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Regional disparities in the beneficial e�ects of
rising CO2 concentrations on crop
water productivity
Delphine Deryng1,2,3*, Joshua Elliott1,2, Christian Folberth4,5, Christoph Müller6,
Thomas A. M. Pugh7,8, Kenneth J. Boote9, Declan Conway10, Alex C. Ruane11,2, Dieter Gerten6,12,
JamesW. Jones9, Nikolay Khabarov5, Stefan Olin13, Sibyll Schapho�6, Erwin Schmid14, Hong Yang4

and Cynthia Rosenzweig11,2

RisingatmosphericCO2 concentrations ([CO2])areexpected to
enhance photosynthesis and reduce crop water use1. However,
there is high uncertainty about the global implications of
these e�ects for future crop production and agricultural
water requirements under climate change. Here we combine
results from networks of field experiments1,2 and global crop
models3 to present a spatially explicit global perspective
on crop water productivity (CWP, the ratio of crop yield
to evapotranspiration) for wheat, maize, rice and soybean
under elevated [CO2] and associated climate change projected
for a high-end greenhouse gas emissions scenario. We find
CO2 e�ects increase global CWP by 10[0;47]%–27[7;37]%
(median[interquartile range] across the model ensemble) by
the 2080s depending on crop types, with particularly large
increases in arid regions (by up to 48[25;56]% for rainfed
wheat). If realized in the fields, the e�ects of elevated
[CO2] could considerably mitigate global yield losses whilst
reducing agricultural consumptive water use (4–17%). We
identify regional disparities driven by di�erences in growing
conditions across agro-ecosystems that could have implica-
tions for increasing food production without compromising
water security. Finally, our results demonstrate the need to
expand field experiments and encourage greater consistency
in modelling the e�ects of rising [CO2] across crop and
hydrological modelling communities.

Research indicates unabated climate change will exacerbate
water scarcity around the world4,5. This is thought to threaten
agricultural productivity and food security, especially in arid
regions6–8, where agriculture relies heavily on irrigation and
consumes the majority of diverted freshwater9. Yet, rising
atmospheric CO2 concentrations ([CO2]), despite directly
contributing to climate change, have the potential to increase crop
water productivity (CWP; defined here as the ratio of crop yield

to total crop water use over the growing season) by enhancing
photosynthesis and reducing leaf-level transpiration of plants1,2. If
these effects can be harnessed to increase crop yields and reduce
water consumption in agriculture at national to continental scales,
this could greatly help in ensuring food and water security for a
rapidly growing global population10.

The enhancement of photosynthesis rates in C3 crops and
the reduction in stomatal conductance—and thus water loss—in
both C3 and C4 crops under elevated [CO2] is well supported
by numerous plant manipulation experiments1,11. The extent to
which such mechanisms eventually enhance crop yields and reduce
evapotranspiration (ET) is less well understood on large scales12–14,
but observations of crops grown under elevated [CO2] (Free Air
Carbon Enrichment, FACE) show that an average increase of 13%
in yields and 5% reduction in ET can be expected1,15. However,
FACE experiments are for the most part located in temperate
regions, whereas tropical and arid regions, where food security
is most threatened6, are under-represented16,17. Given the strong
dependence of CO2 effects on environmental conditions and the
limited coverage of FACE experiments for representing the diversity
of agricultural production systems worldwide16,17, process-based
modelling is needed to assess the scope of beneficial effects of
elevated CO2 on CWP18. The few such studies that exist rely on
singlemodels, for example, refs 19,20, and therefore do not cover the
range of uncertainty embedded in cropmodellingmethodology, and
particularly in calculations of the effect of rising [CO2] on yields of
C3 crops (for example, Fig. 4 in ref. 21), which can lead to substantial
variation in simulated impacts, for example, refs 3,22.

Here we present a spatially explicit global assessment of effects
of elevated [CO2] on future CWP originating from a large ensemble
of simulations, resulting from a recent international modelling
intercomparison exercise3. The model ensemble comprises six
global gridded crop models (GGCMs), with simulations using
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Figure 1 | Comparison between FACE observations and GGCM
simulations. CWP responses to elevated [CO2] (550 ppm from FACE and
corresponding grid-cell values extracted from GGCM simulations in this
study) for maize, wheat, rice and soybean at ample and limited soil water.
FACE data were collected from references summarized in Supplementary
Table 1. The left and right sides of the boxes are lower and upper quartiles,
respectively, and the band near the middle of the boxes is the median value
across each set of simulations. Open circles are outliers. Note rainfed
simulations for maize and rice at the FACE locations correspond to
negligible water stress conditions.

climate input data from five global climate models (GCMs)23
under a high-end greenhouse gas emissions scenario that
projects a doubling of [CO2] by 2080 relative to 2000—namely,
the Representative Concentration Pathway (RCP) 8.5 (ref. 24)
(see Methods). We estimate changes in simulated crop yields,
actual evapotranspiration (AET) and CWP under rising [CO2]
and associated climate change for three C3 crops (wheat, rice and
soybean) and one C4 crop (maize) throughout the twenty-first
century relative to the present-day baseline (approximately 2000).
To assess the specific role of elevated [CO2] under various crop
growing conditions, we considered two sets of simulations: the
first accounting for both effects of elevated [CO2] and changes in
climate (CC w/ CO2); the second accounting for changes in climatic
conditions whilst keeping [CO2] constant to present-day levels (CC
w/o CO2). We examined rainfed and irrigated growing conditions
according to the present distribution of rainfed and irrigated
cropping areas25 and assumed no change in the assumption
of individual models on input rates of fertilizer applications
(see Methods). We collected all available FACE data on both yield
and water use and/or crop water use efficiency for the four crops
(see Methods; Supplementary Tables 1 and 2) to compare simulated

and observed CO2 effects on CWP at elevated concentrations
(Fig. 1 and Supplementary Results). We present and discuss in
detail sources of differences in simulated CWP in the Methods.

By 2080 under CC w/o CO2, we find severe negative impacts on
crop yields at the global scale and small reductions in corresponding
AET,which together lead to large reductions in globalCWP (median
13–26%, with larger reductions for C3 crops) supported by more
than 80% of the simulations (Table 1; see Methods for a description
of the aggregation approach). In contrast, underCCw/CO2, median
negative impacts on yields are fully compensated for wheat and
soybean, and mitigated by up to 90% for rice and 60% for maize.
We find effects of elevated [CO2] reduce the global AET of maize,
wheat and soybean by a median 8–17%, but are less pronounced
(3%) on AET of rice, as the latter is mostly grown under well-
watered conditions, and thus less affected by water stress (Table 1
and Supplementary Table 3). The combined effects of CCw/ CO2 on
yield and AET result in substantial increases in global average CWP
of wheat (27[7;37]%) and soybean (18[−9;42]%) and moderate
increases in that of maize (13[3;22]%) and rice (10[0;47]%) (Table 1;
numbers in square brackets represent the interquartile range).

We compare impacts across climatic regions and growing
conditions. By 2080 under CC w/ CO2, simulated CWP in arid,
temperate and cold regions exhibits particularly large increases
relative to 2000 (median increase above 15%), whereas CWP in
tropical cropland increases by only a negligible amount on average
(median increase below 4%) (Fig. 2). In fact, we find CWP of crops
grown in arid climate benefit the most from the effects of elevated
[CO2], especially under rainfed conditions (Supplementary Table 3),
leading to additional crop production along with substantial
reductions in consumptive crop water use by 2080. For example,
assuming wheat rainfed areas remain steady in the future, global
production of rainfed wheat could increase by a median 9% by
2080 relative to 2000, whereas corresponding consumptive water
use decreases by 11% (see Supplementary Table 4). Crops grown
under irrigated conditions also benefit fromCO2-induced decreases
in crop stomatal conductance. For example, CWP of irrigated
wheat in arid areas—covering 63% of harvested areas—increases
by a median 18% (Supplementary Table 3). These beneficial effects
on CWP reduce overall consumptive crop water use with non-
negligible reductions in consumptive irrigation water use, which
can be critical, as such use directly competes for water resources
with other uses such as households, industry and the maintenance
of other ecosystem services (Supplementary Table 5).

We then examine the contribution of simulated CO2 effects on
crop behaviour across regions by comparing CC w/ CO2 and CC
w/o CO2 simulations. We find particularly larger effects on maize
grown in semi-arid regions, including most of southern Africa,
the Middle East and parts of central Asia, western USA and the
Iberian Peninsula (Fig. 3a). Our results for maize exhibit a high
level of confidence in the spatial distribution—except for the Iberian
Peninsula, where a particularly large response simulated by some

Table 1 |Relative change in global average yield, AET and CWP (%), median values across all GCM–GGCM combinations for
CC w/ CO2 and CC w/o CO2 simulations for 2080 relative to 2000 under RCP 8.5.

Yield AET CWP

CC w/ CO2 CC w/o CO2 CC w/ CO2 CC w/o CO2 CC w/ CO2 CC w/o CO2

Maize −8.5[−16.4;1]†
−21.2[−28.2;−13.3]∗ −17.4[−23.7;−4.9]∗ −8.2[−13.1;−1.6]† 13[2.8;22.4]‡

−12.9[−22.1;−1.9]∗

Rice −2.9[−12.3;13.8] −27.2[−32.9;−16.3]∗ −3.3[−19.8;−2.1]†
−3.3[−11.1;−0.1]† 9.7[−0.4;47]‡

−23[−27;−16.8]∗

Soybean 0[−12.1;33.3] −35.3[−40.5;−27.7]∗ −8.3[−20.4;3.4]†
−4.7[−16.8;0.9]† 18.2[−8.7;41.8]‡

−26.2[−39.8;−18.8]∗

Wheat 3.2[−0.6;13.7]‡
−22.6[−27.8;−14.9]∗ −11[−20.8;−5.8]∗ −6.6[−12.1;−4.8]∗ 27.2[6.6;37.2]§

−16.6[−23.6;−1.1]∗

Numbers in square brackets are the first and third quartiles, respectively. Degree of agreement in the sign of change is characterized by the symbol (∗ : more than 80% agreement in a net decrease;
† : between 60 and 80% agreement in a net decrease; ‡ : between 60 and 80% agreement in a net increase; § : >80% agreement in a net increase; no symbol: <60% agreement in the sign of change).
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Figure 2 | Simulated CWP responses across agro-climatic regions.
The median change in rainfed and irrigated CWP (%) in
tropical (trop.), arid, temperate (temp.) and cold regions simulated
under RCP 8.5 by 2080 relative to 2000 for all crops—GGCMs–GCMs
combinations for CC w/ CO2 and CC w/o CO2 only. The width of the boxes
varies according to corresponding total crop irrigated and rainfed
harvested areas.

GGCMs increases the range of results (Supplementary Fig. 5a and
Supplementary Results). In the case of the C3 crops, we find the
spatial distribution of CO2 effects follows different patterns than for
maize: for wheat (Fig. 3b), median simulated effects on CWP are
relatively larger in tropical areas (20–30%) than in temperate areas
(10–20%). For soybean and rice, we find smaller regional differences
in the CO2 effects, with overall larger effects for soybean (Fig. 3c,d).

Furthermore, we find some regions show a particularly wide range
of impacts across the simulation ensemble: notably western sub-
Saharan Africa and eastern Brazil for rice (Supplementary Fig. 5c);
the Middle East, southern Africa, southeast Asia and southwestern
Australia for soybean (Supplementary Fig. 5d). Further information
is presented in the Methods and supported by maps of individual
model responses (Supplementary Figs 8–11).

Although results from the simulation ensemble confirm that
the median CWP of six models generally agrees with observations
(Fig. 1 and Supplementary Fig. 4), there are considerable variations
among the models caused by differences in calibration and
parameterization methods. The inclusion of six GGCMs in our
modelling intercomparison study drastically amplifies the range of
simulatedCWPunderCCw/CO2 (Fig. 4), whichmore than doubles
by 2050 (the range is±14% for an ensemble of 6 GGCMs× 1 GCM
instead of ±6% for an ensemble of 1 GGCM × 5 GCMs). This is
caused primarily byGGCMsdifferences in simulating crop response
to CO2 (Supplementary Table 6). We are able to differentiate the
role of CO2 from that of climate by quantifying uncertainties under
both scenarios CC w/ CO2 and CC w/o CO2: we find the range in
simulated global CWP reaches ±25% under CC w/ CO2 instead
of ±12% under CC w/o CO2 (Supplementary Table 6; estimates
refer to the median absolute deviation from the median). We
therefore find a significantly larger variance resulting frommultiple
GGCM responses than from multiple bias-corrected GCM signals
(Supplementary Fig. 7).

Our analysis provides a global spatially explicit assessment of the
role of rising CO2 on CWP throughout the twenty-first century, and
explores variations in key mechanisms across agroclimatic regions.
We show large regional differences in the intensity of CO2 effects
across the world (Figs 2 and 3) and between crop types (Figs 3
and 4). We find the range of simulated results (yield, AET, CWP)
is comparable to the range of FACE measurements (Fig. 1 and
Supplementary Fig. 4), which can vary widely from year to year
and site to site1, even though the sample of available CWP data

%

a b

c d
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Figure 3 | Maps of median relative change between simulated CWP CC w/ CO2 and CC w/o CO2 only (%) in the model ensemble (including six GGCMs
× five GCMs) by 2050 under RCP 8.5. Rainfed simulations are shown for maize (a), wheat (b), rice (c) and soybean (d). Simulated areas are masked by
current rainfed areas from the MIRCA data set.
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Figure 4 | Global average CWP (%) relative to 2000 simulated under RCP 8.5 for each GGCM driven by five di�erent GCMs. Solid lines show median
CWP under both climate change and CO2 e�ects, whereas dashed lines show median CWP under climate change e�ects only—that is, with constant
[CO2]. Shaded areas show the range across the GGCM–GCM ensemble under CC w/o CO2 (yellow) and CC w/ CO2 (blue), distinctively, and overlap
between CC w/o CO2 and CC w/ CO2 (red).

is very small. These FACE experiments are at present available
in only a small number of locations (Arizona, USA, Germany
and Australia for wheat; Japan and China for rice; Germany for
maize; and Illinois, USA, for soybean). It is also important to
highlight additional caveats in our evaluation. First, methods to
represent CO2 effects in GGCMs include a key assumption that
crop responses to elevated [CO2] will be the same under extremes
of temperature and water supply as they are in the moderate
conditions where experiments have been performed so far. Second,
we compare current climate w/ and w/o CO2 (FACE) with future
climatew/ andw/oCO2 (simulations). Third, simulation of irrigated
systems can differ from actual irrigated systems in FACE (Methods).
The dearth of long-term observational data and the large spread
among model simulations highlights the urgent need for expanding
FACE experiments, especially in arid and semi-arid cropland areas.
Continuing coordinated efforts for model intercomparison and
improvement are equally important. Finally, the use of GGCMs here
could inform the design of subsequent FACE experiments to be
conducted under more extreme growing conditions.

Our results—based on state-of-the-art modelling and
observational capacities—demonstrate that a robust understanding
of the role of rising [CO2] is vital to assess potentially beneficial
effects on crop production and agricultural water requirements;
effects which might offer crucial opportunities for food and water
security in arid and semi-arid areas26,27. Nonetheless, other sources
of uncertainties in GGCMs have yet to be explored in greater detail,
especially with respect to carbon–temperature–water–nitrogen
interactions and agricultural management assumptions. We
quantify the importance of CO2 effects on potential water savings
and, in so doing, highlight key limitations of global hydrological
models that do not consider effects of CO2 on ET5,7. The next
generation of models needs to account for the large effects of
elevated [CO2] on crop water dynamics and global irrigation
requirements. Anticipating climate impacts and interactions

across the agriculture and water sectors is essential to improve
the efficiency and resilience of agricultural systems. Food security,
especially in arid and less developed regions, is not only a function
of crop productivity and available land, but also of CWP and
available water resources. This relationship is strongly affected by
elevated [CO2], and demands greater attention in scientific and
policy assessment.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Overview of the global gridded crop models. The model ensemble comprises six
global gridded crop models (GGCMs) driven by daily climate data from five
different global climate models (GCMs) under RCP 8.5 (ref. 3). The six GGCMs
consist of:
1. the Environmental Policy Integrated Climate (EPIC) model28,29 (originally the

Erosion Productivity Impact Calculator; ref. 30).
2. the Geographic Information System-based Environmental Policy Integrated

Climate (GEPIC) model30–32.
3. the Lund-Potsdam-Jena managed Land (LPJmL) dynamic global vegetation and

water balance model20,33,34.
4. the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) with

managed land33,35,36.
5. the parallel Decision Support System for Agro-technology Transfer

(pDSSAT37,38; using the Crop Environment Resource Synthesis (CERES) models
for maize, wheat, and rice and the Crop Template approach (CROPGRO) for
soybean).

6. the Predicting Ecosystem Goods And Services Using Scenarios (PEGASUS)
model39,40.

These GGCMs can be grouped into two families spanning more than three
decades of model development:
ˆ site-based crop models—extended for global analyses using a geographical

information system (EPIC and GEPIC) and an advanced parallel simulation
system (pDSSAT).

ˆ ecosystem models—initially developed to simulate the terrestrial carbon cycle
for natural vegetation using downscaled global climate data and then extended
to represent managed land (LPJmL, LPJ-GUESS and PEGASUS).

The site-based crop models tend to include a more detailed representation
of cropping systems but necessitate substantial computing resources, whereas the
ecosystem models typically include less detail on crop management but
present the advantage of being run globally in a short fraction of time. In addition,
because the ecosystem models simulate global carbon and water cycles, they are
useful tools for assessing crop production in the context of global
environmental change.

Model representation of biophysical processes. Biophysical processes represented
in GGCMs include light utilization, CO2 effects (see next section for CO2),
environmental stresses, soil water dynamic and, for some, soil nutrient cycling.
First, photosynthesis is described with either a simple radiation use efficiency
(RUE) (for example, PEGASUS, described in ref. 40) or a detailed leaf-level
photosynthesis respiration (PR) (ref. 41) (for example, LPJmL and LPJ-GUESS,
described in ref. 42) approach. Representation of CO2 fertilization effects on
photosynthesis and transpiration rates thus follows either a descriptive (RUE-type
models) or explanatory approach (PR-type models). Second, all GGCMs take into
account temperature and water stress. Most models also include nitrogen stress
(except the LPJ-type models). In addition, both EPIC-type models represent
aluminium and oxygen stresses. PEGASUS represents heat stress effect at
anthesis38, resulting in systematically strongest negative impacts (Supplementary
Fig. 1). Third, GGCMs differ in respect to crop water demand and estimated
evapotranspiration (ET): the EPIC-type models use the Penman–Monteith
approach43,44, whereas the other GGCMs use the Priestley–Taylor approach45. In
addition, the number of soil layers varies among GGCMs and roots are either
linearly or exponentially distributed throughout the soil depth. Finally, crop
phenology in GGCMs depends on temperature using growing degree-day
accumulation, which varies with models’ definition of base and maximum
temperature thresholds that are also crop specific (see Supplementary Table 3
in ref. 3 (accessible at http://www.pnas.org/content/suppl/2013/12/16/
1222463110.DCSupplemental/sapp.pdf)).

Model representation and parameterization of crop response to [CO2]. The
choice of light utilization representation method (RUE versus PR) in GGCM
determines that of CO2 effects. In the RUE approach (followed by PEGASUS,
EPIC, GEPIC and pDSSAT—for wheat/rice/maize), rising [CO2] increases a RUE
coefficient, which proportionally affects the rate of photosynthesis31,46. In
PEGASUS, parameterization of the modified RUE coefficient was done by
comparing grid-cell simulations and FACE results reported in ref. 12 using [CO2]
levels of 380 ppm for the baseline39. In EPIC and GEPIC, parameterization of the
modified RUE coefficient uses pre-FACE data normalized around 330 ppm, as
described in ref. 47. In the case of pDSSAT, Boote et al. (ref. 48) evaluated the
CO2-responses of each DSSAT model, which was originally based on pre-FACE
observations and normalized to 330 ppm. Evaluations for CERES-wheat and rice
showed that the simulated responses to doubled CO2 (27 and 32% response for
wheat and rice, respectively) were sufficiently close to reported FACE data (31 and
30% response for wheat and rice, respectively). The review by Boote et al. (ref. 48)
concluded that prior DSSAT parameterization to CO2 effect for C4 CERES-Maize,

Sorghum, and Millet models was too high (based on old literature). Therefore, the
response of these three C4 crops in DSSAT was reduced to give a 4.2% grain yield
increase for doubled CO2 (350 to 700 ppm) beginning with DSSAT version V4.5
released in 2010, and in this study.

Transpiration in PEGASUS, EPIC and GEPIC increases with CO2, following a
logarithmic equation as in refs 31,46, and is identical for all crops39. Transpiration
in pDSSAT follows the approach of leaf resistance, increasing as a function of rising
CO2—one equation for C3 and one for C4. Then, the daily transpiration is reduced
as a function of rising CO2, where the relative transpiration effect ratio is computed
in a Penman–Monteith-style equation that considers the psychrometric constant,
gamma, the two canopy resistances (at reference CO2 and at present CO2), and
boundary resistance. The effect is modest, and has not been tested with any
transpiration data (see ref. 48 for more information).

The PR approach in pDSSAT-soybean (that is, CROPGRO-soybean) uses an
analytical derivation, for example, RuBP-limiting side of the rubisco kinetics of
ref. 49, as described in refs 50,51. Farquhar and von Caemmerer (ref. 49) developed
an analytical solution for quantum efficiency that depends on the RuBP-limiting
(light-limiting) phase, with no need to consider rubisco enzyme parameters. The
approach is applied to make quantum efficiency and light-saturated photosynthesis
(Amax) sensitive to temperature and CO2 within asymptotic exponential equations
for sunlit and shaded leaf classes. As a replacement for rubisco enzyme, the Amax
term is strongly dependent on specific leaf nitrogen. The CO2 response for soybean
is an emergent outcome of this parameterization and was shown to give yield
response to doubled CO2 comparable to metadata48. Similarly, in the PR approach
followed by the two LPJ models, potential photosynthesis rate is calculated as a
function of co-limitation by light and the rubisco enzyme, considering the
influences of photosynthetically active radiation, temperature and [CO2]42.
Note that, although rubisco capacity is not prescribed but maximized daily,
photosynthesis rate is not acclimated in response to a possible downregulation
of rubisco activity at elevated [CO2]. In case of a soil moisture deficit, both
photosynthesis and transpiration (canopy conductance) are reduced
nonlinearly52.

Model representation of agricultural management practices. Representation of
farm management practices is also a source of difference in GGCM results: whether
and how fertilizer application, irrigation, crop residue management, crop cultivar
selection and planting date decision are simulated strongly influence yield and
other outputs. The site-specific models (that is, EPIC, GEPIC and pDSSAT) apply
fertilizer dynamically through the crop growing season: application occurs at
specific stages of the crop development to take into account the role of both
application quantity and timing. PEGASUS applies fertilizer as a daily stress
function and thus does not simulate effect of fertilizer application timing39. LPJmL
and LPJ-GUESS do not represent fertilizer application. Also, although ISI-MIP
provided harmonized climate data, models generally used differing input
data/methods for soil characteristics and national fertilizer application rates3.

Planting date decision and choice of crop cultivars also vary among GGCMs.
Supplementary Tables 2 and 4 in ref. 3 provide a detailed description of GGCMs
assumptions (accessible at http://www.pnas.org/content/suppl/2013/12/16/
1222463110.DCSupplemental/sapp.pdf). Chiefly, PEGASUS and GEPIC allow for
adaptation in planting window whereas the other GGCMs assumed planting
window fixed to present day. LPJ-GUESS and PEGASUS also allow for adaptation
in crop cultivars (growing degree-day requirements) whereas the other GGCMs
use fixed crop cultivars.

Model calibration. Finally, GGCM calibration methods differ significantly
between site-specific and ecosystem models. Ecosystem models are calibrated to
global crop yield data (for example, PEGASUS, ref. 39) and FAO national statistics
(for example, LPJmL, ref. 33) by tuning a limited number of parameters, whereas
the site-specific models use a large set of parameters previously calibrated at
various study sites3. Given all these differences, we found models from similar
origins, such as EPIC/GEPIC and LPJmL/LPJ-GUESS differ enough to be
considered each as an independent GGCM within the ensemble.

Climate inputs. All GGCMs were run at 0.5◦ latitude×0.5◦ longitude spatial
resolution using bias-corrected climate scenarios resulting from five GCMs
under RCP 8.5 for the period 1971–2099. Hempel et al. (ref. 23) provides a
detailed description of the GCMs used and downscaling methods. The five
GCMs include:
1. HadGEM2-ES (developed at the Hadley Centre for Climate Prediction and

Research in the UK).
2. IPSL-CM5A-LR (developed at the Institut Pierre Simon Laplace in France).
3. MIROC-ESM-CHEM (cooperatively developed at the Center for the University

of Tokyo, the National Institute for Environmental Studies, and the Frontier
Research Center for Global Change in Japan).

4. GFDL-ESM2M (developed at the Geophysical Fluid Dynamics Laboratory in
the United States).

5. NorESM1-M (developed at the Norwegian Climate Centre in Norway).
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Modelling protocol. All GGCMs simulated maize, wheat, rice and soybean except
PEGASUS, which does not simulate rice. In the case of wheat, PEGASUS simulated
spring variety everywhere, as it does not simulate winter wheat, assuming a spring
variety was planted in areas where a winter variety is typically grown. Each
GGCM–GCM combination was run with (w/) and without (w/o) CO2 from 1971
to 2099 according to the modelling protocol developed within the framework of the
Agricultural Model Intercomparison and Improvement Project (AgMIP) and the
Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP)3. In the CC w/o
CO2 simulations, [CO2] were kept constant to 380 ppm, corresponding to
concentrations in the year 2000. For this analysis, simulations under CC w/o CO2

have been updated from the original set of simulations presented in ref. 3 to ensure
all models used the same [CO2] baseline—that is, 380 ppm in 2000. We analyse
GGCM outputs of crop yield and AET and calculate crop water productivity (CWP
in kgm−3) for a specific year following the equation: CWP= 100Y /AET where Y is
the crop yield in ton ha−1 yr−1 and AET is the total actual evapotranspiration in
mm over the growing season of that specific year. Each year of crop yield data is
averaged over a 30-year or a 10-year period according to the ISI-MIP protocol.
GGCMs perform simulations over the entire land surface according to their own
agroclimatic suitability indices. We then mask out results to current cropland
rainfed and irrigated areas using the MIRCA data set25. Global average estimates of
yield, AET and CWP consist in weighted mean values across all grid cells, weighted
by crop rainfed and irrigated harvested areas. Two irrigation scenarios were
considered: no irrigation (that is, rainfed) and fully irrigated assuming no water
stress (the specific threshold for water stress was independently selected by each
GGCMmodelling team). We calculate global average CWP from actual yield
combining both fully irrigated and rainfed yields according to the MIRCA data for
irrigated cropland areas25. We further disaggregated our results by climatic regions,
following the Köppen–Geiger system to distinguish between tropical, arid,
temperate and cold regions53. An extensive description of the GGCMs that
participated in the AgMIP/ISI-MIP fast-track exercise is also published in the
Supplementary Appendix of ref. 3.

Comparison to FACE observations. To assess the performance of GGCMs against
current observations, we compiled available results from FACE experiments
reporting on CWP identified at several locations across the world (wheat in
Arizona, USA54–57, Germany11,58 and Australia59; rice in China60 and Japan61;
soybean in Illinois, USA62; and maize in Germany63). Supplementary Tables 1 and 2
summarize FACE site characteristics and GGCMs results. We compared GGCM
simulations against these FACE observations (that is, at the grid-cell level) for
rainfed and/or irrigated conditions (Supplementary Tables 1 and 2). We selected
corresponding yield and AET values from the GGCM simulations at grid cells
matching the coordinates of FACE observations to calculate the relative change in
CWP between CC w/ CO2 and CC w/o CO2. Ambient atmospheric [CO2] in the
FACE experiments varied between 360 and 380 ppm and elevated CO2 corresponds
to 550 ppm. We thus used 10-year average estimates around the year 2050, which
corresponds to the same increment of [CO2] level rise relative to the baseline
(550 ppm in 2050 to 380 ppm in 2000, respectively). In most FACE experiments
reported here, temperatures are held constant. We thus estimate the relative
change between w/ and w/o CO2 around the year 2050 to single out effects of CO2

from those of temperature and precipitation changes relative to the year 2000.

Sources of differences in simulated CWP.Model evaluation against FACE
measurements show median simulated CO2 effects on CWP tend to be slightly
greater than observation for maize (Fig. 1 and Supplementary Fig. 1) owing to
stronger simulated effects on ET (Supplementary Fig. 3). Overall, we find CO2

effects on maize yield are minimal for both simulated and observed data
(Supplementary Fig. 2). However, the choice of a descriptive rather than
explanatory representation of light utilization (that is, radiation use
efficiency—RUE—versus leaf-level photosynthesis and respiration—PR; see
Methods) slightly overestimates the CO2 effects on maize yield at the ‘wet’ FACE
site (Supplementary Fig. 2), and thus partly contributes to greater simulated CO2

effects on CWP in the ensemble (Fig. 1). In contrast, in drier agroclimatic
conditions, the greater responsiveness of crop yield and CWP to elevated [CO2]
appears independent of the choice of light utilization representation method but
rather sensitive to model calibration and parameterization method
(Supplementary Fig. 8).

In the case of the C3 crops, we find simulated CO2 effects are much stronger on
carbon assimilation and thus on leaf area and crop yield in all models, broadly
confirming FACE measurements (Fig. 1). However, CO2 responses is much higher
when simulated using the PR approach to light utilization representation. We find
simulated CO2 effects on CWP tend to be slightly lower than observations for
wheat and rice and nearly the same as observations for soybean (Fig. 1 and
Supplementary Table 1). Differences in assumptions of fertilizer input is the main
source of differences in simulated wheat and rice responses to elevated [CO2]: for
example, EPIC, which considers high nitrogen (N) application rates everywhere,
shows much stronger positive effects of elevated [CO2] in Africa than GEPIC,
which applies N inputs only according to present-day levels; similarly, LPJmL is

tuned—partly through a constraint in the maximum leaf area index (LAI)—to FAO
yields, and thus indirectly accounts for different nutrient/management intensity
across nations. LPJmL thus simulates a lower CWP response in many parts of
Africa and in low-N-inputs regions, unlike LPJ-GUESS, which does not have a
constraint on the maximum LAI and can thus reach higher AET values without a
corresponding increase in yield (Supplementary Figs 9–11). We also find these
differences lessen for soybean because, being an N-fixing legume, it is less sensitive
to N input levels. Finally, EPIC, which in this study constrains irrigation water use,
shows smaller CO2 effects on AET than GEPIC, which allows for optimum
irrigation water use (Supplementary Fig. 3). Furthermore, the choice of ET
equation, which differs between the EPIC-type models and pDSSAT and
PEGASUS (ref. 3), contributes to important differences in model behaviour in
some regions (Supplementary Figs 9–11). Another source of difference between
LPJmL and LPJ-GUESS concerns model assumption on the choice of crop cultivar,
which affects timing of the growing. As a consequence, allocation of biomass
production over the growing period differs in these two models. Similarly, GEPIC
and EPIC use different assumptions on planting date decision, which is also a
source of differences in simulated yield and AET.
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