inclusion of inconsistent observation underestimates the
rate of acceleration of the lilac onset dates over the period 1980-2013 (Fig 8). These results are
in agreement with previous studies that found a gradual advance in the flowering onset DOYs
[22, 34].

Conclusions

The identification of inconsistent observations is a pre-requisite for any kind of analysis or
modeling effort. In this paper, using a phenology case study, we present and demonstrate a
computational workflow that has potential to automate the identification of inconsistencies in
data collected by VGI-based initiatives. The workflow relies on environmental data as critical
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doi:10.1371/journal.pone.0140811.9006

context that affects the variability in the observational datasets, and consists of a sequence of
dimensionality reduction, model-based clustering and outlier detection.

The workflow demonstrated that we can highlight unusually early or late observations of
the flowering onset DOYs for lilacs. The identified inconsistencies should be further analyzed
using more granular climate data or expert knowledge to determine if they are likely observa-
tion or transcription errors or represent truly anomalous events, due to microclimate, or

Fig 7. Plot of inconsistent phenological observations through study area. Inconsistent volunteered
observations on flowering onset DOY of (A) cloned lilac and (B) common lilac. Red points show unusually
early while blue ones show unusually late phenological observation. Circles show that phenological
observations from historical initiatives whereas stars show phenological observations from contemporary
initiatives. Inconsistencies were labeled with the day of year that lilac started flowering.

doi:10.1371/journal.pone.0140811.g007
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doi:10.1371/journal.pone.0140811.9008

genetic variation, in the case common lilacs. Overall low inconsistency rate (about 3%) indi-
cates that volunteer collected observations are a valuable source of information for the study of
phenology.

Phenological VGI has greatly contributed to our understanding of seasonal spatial and tem-
poral patterns for plants and animals across the globe. Given that phenology has been recog-
nized as an important indicator of climate change and has emerged as a vibrant area of
research at multiple ecological scales, analyses that increase data quality and usability will
greatly benefit the fields of climate research, ecology, and natural resource management. We
envision that this workflow will greatly increase the reliability of, and potential for scientific
contribution from, spatially and temporally rich VGI datasets.

Focusing subsequent analysis on the inconsistent observations identified by our workflow
reduces human checks, which saves money and time. Moreover, unlike existing workflows, the
proposed workflow uses relevant contextual information for the phenomena under study (as
climate drives phenological events). Therefore, we recommend that initiatives collecting volun-
teered geographic information use the proposed automated workflow and relevant contextual
information to check inconsistency in order to improve data quality. This workflow could be
applied to volunteered meteorological data [62] to, for instance, highlight unusually high or
low temperature reports because daily weather data has a long history and is increasingly avail-
able [63].
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