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Abstract

Habitat suitability and the distinct mobility of species depict fundamental keys for explaining
and understanding the distribution of river fishes. In recent years, comprehensive data on
river hydromorphology has been mapped at spatial scales down to 100 m, potentially serv-
ing high resolution species-habitat models, e.g., for fish. However, the relative importance
of specific hydromorphological and in-stream habitat variables and their spatial scales of
influence is poorly understood. Applying boosted regression trees, we developed species-
habitat models for 13 fish species in a sand-bed lowland river based on river morphological
and in-stream habitat data. First, we calculated mean values for the predictor variables in
five distance classes (from the sampling site up to 4000 m up- and downstream) to identify
the spatial scale that best predicts the presence of fish species. Second, we compared the
suitability of measured variables and assessment scores related to natural reference condi-
tions. Third, we identified variables which best explained the presence of fish species. The
mean model quality (AUC = 0.78, area under the receiver operating characteristic curve)
significantly increased when information on the habitat conditions up- and downstream of a
sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables
(e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables
were similarly well suited to predict species’ presence. Stream order variables and mea-
sured cross section features (e.g., width, depth, velocity) were best-suited predictors. In
addition, measured channel-bed characteristics (e.g., substrate types) and assessed longi-
tudinal channel features (e.g., naturalness of river planform) were also good predictors.
These findings demonstrate (i) the applicability of high resolution river morphological and
instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the
importance of considering habitat at spatial scales larger than the sampling site, and (iii)
that the importance of (river morphological) habitat characteristics differs depending on the
spatial scale.

PLOS ONE | DOI:10.1371/journal.pone.0142813 November 16,2015

1/19


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0142813&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Spatial Scales of River Fish-Habitat Models

models, R scripts) are available on datadryad (http:/
datadryad.org/), doi:10.5061/dryad.b6k1k.

Funding: This project has been carried out with
financial support from the Commission of the
European Communities, specifically the RTD
programme “IWRMNET”. It does not necessarily
reflect its views and in no way anticipates the
Commission’s future policy in this area. The authors
have been funded by the German Federal Ministry for
Education and Research (grant number 02WM1134).
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

Species distribution or habitat models are widely used in conservation planning and the man-
agement of natural systems to: (i) statistically analyse species’ ecological needs based on empiri-
cal data from a number of sampling sites, and (ii) predict species’ presence for large areas based
on species-habitat relationships. The environmental predictor variables must be available for
the whole area of interest, and thus, such models are usually based on areal data like climate,
geology, and elevation [1].

In recent years, inclusive and comprehensive data on river hydromorphology covering
whole river networks have been mapped and compiled to describe the habitat conditions for
e.g. national watershed management and monitoring programs (reviewed within the project
REFORM [2]). In general, hydromorphology links hydrology and geomorphology and incor-
porates the hydrological regime, river morphology, and river continuity [2]. In particular,
hydromorphological assessments of the physical habitats (e.g. the German method of the Lind-
erarbeitsgemeinschaft Wasser (LAWA) [3]) typically map channel dimensions, indicators for
morphodynamics, channel-bed and bank features, substrates and the structure of the riparian
zone. These data can be used to investigate and model the distribution of stream biota such as
fish in relation to the hydromorphological habitat conditions. However, there are several par-
ticularities of the hydromorphological data which have to be considered:

First, the hydromorphological data usually have a high spatial resolution, e.g. 100 m (Ger-
many: LAWA, [3]) and 500 m (Britain and Ireland: River Habitat Survey, [4]) compared to the
high mobility of riverine fish [5,6]. Fish generally undertake various movements ranging from
small-scale home-range movements (e.g. diel movements within and between habitats associ-
ated with foraging or avoidance of predators) to large-scale life-cycle related migrations (e.g.
spawning runs) and non-migratory dispersal [7]. Therefore, besides the local habitat condi-
tions, the hydromorphological characteristics up- and downstream of a sampling site poten-
tially influence and might be good predictors of fish species’ presence [8]. Hence, larger spatial
scales should be considered in modelling species-habitat relationships. Besides increasing the
predictive power of the models, such species-habitat relationships at larger spatial scales might
reflect or approximate the minimum spatial extent of a specific habitat required that contains
suitable spawning substrates, littoral nurseries for larvae and juveniles, as well as feeding
grounds and overwintering habitats for all age groups of a species. This is of special importance
in river rehabilitation, e.g. for planning and dimensioning stepping stone habitats or the neces-
sary spatial extent of successful restoration measures.

Second, hydromorphological datasets are provided as two fundamentally different types of
variables [9]: i) Measured variables that are obtained in the field and quantify specific habitat
characteristics (e.g. channel sinuosity, dominant substrate), and ii) assessment scores which
describe the deviation of the measured variable from stream-type specific natural reference
conditions and usually range from unchanged (only minor deviations from the reference con-
ditions) to heavily degraded. Assessment scores relate the measured variables to the natural
conditions to which fish have adapted. Thus, the usefulness of assessment scores for species-
habitat models strongly depends on (i) the knowledge on the specific habitat needs of fish and
(ii) the definition of natural reference conditions and naturalness, which is at least partly sub-
jective, and if these two aspects have been adequately considered in the assessment scores.
Moreover, it is of ecological interest to identify the hydromorphological variables, which best
explain the presence of fish species. Even though many hydromorphological variables are co-
correlated [10], and hence, it is difficult to directly infer causal relationships, such results
would indicate which hydromorphological habitat conditions are of special importance in river
management and restoration.
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We are not aware of any study that used high resolution hydromorphological data to
develop species-habitat models and i) considers fish mobility to identify spatial scales which
best explain fish species presence and ii) explicitly investigates the predictive power of mea-
sured compared to assessed environmental variables. This study has used a spatially inclusive
and comprehensive dataset on river hydromorphology of a lowland sand-bed river in northern
Germany to develop species-habitat models for 13 fish species. The first objective was to test if
habitat conditions at larger spatial scales, i.e. up- and downstream reaches adjacent to the sam-
pling sites, improve the predictive power of fish-habitat models. It was hypothesized that the
predictive power increases up to a certain spatial distance. The second objective was to com-
pare the predictive power of the two main types of hydromorphological variables: quantitative,
measured variables and assessment scores. It was hypothesized that the measured variables
yield better modelling results since they relate the presence of a species to the directly perceived
physical environment, while assessment scores might be affected by the subjective definition of
naturalness. The third objective was to identify the hydromorphological variables at different
spatial scales that are related best to the presence of fish species.

Methods
Study river catchment

The study area is located in northern Germany and comprises the whole catchment (760 km?)
of the River Treene (Fig 1, bounding box N: 54°46'19"N, S: 54°21'36"N, W: 9°04'50"E, E: 9°
44'01"E). The 77 km long River Treene is naturally meandering, mainly sand-dominated with
local gravel patches and low valley slopes in a highly agriculturally dominated catchment (89%
agriculture, CORINE Land Cover 2006). Most of the upstream river network are small gravel-
dominated lowland streams (LAWA river type 16, [11]) belonging to the hyporhithral region
according to Illies [12] with Leuciscus leuciscus, Phoxinus phoxinus and Salmo trutta as key fish
species. The middle, epipotamal reaches are small to large sand and loam-dominated lowland
rivers (LAWA river type 14 and 15) typically dominated by e.g. Barbatula barbatula, Gobio
gobio, Leuciscus leuciscus and Gasterosteus aculeatus. The downstream marshland streams of
the coastal plains (LAWA river type 22) are tidally influenced and belong to the metapotamal
with key fish species like Rutilus rutilus, Perca fluviatilis and Abramis brama [13,14]. Large
parts of the river have been straightened, 66% of its length is in a poor or bad hydromorpholo-
gical state and the river network is fragmented by a total of 52 barriers (0.16/km) (S1 Fig).
However, a few short, near-natural meandering reaches are still present (1.5% of the river
length). The marshy downstream sections were excluded from the analysis, because of both,
the river morphology and ecology strongly differed from the rest of the catchment and no
hydromorphological data were available.

Species data

All fish abundance data were sampled at 64 sites in 2004-2011 by the State Agency for Agricul-
ture, Environment and Rural Areas (LLUR) of the federal state of Schleswig Holstein, and
kindly provided for the study. These samples were collected using electric fishing along river
stretches of on average 400 m length (160-1100 m) following the recommendations given by
the national fish-based assessment system [15]. For each sampling site, species data of repeated
sampling over multiple years were pooled to account for inter-annual variations, and abun-
dance data were converted to presence-absence data for each species. All fish species present
(at least one specimen) at > 10 sampling sites were selected for this study, resulting in 13
model species (Table 1).
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Fig 1. Overview of the River Treene catchment (760 km?, Germany) and 64 sampling sites.

doi:10.1371/journal.pone.0142813.g001

Environmental data

The environmental dataset comprised 35 measured hydromorphological habitat variables, 13

hydromorphological assessment variables, and has been complemented by 3 topological
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Table 1. Fish species included in the analysis and their presence, absence and occurrence frequency in 64 sampled sites.

Code
Anguilla
Cobienia
Gastatus
Gobiobio
Gymnrnua
Leucscus
Percilis
Phoxinus
Pungtius
Rutiilus
Salmalar
Salmario
Tincinca

Common name

European eel

Spined loach
Three-spined stickleback
Gudgeon

Ruffe

Common dace
European perch
Eurasian minnow
Nine-spined stickleback
Roach

Atlantic salmon

Brown trout

Tench

doi:10.1371/journal.pone.0142813.1001

Scientific name Presence Absence Occurrence frequency
Anguilla anguilla 48 16 0.75
Cobitis taenia 20 44 0.31
Gasterosteus aculeatus 54 10 0.84
Gobio gobio 46 18 0.72
Gymnocephalus cernua 10 54 0.16
Leuciscus leuciscus 27 37 0.42
Perca fluviatilis 37 27 0.58
Phoxinus phoxinus 29 35 0.45
Pungitius pungitius 48 16 0.75
Rutilus rutilus 33 31 0.52
Salmo salar 19 45 0.30
Salmo trutta 48 16 0.75
Tinca tinca 11 53 0.17

variables (i.e. stream order typology and distance from mouth) (Table 2). The hydromorpholo-
gical data were provided by LLUR and were recorded for homogenous channel segments of
generally 100 m length using a method that closely refers to the standard assessment method of
the LAWA [16] described by Gellert et al. [3].

The 35 measured and 13 assessment variables were grouped according to the aspect of river
hydromorphology they describe based on the LAWA on site survey [3]: channel cross-profile
(PROFILE, e.g. flow velocity, depth and width), channel bed (BED, e.g. substrates, number of
channel features like riffles and pools), channel banks (BANK, e.g. bank fixation), channel
planform (LONG, e.g. sinuosity), adjacent floodplain (FLOODPLAIN, only 2 assessment vari-
ables, Table 2). For the 13 assessment variables, the deviation from stream-type specific natural
reference conditions was assessed by trained LLUR experts on a five-point ordinal scale rang-
ing from undisturbed (1) to heavily degraded (5) following a standardized procedure [17,18].
The topological variables used were distance from mouth (i.e. from the confluence with River
Eider) and stream order according to Strahler [19] and Shreve [20]. Both methods, Strahler
and Shreve assign headwater streams an order of one and increase in downstream direction.
The commonly used Strahler order [19] only increases if at least two tributary branches of the
same Strahler order meet (i.e. two second-order streams form a third order stream). Streams of
lower order joining a higher order stream do not affect the Strahler order at the confluence. In
contrast, the Shreve order [20] equals the sum of the Shreve orders of the tributaries, and
hence, is often considered a better proxy of the size of the river (width or discharge), especially
in elongated river networks with a high number of low order tributaries.

For the analysis, some of the originally measured variables were thematically pooled into
aggregated variables if their individual effects on fish could be expected the same. The aggre-
gated variables were calculated as sums of subcategories (e.g. % of soft substrates is the sum of
%mud, %clay and %silt) (Table 2). For variables that represent counts, values were standard-
ized by the length of the corresponding mapped river segment. The vector data were converted
into raster data by rasterizing the river network with a model grid cell size of 50 x 50 m using
the GRASS GIS tool v.to.rast.

Species’ mobility was accounted for by summarizing the habitat conditions in up- and
downstream reaches and calculating average habitat values at four predefined distances (200,
1000, 2500, 4000 m) covering a range of movement and home-range distances from smaller
and more stationary fish species to larger and more mobile fish species [5]. We used a GIS-
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Table 2. Environmental variables used in the analysis, assigned main variables groups and corresponding descriptive values. Asterisks indicate
aggregated variables derived by pooling multiple subcategories (e.g. %emud, %clay and %silt was summed up to %SuSo, soft substrates).

Code Group Variable Mean (Standard
Deviation)

Topological Variables

DisM TOPO Distance from mouth (m) 51181.13 (18354.64)
SOSh TOPO Stream order according to Shreve (1966) 2.55 (3.34)
SOSt TOPO Stream order according to Strahler (1957) 1.38 (0.59)
Measured Variables
ChDe PROFILE Channel depth (m) 0.45 (0.38)
ChWi PROFILE Channel width (m) 3.98 (4.53)
Chwyv PROFILE Channel width variability categories of 1: no, 2: low, 3: medium, 4: high, 5: very high 1.73 (0.68)
CSFo PROFILE Cross-section form categories of 1: natural, 2: near natural, 3: erosive cross-section—varying, 4: 5.12 (1.99)
failed embankment, 5: erosive cross-section—deep, 6: trapezoid, 7: V-shaped, 8: rectangular
FIVe PROFILE Flow velocity categories of 1: no (<5 cms ™), 2: low (5-20 cms™), 3: medium (20-40 cms ™), 4: high 2.81(0.87)
(40-80 cms™), 5:very high (>80 cms™2)
BAEr* BED Bed alteration—erosion, moving sands (n/100 m) 0.11 (0.32)
BAOt* BED Bed alteration—others (e.g. clogging, unnamed categories) (n/100 m) 0.09 (0.36)
BAWa*  BED Bed alteration—waste deposition (n/100 m) 0.12 (0.41)
CBFO* BED Channel bed features—others (e.g. cascades, unnamed categories) (n/100 m) 0.06 (0.53)
CBFR* BED Channel bed features—riffles, pools (n/100 m) 0.06 (0.31)
InVe BED Instream vegetation categories of 1: no, 2: submerged, 3: floating leaved, 4: emerged macrophytes 1.82 (0.96)
SMaS BED Submerged macrophyte species (n) 0.74 (0.9)
SuDi BED Substrate diversity categories of 1: no, 2: low, 3: medium, 4: high, 5: very high 0.85 (0.33)
SuHa* BED Substrate—hard (e.g. gravel, stones) (%) 14.68 (22.45)
SuMa BED Substrate—macrophytes (%) 417 (7.45)
SuSa BED Substrate—sand (%) 57.74 (25.88)
SuSo* BED Substrate—soft (e.g. mud, clay, silt) (%) 21.29 (23.2)
SuWo*  BED Substrate—wood (e.g. dead wood, rootstock) (%) 2.12(8.08)
BFLW*  BANK Bank features—large wood (n/100 m) 0.06 (0.32)
BFOt* BANK Bank features—others (e.g. nesting bank) (n/100 m) 0.04 (0.23)
BPGr* BANK Bank protection—green categories of 0: no, 1: one bank, 2: both banks 0.02 (0.17)
BPWa BANK Bank protection—walls categories of 0: no, 1: one bank, 2: both banks 0.01 (0.11)
BPno* BANK no Bank protection categories of 0: no, 1: one bank, 2: both banks 1.45 (0.87)
BPRi BANK Bank protection—riprap categories of 0: no, 1: one bank, 2: both banks 0.03 (0.22)
BPWo*  BANK Bank protection—wood categories of 0: no, 1: one bank, 2: both banks 0.44 (0.8)
RVRe BANK Riparian vegetation—reeds categories of 0: no, 1: one bank, 2: both banks 0.03 (0.18)
RVSp* BANK Riparian vegetation—sparse categories of 0: no, 1: one bank, 2: both banks 1.73 (0.56)
RVTF* BANK Riparian vegetation—trees, forest categories of 0: no, 1: one bank, 2: both banks 0.24 (0.54)
CFIB* LONG Channel features—islands braiding (n/100 m) 0.02 (0.16)
CFLW*  LONG Channel features—large wood (n/100 m) 0.02 (0.22)
CFNa LONG Channel features—narrowing (n/100 m) 0.09 (0.36)
CFWi LONG Channel features—widening (n/100 m) 0.09 (0.45)
ChDV LONG Channel depth variability categories of 1: no, 2: low, 3: medium, 4: high, 5: very high 1.61 (0.66)
FIDi LONG Flow diversity categories of 1: no, 2: low, 3: medium, 4: high, 5: very high 1.77 (0.61)
Plan LONG Planform categories of 1: heavily meandering, 2: meandering, 3: strongly sinuous, 4: sinuous, 5: 5.65 (1.36)

slightly sinuous, 6: straight, 7: channelized
Assessment Variables (functional units)

FE-CSD PROFILE Cross section depth (score) 4.48 (0.97)
FE-CSF  PROFILE Cross section form (score) 3.89 (1.22)
(Continued)
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Table 2. (Continued)

Code

FE-CSW
FE-BeF
FE-Sub
FE-BaP
FE-BFe
FE-RVe
FE-ChD
FE-LPr
FE-Pla
FE-FPI
FE-RBS

Group

PROFILE
BED
BED
BANK
BANK
BANK
LONG
LONG
LONG

Variable

Cross section width (score)
Bed fixation (score)
Substrate (score)

Bank protection (score)
Bank features (score)
Riparian vegetation (score)
Channel dynamic (score)
Longitudinal profile (score)
Planform (score)

FLOODPLAIN Floodplain (score)
FLOODPLAIN Riparian buffer strip (score)

doi:10.1371/journal.pone.0142813.t002

Mean (Standard

Deviation)

3.44 (1.1)
2.02 (0.16)
4.21 (0.66)
2.34 (0.74)
4.79 (0.64)
3.63 (0.63)
3.66 (0.72)
4.48 (0.49)
4.57 (0.62)
3.1(0.57)
4.09 (1.19)

based neighbourhood focal filter tool (GRASS GIS, r.rdfilter). This focal filter (also referred to
as low-pass filter) is a spatial averaging filter that smooths the data by reducing variation in the
neighbourhood. In fact, parameter values of adjacent cells in a given distance are averaged and
the calculated mean or median value is assigned to the focal centre cell. Consequently, each cell
contains an average value of a respective parameter over a defined neighbourhood distance.
For this analysis, all model grid cells in the four predefined distances up- and downstream of
the fish sampling sites were used to calculate mean and median predictors for continuous and
ordinal variables respectively, referred to as distance classes in the following. Consequently, the
total length of the considered reach is twice the distance, e.g. 5000 m for the 2500 m distance
class. The calculation of distance-dependent predictors included also tributaries, but was prin-
cipally limited to grid cells up- or downstream to the next impassable barrier. Finally, in addi-
tion to the habitat characteristics at the level of the site (referred to as 0 m distance class),
average values of the four new distance classes were calculated for a total of 51 variables (35
measured, 13 assessed, 3 topological). Subsequently, different sets of variables were assembled;
including either measured or assessed variables, one out of the five spatial scales, and with and

without topological variables, resulting in 2*5*2 = 20 environmental predictor datasets
(Table 2).

Modelling and statistical analysis

Boosted regression trees (BRT) were built for each of the 20 predictor-datasets and each of the
13 selected fish species to examine the relationship between the environmental variables and
species occurrence. BRT is a statistical learning method that additively combines and averages
(boosting) many simple single regression trees to form a collective model of improved predic-
tive performance [21,22]. Moreover, BRTs can accommodate continuous and categorical vari-
ables, are not affected by missing values or transformation or outliers and are considered to
effectively select relevant variables, identify variable interactions and thus avoid overfitting
[23]. Species-habitat relationships were modelled based on a binary response (presence and
absence records, Bernoulli distribution) in a three-step analysis framework in the statistical
software R (specifically the R-package ‘dismo’ [24]) following general guidelines on BRT's pro-
posed by Elith and Leathwick [25]: First, for each species a global model was built including all
variables per dataset. Second, the model was simplified and the predictor variable set was
reduced by integrated backward elimination of variables that gave no evidence of improving
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the model. Third, the final model was calculated based on the reduced predictor variable data-
sets. For each of the global and final BRT models, the tree complexity and learning rate was set
to 3 respectively 0.001 or smaller to achieve the recommended number of more than 1000
regression trees [23]. All other model settings were set to default or were automatically adjusted
by the boosting algorithm. The small number of positive occurrences of some species did not
allow splitting the dataset for extensive model evaluations. Instead, a commonly used 10-fold
cross validation already implemented in the algorithm was carried out. As a measure of the
model’s predictive quality, the mean AUC (area under the receiver operating characteristic
(ROC) curve), a fold-based statistic using the cross-validated model, was extracted. The AUC
is a threshold-independent rank-correlation coefficient where high values typically indicate a
strong agreement between the predicted suitability and known presences and absences, respec-
tively [26]. Here, the AUC is calculated model internally (R-function ‘gbm.step{dismo}’) based
on a non-parametric rank-correlation closely related to the Mann-Whitney U statistic [27]:

AUC =

(1)

nyny

where U = U-statistic according to Mann and Whitney [28] of the observed presences/absences
(binary) and the predicted suitability (probability), n; = number of observed presences, n, =
number of observed absences. Thus, in contrast to other quality measures of predictive perfor-
mance (e.g. kappa statistic [29]), this method does not rely on the essentially arbitrary choice of
a threshold probability to discriminate between absences and presences [30]. It is rather the
predicted probabilistic suitability that is evaluated against the observed occurrence patterns.
Moreover, the AUC can be used to classify model performance based on five classes (e.g. [31]):
<0.6 (fail), 0.6-0.7 (poor), 0.7-0.8 (fair), 0.8-0.9 (good), >0.9 (excellent).

Results of the importance of the single variables were assembled and presented in six main
variable groups (TOPO, PROFILE, BED, BANK, LONG, FLOODPLAIN, Table 2, column
‘Group’). In addition to the absolute variable selection frequency of each group and to allow
comparisons between groups comprising different numbers of variables, variable selection fre-
quency was standardized to frequency per model and variable (standardized selection fre-
quency, SSF). Furthermore, the relative importance (%) of each predictor variable in the final
BRT models was quantified based on the number of times a variable was used for splitting,
weighted by the squared improvement at each split and averaged over all trees [23]. Differences
in the importance of single predictor variables groups were analysed with a Kruskal-Wallis test
(R-function ‘kruskal.test{stats}’, [32]) followed by pairwise Wilcoxon Rank Sum tests with
Bonferroni correction (R-function ‘pairwise.wilcox.test{stats}’, [28,33]).

To evaluate and quantify the single and joint effects of (i) the spatial scale over five distance
classes (iii) the environmental variable set (measured vs. assessed variables) and (iii) the inclu-
sion of topological information (with vs. without topological information), on the cross-valida-
tion AUC, a linear mixed model [34] was fitted. Species was included as random effect to
account for potential differences in species-specific habitat associations and differences in spa-
tial movement abilities and home-range extent among the species [5]. Parametric bootstrap-
ping was applied to obtain the model coefficients’ 95% confidence intervals (CI, 1000
simulations, percentile method, [35]). Additionally, for testing for significant differences
between model pairs (e.g. models with and without topological information) paired Welch’s t-
tests were calculated. For all statistical analysis, the cross-validation AUC (response), which is
ranging between zero and one, was arcsine-square root transformed for meeting assumptions
for parametric statistical tests.

PLOS ONE | DOI:10.1371/journal.pone.0142813 November 16,2015 8/19



i@;"L‘)S;‘ONE

Spatial Scales of River Fish-Habitat Models

All spatial analysis were carried out in GRASS GIS (version 6.5SVN, [36]) using its standard
functionalities (e.g. r.mapcalc) and the add-on r.rdfilter for calculating distance dependent pre-
dictor variables. Statistical analyses were carried out in R (version 3.0.1, [37]) using built-in

functions from the base package, the gbm-functions from the package dismo (version 0.8-11,
[24]) for BRT model building, spgrass6 (version 0.8-1, [38]) and raster (version 2.1-25, [39])

for the interaction with GRASS GIS and Ime4 (version 1.1-1, [40]) for fitting linear mixed

models.

Results

Overall, model performance was good and sufficient to predict the presence of all 13 model
fish species, with a mean cross-validated AUC over all models of 0.782 (SD = 0.092) (Table 3).
The modelling algorithm did not converge and failed to compute two models (T. tinca-mea-

sured variables, distance 2500 m; G. aculeatus—assessed variables, distance 0 m), that were

excluded from further analysis.

Table 3. Summary of model performances (cross-validation AUC) for models with (A) topological variables excluded and (B) topological variables
included contrasting 13 modelled species (for abbreviations see Table 1), five distance classes and two variable datasets (MV: measured vari-
ables, AV: assessment scores).

0Om 200 m 1000 m 2500 m 4000 m

(A) Species Mv AV Mv AV Mv AV Mv AV Mv AV mean MV mean AV mean
Anguilla 0.61 0.68 0.63 0.75 0.81 0.83 0.76 0.82 0.73 0.82 0.71 0.78 0.74
Cobienia 0.65 0.75 0.69 0.69 0.69 0.78 0.66 0.82 0.78 0.79 0.69 0.77 0.73
Gastatus 0.72 0.78 0.70 0.81 0.73 0.75 0.90 0.76 0.83 0.77 0.79 0.78
Gobiobio 0.94 0.75 0.94 0.74 0.96 0.90 0.97 0.84 0.88 0.86 0.94 0.82 0.88
Gymnrnua 0.68 0.79 0.72 0.83 0.69 0.72 0.78 0.82 0.92 0.75 0.76 0.78 0.77
Leucscus 0.78 0.72 0.68 0.75 0.83 0.73 0.75 0.75 0.65 0.76 0.74 0.74 0.74
Percilis 0.80 0.80 0.90 0.83 0.78 0.76 0.93 0.85 0.85 0.88 0.85 0.82 0.84
Phoxinus 0.73 0.74 0.83 0.88 0.89 0.83 0.87 0.91 0.88 0.84 0.84 0.84 0.84
Pungtius 0.72 0.71 0.69 0.77 0.72 0.68 0.67 0.78 0.62 0.74 0.68 0.73 0.71
Rutiilus 0.69 0.72 0.69 0.75 0.70 0.66 0.74 0.71 0.73 0.67 0.71 0.70 0.71
Salmalar 0.88 0.85 0.87 0.83 0.92 0.92 0.88 0.89 0.92 0.89 0.89 0.88 0.89
Salmario 0.74 0.70 0.83 0.65 0.90 0.71 0.76 0.54 0.88 0.66 0.82 0.65 0.74
Tincinca 0.76 0.72 0.67 0.61 0.53 0.86 0.75 0.78 0.75 0.69 0.74 0.71
mean 0.75 0.74 0.76 0.75 0.79 0.78 0.79 0.80 0.80 0.79 0.78 0.77 0.77

(B) Anguilla 0.72 0.81 0.66 0.80 0.73 0.87 0.77 0.90 0.87 0.76 0.75 0.83 0.79
Cobienia 0.69 0.77 0.70 0.62 0.77 0.76 0.79 0.79 0.73 0.84 0.73 0.75 0.74
Gastatus 0.84 0.78 0.70 0.81 0.61 0.84 0.68 0.92 0.71 0.83 0.71 0.83 0.77
Gobiobio 0.91 0.73 0.92 0.85 0.92 0.88 0.97 0.84 0.89 0.86 0.92 0.83 0.88
Gymnrnua 0.69 0.77 0.77 0.79 0.73 0.68 0.83 0.75 0.80 0.75 0.76 0.75 0.75
Leucscus 0.79 0.78 0.73 0.79 0.81 0.74 0.80 0.68 0.77 0.79 0.78 0.76 0.77
Percilis 0.85 0.85 0.89 0.83 0.80 0.87 0.78 0.89 0.86 0.83 0.84 0.86 0.85
Phoxinus 0.82 0.92 0.83 0.87 0.83 0.83 0.88 0.90 0.94 0.88 0.86 0.88 0.87
Pungtius 0.68 0.64 0.58 0.73 0.80 0.76 0.67 0.71 0.67 0.74 0.68 0.71 0.70
Rutiilus 0.75 0.77 0.78 0.76 0.72 0.74 0.81 0.80 0.78 0.81 0.77 0.78 0.77
Salmalar 0.97 0.93 0.98 0.93 0.98 0.92 0.96 0.95 0.91 0.92 0.96 0.93 0.94
Salmario 0.82 0.77 0.77 0.74 0.80 0.86 0.80 0.69 0.76 0.62 0.79 0.74 0.76
Tincinca 0.58 0.63 0.67 0.65 0.49 0.78 0.62 0.72 0.75 0.72 0.62 0.70 0.66
mean 0.78 0.78 0.77 0.78 0.77 0.81 0.80 0.81 0.80 0.80 0.78 0.80 0.79

doi:10.1371/journal.pone.0142813.t003
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Fig 2. Cross-validated model performances for all species and across five distance classes. Model
performance (AUC, area under the receiver operating characteristic curve) increases with distance and
significant effects were detected for 1000 m (linear mixed model, Bp1pgo = 0.041, 95%-Cl = 0.009-0.075),
2500 m (Bpasoo = 0.049, 95%-Cl = 0.017—-0.080) and 4000 m (Bp4ooo = 0.040, 95%-Cl = 0.011-0.072).

doi:10.1371/journal.pone.0142813.g002

The models’ predictive power (cross-validated AUC) progressively increased when informa-
tion on the hydromorphological habitat conditions at longer reaches up- and downstream up
to a distance of 2500 m was included (Fig 2). The linear mixed model with species as random
effects (no interactions) revealed that the model’s AUC for the three modelled distance classes
1000, 2500 and 4000 m were significantly higher than those of the 0 m distance class (Table 4).
The AUC values of the models with habitat conditions aggregated over 2500 m up- and

Table 4. Results of the linear mixed effects model. Fixed effect size estimates of (i) four distance classes
(200, 1000, 2500 and 4000 m), (ii) the inclusion of topological variables (TV) and (iii) the choice of the environ-
mental dataset (measured MV vs. assessed AV). Effect sizes are estimates how the cross-validated AUC
changes compared to the base model for measured variables without TV at distance class 0.The linear mixed
model structure follows: arcsin(\/ AUC) ~ a+Bp + Brv + Bav + @species, Where a = intercept, B = single effect
sizes and aspecies = Within species as random effect. 95%-Confidence intervals (Cl) are based on parametric
bootstrapping. Significant effects are highlighted in bold.

Parameter estimate 95% ClI
a 1.07 1.01-1.13

Bpz00 0.012 -0.018-0.046
Bo1o00 0.041 0.009-0.075
Bp2s00 0.049 0.017-0.080
Bpaooo 0.040 0.011-0.072
Brv 0.029 0.009-0.049
Bav -0.015 -0.036-0.005
8species 0.092 0.051-0.132

doi:10.1371/journal.pone.0142813.t004
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downstream (columns 7 and 8 in Table 3) showed the largest significantly positive differences
(Bp2soo = 0.049, CI = 0.017-0.080) compared to a base model using the local conditions only
(0 m distance class), followed by the distance classes 1000 m (Bp000 = 0.041, CI = 0.009-0.075)
and 4000 m (Bp4goo = 0.040, CI = 0.011-0.072). In contrast, the effect of the shortest modelled
distance class of 200 m (Bp,go = 0.012, CI = -0.018-0.046) was not significantly different from
the 0 m distance class. Species-habitat models performed best for the 2500 m—distance class
and with topological variables included.

The predictive power of models which were based on measured variables was not signifi-
cantly different from models based on assessment variables (t-test, t;»; = 0.10, p = 0.917, two-
tailed). The mean AUC of models based on assessed variables was 0.784 (n = 129, SD = 0.081,
IQR = 0.733-0.840, columns 2, 4, 6, 8, 10 in Table 3); the mean AUC of models based on mea-
sured variables was 0.780 (n = 129, SD = 0.102, IQR = 0.703-0.858, columns 1, 3, 5,7, 9 in
Table 3). For five out of the 13 modelled species, significant differences between the perfor-
mance of models based on measured and assessed variables were found: two species were more
accurately modelled using assessed variables (two-sided Wilcoxon signed rank test, A. anguilla:
p =0.032; G. aculeatus: p = 0.098); three other species using measured variables (two-sided
Wilcoxon signed rank test, G. gobio: p = 0.002; S. salar: p = 0.044; S. trutta: p = 0.019). Further-
more, variation in the AUC values was significantly lower in the dataset with assessed variables
(F-test, Fig 128 = 1.73, p = 0.001, one-tailed).

Mean overall model performance significantly improved from 0.775 to 0.789 (t;5, = 2.59,

p =0.011, two-tailed) when topological predictor variables were included. The linear mixed
model with species as random effects revealed a significant main effect for the inclusion of
topology Brv = 0.029 (CI = 0.009-0.049, Table 4). Moreover, a Spearman rank correlation anal-
ysis indicated a positive correlation with fish length (rho = 0.24, p = 0.006), i.e. the model
improvement due to including topological variables was higher for larger species (e.g. diadro-
mous A. anguilla and S. salar) than for smaller species.

The following analysis of variable contribution is based exclusively on models including
topological information (n measured = 64, n assessed = 64). Overall, significant differences in
the importance of the six groups of variables investigated were detected (Kruskal-Wallis test,
x> =243.98, df = 5, p-value<0.001) over all modelled distance classes (Fig 3). Topological
(TOPO) as well as variables describing the cross-section profile (PROFILE) were best suited to
predict the presence of the model fish species. Topological variables (n = 3) were selected 80
times in models based on measured variables and 86 times in models based on assessed vari-
ables. This corresponds to a standardized selection frequency (SSF) of 0.41 and 0.44 times that
at least one out of all three topological variables has been selected in a single model based on
measured and assessed variables respectively. Average per cent variable contribution of TOPO
was highest (mean = 10.48, SD = 18.03) and significantly different from the variable groups
BANK, BED, FLOODPLAIN and LONG (pairwise Wilcoxon rank sum test, p<0.001) but not
from PROFILE (pairwise Wilcoxon rank sum test, p = 0.21). A correlation analysis revealed a
strong but non-significant trend of decreasing variable contribution of TOPO with increasing
distance classes (Spearman rank correlation, t; = -2.64, p = 0.08, r = -0.84). PROFILE variables
(n measured = 5, n assessed = 3) were selected 99 times in models based on measured variables
(SSF = 0.30) and 86 times in all models based on assessed variables (SSF = 0.44). Average per
cent variable contribution (mean =7.91, SD = 16.31) significantly differed from the variable
groups BANK, BED and LONG (pairwise Wilcoxon rank sum test, p<0.001). In addition, the
per cent contribution of assessed variables describing the cross-section profile (PROFILE AV
in Fig 3) (mean = 9.73, SD = 17.72) was significantly higher compared to the measured vari-
ables (PROFILE MV) (mean = 6.81, SD = 15.34) (two-sided Wilcoxon rank sum test,

W = 27453, p<0.005). The importance of variables describing the cross-section profile
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Fig 3. Relative variable contribution to all boosted regression tree models. Relative variable contribution (%) for models including topological,

B3 mv E5 AV

measured (MV, grey boxes) and assessed (AV, white boxes) variables. Results are pooled in five main variable groups (see Table 2) and plotted across five
modelled distance classes (0—4000 m). Detailed species-specific information about contributions of the single variables is provided in S1 and S2 Tables
(Supporting Information).

doi:10.1371/journal.pone.0142813.9003

decreased with increasing distance classes for models based on measured variables (Spearman
rank correlation, t3 = -1.03, p = 0.37, r = -0.51) whereas it increased for models based on

assessed variables (t; = 4.99, p = 0.02, r = 0.94).
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LONG variables (n measured = 7, n assessed = 3) were mainly important for models based
on assessment scores (85 times selected, SSF = 0.44) but not for models based on measured var-
iables (23 times selected, SSF = 0.05). The per cent contribution of measured LONG variable
(mean = 0.31, SD = 2.11) was significantly different from assessed LONG variables
(mean = 6.09, SD = 10.75) (two-sided Wilcoxon rank sum test, W = 26777, p<0.001).

BED variables (n measured = 13, n assessed = 2) were selected 208 times in all models based

on measured variables (SSF = 0.25) and 20 times in all models based on assessed variables
(SSF = 0.15). The per cent variable contribution of BED (mean = 2.43, SD = 7.52) was signifi-
cantly different from PROFILE and TOPO (pairwise Wilcoxon rank sum test, p<0.001). Only
weakly significant differences in the per cent contribution of measured BED (mean = 2.50,
SD = 7.58) and assessed BED (mean = 1.98, SD = 7.15) variables could be detected (two-sided
Wilcoxon rank sum test, W = 59733, p = 0.03). No significant correlation between the contri-
bution of BED variables and distance classes could be detected for models based on measured
and assessed variables (Spearman rank correlation, t; = 1.13, p = 0.34, r = 0.54 resp. t; = -0.40,
p=0.71,r=-0.23).

Floodplain variables (n = 2) where only considered for the models based on assessment
scores and were selected only 34 times (SSF = 0.26). Their average per cent variable contribu-
tion was generally low (mean = 2.68, SD = 8.30) with slightly higher importance in the distance
classes of 200 m and 1000 m.

BANK variables (n measured = 10, n assessed = 3) were selected 66 times (0.10 times / vari-
able x model) and 39 times (0.20 times / variable x model) for models based on measured and
assessed variables, respectively. Per cent contribution of measured BANK variable
(mean = 0.63, SD = 3.63) significantly differed from assessed BANK variables (mean = 1.81,
SD = 5.83) (two-sided Wilcoxon rank sum test, W = 56717, p<0.001)

Extensive and detailed information about the single variables’ contributions and their rank
importance for the models using both types of variables is provided in S1 and S2 Tables (Sup-
porting Information).

Discussion

The main objectives of the study were to test whether the predictive power of species-habitat
models for fish increases if (i) habitat conditions at larger spatial scales (up- and downstream
of the sampling sites) are considered and (ii) measured hydromorphological variables are used
compared to assessed variables, as well as (iii) to identify hydromorphological variables which
are best suited to predict the presence of fish species.

Spatial scales determining the presence of fish

For developing species-habitat models to predict the presence of species, the spatial resolution
of the predictors should match the resolution of species” samplings [41]. The predictors which
are predominantly used to develop such models like climate, geology, and elevation [1] vary
over large geographical extents and data are usually available at relatively low spatial resolution.
In contrast, the hydromorphological data used here were mapped for river reaches down to
100 m, and describe small-scale habitat conditions. This spatial resolution of data might be too
high since fish as highly mobile organisms frequently access a wider range of habitats [5,42].
Therefore, the use of small model grid sizes for species-habitat modelling might not adequately
account for fishes’ distinct mobility. In a species distribution modelling framework for mobile
mammals (bats, Microchiroptera), Bellamy et al. [43] have already shown that using so-called
focal predictors, which summarize information on environmental variables at larger spatial
scales, solves the problem of high-resolution habitat data and describes habitat conditions at
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the most relevant spatial scale. Similarly, we used focal predictors to account for the distinct
mobility of fish and to identify the spatial scale at which hydromorphological conditions deter-
mine the presence of fish.

Species dispersal but also spatial correlations of habitats (i.e. environmental gradients
caused by common physical forcing) are two main reasons for spatial autocorrelation of species
assemblages [44,45]. This study does not explicitly investigate spatial autocorrelation per se
(e.g. evaluated by Moran’s I); however, the applied approach might be considered as an indirect
way to account for spatial correlations among river fish assemblages by including information
about habitat features up- and downstream a site. The use of focal predictors allows to incorpo-
rate the species-specific, potentially large movement abilities of riverine fishes [5] in a species-
habitat model and thus to account for their ability to utilise multiple, potentially spatially corre-
lated habitats of proximal locations.

As hypothesized, the performance of the models increased by including information on the
hydromorphological state up- and downstream a sampling site, similar to other studies which
found that fish metrics can be better explained by considering different spatial scales. For
example, Wuellner et al. [46] reported improved model performance to predict the presence of
prairie fish species if information on reach and catchment scale are combined. Kail and Wolter
[8] found significant effects of the hydromorphological state at the site, up- / downstream scale
and catchment land use on a set of fish metrics including richness and abundance. Moreover,
Ruiz and Peterson [47] hypothesized that (i) the effect of scale depends on the strength of a
species’ relationship to local habitat features based on life history requirements and (ii) special-
ist species are more accurately modelled using local habitat characteristics while generalists are
better predicted at larger scales. In our study, model performance improved most by including
information on the habitat conditions 2500 m up- and downstream of the sampling sites, indi-
cating that the presence of the fish species modelled depends on the habitats within a river sec-
tion of 5000 m total length. This result can be used as first estimate for the relevant spatial scale
of restoration projects aiming to improve habitat conditions for fish.

However, the presence of fish also depends on other factors besides the hydromorphological
state and catchment characteristics, which are typically not considered in statistical models. In
our study mean habitat conditions up- and downstream of the sampling sites were calculated.
Still, species-habitat associations are even more complex than assuming simple spatial averages
based on model raster grid cells. Indeed, species-specific occurrences might also be strongly
determined by threshold values of environmental conditions (lower and upper limits of e.g.
flow velocity). Moreover, a conversion from vector to raster data is commonly a spatial general-
ization; however, for this analysis, we don’t assume any related loss of information since the
resolution of our raster grid (50 m) is rather fine in comparison the typical lengths of mapped
river sections (100 m, [3]).

In addition to the investigated in-stream habitat characteristics, distribution patterns of riv-
erine fish might also be affected by larger-scale pressures such as land use [48] or climate
change [49,50] as well as by biotic interactions or invasive species, which are not considered
here. Moreover, complex interactions of multiple and interlinked variables and their effects on
multiple spatial scales is highly species and life-stage dependent and requires a detailed geo-sta-
tistical analysis framework which was beyond the scopes of this study.

Assessed vs. measured variables

In contrast to our initial expectations, the quantitatively measured in-stream variables did not
perform better in predicting species occurrence compared to the general assessment scores.
This finding also contradicts the main conclusion of a recent review of more than 50 methods
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to characterise river habitats by Ferndndez et al. [9], supposing that quantitatively gathered
information could be more effective than evaluation methods as they provide more extensive
datasets that could be used for several purposes (e.g. ecological modelling). However, single
habitat features are highly variable over time [51] and thus, measurements of single features
(e.g. number of riffles) provide just ephemeral snapshots whereas evaluation scores commonly
assess the overall state of river compartments like cross-section form or planform (Table 2)
which are more constant over time. This might result in less variable model outcomes espe-
cially if the fish sampling was not necessarily conducted at the same time as the river habitat
survey.

Habitat variables best suited to predict the presence of fish species

Opverall, the hydromorphological data with a high spatial resolution down to 100 m were gener-
ally suitable for modelling the presence of riverine fish and depict their typically discontinuous
distribution [52]. Almost half of the models (40.8%, n = 106) can be considered “good”

(AUC > 0.8) and several (12.7%, n = 33) even “excellent” (AUC> 0.9), while only one model
failed (AUC < 0.5) [31]. Besides the availability of high resolution hydromorphological data,
the good model performance was probably also related to the method used: recent comparisons
of methods to model fish species distributions revealed that non-linear approaches (e.g. tree
based models such as the applied Boosted Regression Trees) are superior in capturing complex
and non-linear patterns in ecological data [53,54]. For our models we used a threshold of one
specimen to consider a species present at a sampling site. This accounts for the temporal varia-
tion in habitat use and that samplings might miss those periods of high abundance of a species.
Selecting a larger presence-threshold (i.e. only sites with higher abundance of a species) and
excluding single detections might have resulted in stronger species-habitat associations and
better cross-validated model AUCs. In this regard, models considering (relative) species abun-
dances instead of generalized presence/absence data might be valuable approaches to get fur-
ther insights how species densities might be affected by single habitat features at different
spatial scales [55]. However, setting up such abundance-based models typically requires a very
specific sampling and analysis design to account for spatial but also temporal patterns in spe-
cies distributions, which was beyond the scope of this study.

In our study, topological variables describing the river network (stream order) and mea-
sured cross section parameters (width, depth, velocity) were the best predictors for the presence
of riverine fishes. The high importance of topological variables is in accordance with previous
studies showing the high explanatory value of stream order in fish species distribution model-
ling [31], and the higher importance of the longitudinal gradient over climatic variables for
downstream species [56]. Accordingly, we found that stream order variables were especially
important for the two ubiquitous species P. fluviatilis and R. rutilus, for those most other pre-
dictor variables failed (see Supporting Information). Including topological information (e.g.
stream order) generally improved the models; however, its relative importance decreased with
increasing distance classes while cross section characteristics and streambed features became
more important. This supports existing theory that stream order at a specific location within
the river network provides already a spatially integrative proxy for the upstream-downstream
gradient informing about physical conditions at larger scales [57] and thus gets less important
when the same information can be retrieved directly from physical characteristics at this larger
scales. The high importance of measured cross section parameters is consistent with findings
of Brunke [58] that mean width and flow velocity were the two most important hydromorpho-
logical variables that determine fish assemblages in sand dominated rivers in geographical
proximity to our study region. In contrast, in heavily degraded river reaches the fish metrics
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were most strongly related to assessment scores of the riverbank while cross-section parameters
were of minor importance [8]. The latter might be simply due to the high uniformity and low
variability of cross-sections in heavily degraded reaches (i.e. missing gradient in the dataset).

Besides cross-section parameters, channel-bed characteristics (substrate types) and longitudinal
channel features (numbers of river narrowing and islands, river planform) were considered impor-
tant predictors of fish occurrence. However, this holds true only for the measured channel-bed
characteristics and the assessed longitudinal channel features, while both counterparts, assessed
channel-bed characteristics and measured longitudinal features, were of minor importance.

This study substantiated the utility of hydromorphological predictor variables and their spa-
tial scaling to improve species-habitat models in lowland sand-dominated streams as shown
for the River Treene as study river example. Thus these relationships might also be valid for
similar other lowland rivers with comparable sets of fish species and physical habitat character-
istics. However, the main findings should be of general applicability that both focal predictors
at larger spatial scales and assessment scores perform very well to predict fish species occur-
rence. Considering the different geomorphological processes [57] and species assemblages
[59,60] in other river types (e.g. gravel bed rivers) will probably yield other best suited distance
classes for different river types. The further development and application of the proposed focal
predictors approach in rivers of different eco-regions would allow to inter-calibrate and to
compare species-habitat associations and their spatial aspects between different river types.

Consequently, these two types of habitat characterisations can also be viewed as direct and
indirect predictors [61,62] where the measured habitat variables have direct physiological
importance to a species and the assessment scores are potentially suited to indirectly evaluate
the species-environment relationship [63]. These indirect predictors are potential candidate
variables for recent attempts to develop rapid hydromorphological assessment methods, e.g.
based on aerial and remote sensing technologies like LIDAR data. This would allow using aerial
photography and satellite images in combination with assessment scores to rapidly produce
species distribution maps.

Conclusions

In summary, this study stresses the need to consider habitat conditions up- and downstream of
sampling sites in studies investigating species-habitat relationship and thereby acknowledge the
distinct mobility of fish. A spatially inclusive and comprehensive dataset on river hydromorphol-
ogy is a prerequisite to use hydromorphology as a predictor of species occurrence. Such data are
increasingly available, especially in European countries, since they are needed for the implemen-
tation of the Water Framework Directive. The results indicated that both, measured and assessed
variables are suited to predict the presence of fish species and using them in combination is most
promising. Moreover, including stream topological variables (e.g. stream order) can substantially
improve statistical species-habitat model as they provide valuable additional information describ-
ing the relative position of a sampling site within the river network (e.g. temperature gradient,
slope, hydrology, hydraulics) which is typically not covered by hydromorphological data. Future
studies should focus on identifying indirect hydromorphological predictors which can be mea-
sured using remote sensing techniques, and hence, serve as proxies for the hydromorphological
conditions in case spatially inclusive and comprehensive ground data are not available.

Supporting Information

S1 Fig. Overview on the overall hydromorphological status of the modelled River Treene
and existing migration barriers.
(PDF)
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S1 Table. Relative contribution of each predictor across five focal distance classes using
measured hydromorphological variables and with/without topological variables.
(PDF)

$2 Table. Relative contribution of each predictor across five focal distance classes using
assessed hydromorphological variables and with/without topological variables.
(PDF)

Acknowledgments

We would like to thank the State Agency for Agriculture, Environment and Rural Areas
(LLUR) Schleswig-Holstein for kindly providing fish and hydromorphological data. Further-
more we thank an anonymous reviewer for helpful comments on an earlier version of the
manuscript.

Author Contributions

Conceived and designed the experiments: JR JK CW. Performed the experiments: JR. Analyzed
the data: JR. Wrote the paper: JR JK CW.

References

1. Franklin J. Mapping Species Distributions: Spatial Inference and Prediction. New York: Cambridge
University Press; 2009.

2. Belletti B, Rinaldi M, Buijse AD, Gurnell AM, Mosselman E. A review of assessment methods for river
hydromorphology. Environ Earth Sci. 2015; 73: 2079—2100. doi: 10.1007/s12665-014-3558-1

3. Gellert G, Pottgiesser T, Euler T. Assessment of the structural quality of streams in Germany—basic
description and current status. Environ Monit Assess. 2014; 186: 3365—3378. doi: 10.1007/s10661-
014-3623-y PMID: 24473681

Environment Agency. River Habitat Survey in Britain and Ireland, Field Survey Guidance Manual: 2003

5. RadingerJ, Wolter C. Patterns and predictors of fish dispersal in rivers. Fish Fish. 2014; 15: 456-473.
doi: 10.1111/faf.12028

6. Gowan C, Fausch KD. Mobile brook trout in two high-elevation Colorado streams: reevaluating the con-
cept of restricted movement. Can J Fish Aquat Sci. 1996; 53: 1370—1381. doi: 10.1139/cjfas-53-6-1370

7. Lucas MC, Baras E. Migration of Freshwater Fishes. Oxford: Blackwell Science; 2001.

Kail J, Wolter C. Pressures at larger spatial scales strongly influence the ecological status of heavily
modified river water bodies in Germany. Sci Total Environ. 2013; 454—455: 40-50. doi: 10.1016/].
scitotenv.2013.02.096 PMID: 23542480

9. Fernandez D, Barquin J, Raven PJ. A review of river habitat characterisation methods: indices vs. char-
acterisation protocols. Limnetica. 2011; 30: 217-234.

10. Kail J, Hering D. The influence of adjacent stream reaches on the local ecological status of Central
European mountain streams. River Res Appl. 2009; 25: 537-550. doi: 10.1002/rra.1238

11. Pottgiesser T, Sommerhauser M. Beschreibung und Bewertung der deutschen FlieBgewassertypen—
Steckbriefe und Anhang. 2008. Available: www.fliessgewaesserbewertung.de

12. lllies J. Versuch einer allgemeinen biozénotischen Gliederung der FlieBgewasser. Internationale
Revue der gesamten Hydrobiologie und Hydrographie. 1961; 46: 205—213. doi: 10.1002/iroh.
19610460205

13. Schaarschmidt T, Arzbach HH, Bock R, Borkmann |, Bramick U, Brunke M, et al. Die Fischfauna der
kleinen FlieBgewésser Nord- und Nordostdeutschlands—Leitbildentwicklung und typgerechte Anpas-
sung des Bewertungsschemas nach EU-Wasserrahmenrichtlinie. 2005.

14. Ministerium fir Landwirtschaft Umwelt und l&ndliche Rdume des Landes Schleswig-Holstein.
Bewirtschaftungsplan nach Artikel 13 der Richtlinie 2000/60/EG fir die Flussgebietseinheit Eider.
2009.

15. DuBling U. Handbuch zu fiBS. Schriftenreihe des Verbandes Deutscher Fischereiverwaltungsbeamter
und Fischereiwissenschaftler eV. 2009;Heft 15: 1-72.

PLOS ONE | DOI:10.1371/journal.pone.0142813 November 16,2015 17/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142813.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142813.s003
http://dx.doi.org/10.1007/s12665-014-3558-1
http://dx.doi.org/10.1007/s10661-014-3623-y
http://dx.doi.org/10.1007/s10661-014-3623-y
http://www.ncbi.nlm.nih.gov/pubmed/24473681
http://dx.doi.org/10.1111/faf.12028
http://dx.doi.org/10.1139/cjfas-53-6-1370
http://dx.doi.org/10.1016/j.scitotenv.2013.02.096
http://dx.doi.org/10.1016/j.scitotenv.2013.02.096
http://www.ncbi.nlm.nih.gov/pubmed/23542480
http://dx.doi.org/10.1002/rra.1238
http://www.fliessgewaesserbewertung.de
http://dx.doi.org/10.1002/iroh.19610460205
http://dx.doi.org/10.1002/iroh.19610460205

@’PLOS ‘ ONE

Spatial Scales of River Fish-Habitat Models

16.

17.

18.

19.

20.
21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

LAWA. Gewasserstrukturgltebewertung in der Bundesrepublik Deutschland. Verfahren fir kleine und
mittelgroBe FlieBgewasser. Schwerin (Germany); 2000.

Kamp U, Binder W, Hélzl K. River habitat monitoring and assessment in Germany. Environ Monit
Assess. 2007; 127: 209-226. doi: 10.1007/s10661-006-9274-x PMID: 17058007

Ahrens U. Gewasserstruktur: Kartierung und Bewertung der FlieBgewasser in Schleswig-Holstein. Jah-
resbericht. Flintbek: Landesamt fir Natur und Umwelt des Landes Schleswig-Holstein; 2007.

Strahler AN. Quantitative Analysis of Watershed Geomorphology. Transactions American Geophysical
Union. 1957; 38: 913-920.

Shreve RL. Statistical Law of Stream Numbers. The Journal of Geology. 1966; 74: 17-37.

De’ath G. Boosted trees for ecological modeling and prediction. Ecology. 2007; 88: 243-51. PMID:
17489472

Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. Novel methods improve predic-
tion of species’ distributions from occurrence data. Ecography. 2006; 29: 129-151. doi: 10.1111/j.2006.
0906-7590.04596.x

Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008; 77:
802—-813. doi: 10.1111/1.1365-2656.2008.01390.x PMID: 18397250

Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: Species distribution modeling. 2014; Available:
http://cran.r-project.org/package=dismo.

Elith J, Leathwick J. Boosted Regression Trees for ecological modeling. CRAN vignette. 2013; 1-22.
Available: http://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf.

Hijmans RJ, Elith J. Species distribution modeling with R. CRAN vignette. 2013; Available: http:/cran.r-
project.org/web/packages/dismo/vignettes/sdm.pdf.

Hanley JA, McNeil BJ. The Meaning and Use of the Area under a Receiver Operating Characteristic
(ROC) Curve. Radiology. 1982; 143: 29-36. PMID: 7063747

Mann HB, Whitney DR. On a Test of Whether One of Two Random Variables is Stochastically Larger
than the Other. The Annals of Mathematical Statistics. 1947; 18: 50-60. doi: 10.1214/aoms/
1177730491

Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence,
kappa and the true skill statistic (TSS). J Appl Ecol. 2006; 43: 1223—-1232. doi: 10.1111/j.1365-2664.
2006.01214.x

Pearce J, Ferrier S. Evaluating the predictive performance of habitat models developed using logistic
regression. Ecol Modell. 2000; 133: 225-245.

Markovic D, Freyhof J, Wolter C. Where are all the fish: potential of biogeographical maps to project cur-
rent and future distribution patterns of freshwater species. PLoS One. 2012; 7: e40530. doi: 10.1371/
journal.pone.0040530 PMID: 22792361

Kruskal WH, Wallis WA. Use of Ranks in One-Criterion Variance Analysis. Journal of the American Sta-
tistical Association. 1952; 47: 583-621.

Shaffer JP. Multiple Hypothesis Testing. Annu Rev Psychol. 1995; 46: 561-584. doi: 10.1146/annurev.
ps.46.020195.003021

Zuur AF, leno EN, Walker NJ, Saveliev AA, Smith GM. Mixed Effects Models and Extensions in Ecol-
ogy with R. New York: Springer; 2009.

Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical
statisticians. Statistics in Medicine. 2000; 19: 1141-1164. PMID: 10797513

GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software,
Version 6.5SVN. Open Source Geospatial Foundation. 2010; Available: http:/grass.osgeo.org.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, 2013; Available: http://www.r-project.org.

Bivand R. spgrass6: Interface between GRASS 6 and R. 2013; Available: http://cran.r-project.org/
package=spgrass6.

Hijmans RJ. raster: Geographic analysis and modeling. 2014; Available: http://cran.r-project.org/
package=raster.

Bates D, Maechler M, Bolker B, Walker S. Ime4: Linear mixed-effects models using Eigen and S4.
2013; Available http://cran.r-project.org/package=Ime4.

Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol
Lett. 2005; 8: 993—1009. doi: 10.1111/j.1461-0248.2005.00792.x

Radinger J, Wolter C. Disentangling the effects of habitat suitability, dispersal, and fragmentation on
the distribution of river fishes. Ecol Appl. 2015; 25: 914-927. doi: 10.1890/14-0422.1 PMID: 26465033

PLOS ONE | DOI:10.1371/journal.pone.0142813 November 16,2015 18/19


http://dx.doi.org/10.1007/s10661-006-9274-x
http://www.ncbi.nlm.nih.gov/pubmed/17058007
http://www.ncbi.nlm.nih.gov/pubmed/17489472
http://dx.doi.org/10.1111/j.2006.0906&ndash;7590.04596.x
http://dx.doi.org/10.1111/j.2006.0906&ndash;7590.04596.x
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
http://cran.r-project.org/package=dismo
http://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf
http://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf
http://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.1371/journal.pone.0040530
http://dx.doi.org/10.1371/journal.pone.0040530
http://www.ncbi.nlm.nih.gov/pubmed/22792361
http://dx.doi.org/10.1146/annurev.ps.46.020195.003021
http://dx.doi.org/10.1146/annurev.ps.46.020195.003021
http://www.ncbi.nlm.nih.gov/pubmed/10797513
http://grass.osgeo.org
http://www.r-project.org
http://cran.r-project.org/package=spgrass6
http://cran.r-project.org/package=spgrass6
http://cran.r-project.org/package=raster
http://cran.r-project.org/package=raster
http://cran.r-project.org/package=lme4
http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x
http://dx.doi.org/10.1890/14-0422.1
http://www.ncbi.nlm.nih.gov/pubmed/26465033

@’PLOS ‘ ONE

Spatial Scales of River Fish-Habitat Models

43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Bellamy C, Scott C, Altringham J. Multiscale, presence-only habitat suitability models: fine-resolution
maps for eight bat species. J Appl Ecol. 2013; 50: 892-901. doi: 10.1111/1365-2664.12117

Dirnbdck T, Dullinger S. Habitat distribution models, spatial autocorrelation, functional traits and dis-
persal capacity of alpine plant species. J Veg Sci. 2004; 15: 77-84.

Legendre P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology. 1993; 74: 1659-1673.

Wouellner MR, Bramblett RG, Guy CS, Zale AV, Roberts DR, Johnson J. Reach and catchment-scale
characteristics are relatively uninfluential in explaining the occurrence of stream fish species. J Fish
Biol. 2013; 82: 1497-513. doi: 10.1111/jfb.12081 PMID: 23639150

Ruiz JC, Peterson JT. An Evaluation of the Relative Influence of Spatial, Statistical, and Biological Fac-
tors on the Accuracy of Stream Fish Species Presence Models. Trans Am Fish Soc. 2007; 136: 1640—
1653. doi: 10.1577/T06-086.1

Trautwein C, Schinegger R, Schmutz S. Cumulative effects of land use on fish metrics in different types
of running waters in Austria. Aquat Sci. 2012; 74: 329-341. doi: 10.1007/s00027-011-0224-5 PMID:
25983526

Filipe AF, Markovic D, Pletterbauer F, Tisseuil C, De Wever A, Schmutz S, et al. Forecasting fish distri-
bution along stream networks: brown trout (Salmo trutta) in Europe. Divers Distrib. 2013; 1-13. doi: 10.
1111/ddi.12086

Markovic D, Carrizo S, Freyhof J, Cid N, Lengyel S, Scholz M, et al. Europe’s freshwater biodiversity
under climate change: Distribution shifts and conservation needs. Divers Distrib. 2014; 20: 1097-1107.
doi: 10.1111/ddi.12232

Jéhnig SC, Lorenz AW, Lorenz RR, Kail J. A comparison of habitat diversity and interannual habitat
dynamics in actively and passively restored mountain rivers of Germany. Hydrobiologia. 2012; 712:
89-104. doi: 10.1007/s10750-012-1264-0

Angermeier PL, Krueger KL, Dolloff CA. Discontinuity in Stream-fish Distributions: Implications for
Assessing and Predicting Species Occurence. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB,
Raphael MG, Wall WA, et al., editors. Predicting Species Occurences: Issues of Accuracy and Scale.
Washington: Island Press; 2002. pp. 519-527.

Olden JD, Jackson DA. A comparison of statistical approaches for modelling fish species distributions.
Freshw Biol. 2002; 47: 1976—1995.

Leclere J, Oberdorff T, Belliard J, Leprieur F. A comparison of modeling techniques to predict juvenile 0
+ fish species occurrences in a large river system. Ecol Inform; 2011; 6: 276—-285. doi: 10.1016/j.ecoinf.
2011.05.001

Ehrlén J, Morris WF. Predicting changes in the distribution and abundance of species under environ-
mental change. Ecol Lett. 2015; 18: 303-314. doi: 10.1111/ele.12410 PMID: 25611188

Buisson L, Blanc L, Grenouillet G. Modelling stream fish species distribution in a river network: the rela-
tive effects of temperature versus physical factors. Ecol Freshw Fish. 2008; 17: 244-257. doi: 10.1111/
j.1600-0633.2007.00276.x

Knighton D. Fluvial Forms and Processes: A New Perspective. London: Arnold; 1998.

Brunke M. Hydromorphologische Indikatoren fiir den 6kologischen Zustand der Fischfauna der unteren
Forellenregion im norddeutschen Tiefland. Hydrologie und Wasserbewirtschaftung. 2008; 5: 234-244.

Melcher A, Schmutz S, Haidvogl G, Moder K. Spatially based methods to assess the ecological status
of European fish assemblage types. Fish Manag Ecol. 2007; 14: 453—463. doi: 10.1111/j.1365-2400.
2007.00583.x

Logez M, Bady P, Melcher A, Pont D. A continental-scale analysis of fish assemblage functional struc-
ture in European rivers. Ecography. 2013; 36: 80—91.

Austin MP, Cunningham RB, Fleming PM. New approaches to direct gradient analysis using environ-
mental scalars and statistical curve-fitting procedures. Vegetatio. 1984; 55: 11-27.

Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Modell. 2000; 135:
147-186.

Muhar S, Jungwirth M. Habitat integrity of running waters—assessment criteria and their biological rele-
vance. Hydrobiologia. 1998; 386: 195-202.

PLOS ONE | DOI:10.1371/journal.pone.0142813 November 16,2015 19/19


http://dx.doi.org/10.1111/1365-2664.12117
http://dx.doi.org/10.1111/jfb.12081
http://www.ncbi.nlm.nih.gov/pubmed/23639150
http://dx.doi.org/10.1577/T06-086.1
http://dx.doi.org/10.1007/s00027-011-0224-5
http://www.ncbi.nlm.nih.gov/pubmed/25983526
http://dx.doi.org/10.1111/ddi.12086
http://dx.doi.org/10.1111/ddi.12086
http://dx.doi.org/10.1111/ddi.12232
http://dx.doi.org/10.1007/s10750-012-1264-0
http://dx.doi.org/10.1016/j.ecoinf.2011.05.001
http://dx.doi.org/10.1016/j.ecoinf.2011.05.001
http://dx.doi.org/10.1111/ele.12410
http://www.ncbi.nlm.nih.gov/pubmed/25611188
http://dx.doi.org/10.1111/j.1600-0633.2007.00276.x
http://dx.doi.org/10.1111/j.1600-0633.2007.00276.x
http://dx.doi.org/10.1111/j.1365-2400.2007.00583.x
http://dx.doi.org/10.1111/j.1365-2400.2007.00583.x

