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Abstract
Land use land cover (LULC) changes frequently in ecotones due to the large climate and

soil gradients, and complex landscape composition and configuration. Accurate mapping of

LULC changes in ecotones is of great importance for assessment of ecosystem functions/

services and policy-decision support. Decadal or sub-decadal mapping of LULC provides

scenarios for modeling biogeochemical processes and their feedbacks to climate, and eval-

uating effectiveness of land-use policies, e.g. forest conversion. However, it remains a

great challenge to produce reliable LULC maps in moderate resolution and to evaluate their

uncertainties over large areas with complex landscapes. In this study we developed a

robust LULC classification system using multiple classifiers based on MODIS (Moderate

Resolution Imaging Spectroradiometer) data and posterior data fusion. Not only does the

system create LULC maps with high statistical accuracy, but also it provides pixel-level

uncertainties that are essential for subsequent analyses and applications. We applied the

classification system to the Agro-pasture transition band in northern China (APTBNC) to

detect the decadal changes in LULC during 2003–2013 and evaluated the effectiveness of

the implementation of major Key Forestry Programs (KFPs). In our study, the random forest

(RF), support vector machine (SVM), and weighted k-nearest neighbors (WKNN) classifiers

outperformed the artificial neural networks (ANN) and naive Bayes (NB) in terms of high

classification accuracy and low sensitivity to training sample size. The Bayesian-average

data fusion based on the results of RF, SVM, and WKNN achieved the 87.5% Kappa statis-

tics, higher than any individual classifiers and the majority-vote integration. The pixel-level

uncertainty map agreed with the traditional accuracy assessment. However, it conveys spa-

tial variation of uncertainty. Specifically, it pinpoints the southwestern area of APTBNC has

higher uncertainty than other part of the region, and the open shrubland is likely to be mis-

classified to the bare ground in some locations. Forests, closed shrublands, and grasslands

in APTBNC expanded by 23%, 50%, and 9%, respectively, during 2003–2013. The expan-

sion of these land cover types is compensated with the shrinkages in croplands (20%), bare

ground (15%), and open shrublands (30%). The significant decline in agricultural lands is

primarily attributed to the KFPs implemented in the end of last century and the nationwide

urbanization in recent decade. The increased coverage of grass and woody plants would
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largely reduce soil erosion, improve mitigation of climate change, and enhance carbon

sequestration in this region.

Introduction
Complex human-nature interactions altered global environments [1,2]. Among these interac-
tions, land use and land cover (LULC) changes significantly [3,4,5], which has important impli-
cations on global hydrological and biogeochemical cycles, biodiversity, ecosystem services, and
disturbance regimes [6,7,8,9,10].

Prompt and reliable mapping of LULC [11,12,13,14] is essential in the continuous monitor-
ing of land use and land cover change (LULCC) through time, such as forest transition and
urban sprawl [4,15,16]. It also provides time series of LULC scenarios for subsequent modeling
of biogeochemical and hydrological processes [17,18,19], assessment of ecosystem services
[7,9,20,21], and simulation of LULCC feedbacks to regional climate [22].

Remote sensing images with various spectral and spatiotemporal resolutions have become
easy to access, especially in the past 10 years, and have been the most important data sources
for mapping LULCC due to their spatially continuous information of land surface and high
consistence across a range of spatiotemporal scales [12,15]. On the other hand, various classifi-
ers, such as random forest (RF), support vector machine (SVM), and weighted k-nearest neigh-
bors (WKNN), have been applied to detect LULCC across scales from local to globe for various
themes, such us urbanization, agricultural abandonment, and forest conversion
[15,23,24,25,26].

The random forest classifier uses training data set with multiple feature variables to ‘grow’
designated number of trees, each of which defines the classes from a randomly selected subset
of feature variables. Application of the classifier is determined by the proportion of votes by
these trees so that the class with greatest voting proportion is determined [27]. Unlike RF, sup-
ported vector machine classifier seeks to construct hyperplanes in the feature space so that the
distance between classes can be maximized [28]. Compared to RF and SVM, weighed k-nearest
neighbors determines the class by the relative frequency of the training data set within a desig-
nated number of nearest neighbors k. These classifiers have their own strengths in dealing with
multidimensional remote sensing data, nonlinearity between spectral bands, and specific
LULC types, therefore, may provide complementary information in mapping LULCC.

There are always error and uncertainty involved in mapping LULC based on remote sensing
images. The source of error and uncertainty might include inadequate representation of LULC
classes in the training data, insufficient predictor variables, overlapping of spectral characteris-
tics among LULC classes, and weakness of classifiers [24,29]. Although high accuracy of classi-
fication has been achieved in many LULC mapping studies, few of them provides in-depth
uncertainty information, for example, spatial variation in uncertainty or pixel-level uncer-
tainty. The detailed uncertainty information is essential for application and analysis of the
mapped LULC, and is especially important for large area with great spatial heterogeneity of
land use, such as ecotones.

As an ecotone supporting tens of million population, the Agro-pasture transition band in
northern China (APTBNC) has experienced significant historical and recent environmental
changes, such as severe soil erosion, grassland degradation, desertification, and biodiversity
loss [30,31,32,33]. Irrational land use, e.g. intensive farming in areas with inappropriate geo-
morphological, climatic, and soil conditions and livestock overgrazing, is believed to be the
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primary causes for the ecosystem deterioration [34,35]. The great environmental gradient in
ecotones implies the ecosystems and land use are sensitive to shift in climate, and frequent
change in land use has been documented in history [36]. The frequent changes in LULC, and
the great spatial gradients created the complex landscapes and the challenge in mapping
LULCC in APTBNC, hence necessitate robust strategy to reliable LULC maps.

Since 1998, the Chinese government has implemented a series of policies and programs to
restore ecosystems and to improve environmental protection. One of them is the “Grain for
Green” program [35,37] that calls for converting previously irrationally allocated croplands to
forest, shrublands, and grasslands. The effectiveness of these policies and programs deserve
objective and quantitative evaluation, so that the concurrent policies and regulations can be
correctly adjusted and new ones can be precisely directed.

The objectives of this study are: a) to develop a robust strategy to produce reliable LULC
maps for ecotones such as APTBNC based on multiple classifiers and posterior data fusion; b)
to provide pixel-level uncertainty to assess spatial variations in classification accuracy; and c)
to detect the LULCC in 2003–2013 and evaluate the effectiveness of the land use policies imple-
mented in APTBNC.

Methodology

Study area
The Agro-pasture transition band in northern China (APTBNC, ranging over 34.7°-48.6°N
and 100.8°-124.8°E with elevation varying from 42 to 4911 m, Fig 1) is an interlaced zone
changing from agricultural cultivation in the middle and the southeast to livestock grazing in
the northwest [13,32]. With the total area of 724,766 km2, APTBNC supports 67 million people
in 205 counties across 10 provinces [38]. The climate varies from monsoon climate in the
southeast to continental climate in the northwest, resulting a sharp moisture gradient from
semi-humid climate with mean annual precipitation (MAP) of 580 mm to semiarid climate
with MAP less than 200 mm. Annual mean temperature decreases from 14°C in the south to
less than -1°C in the north (1959–2001) [38]. Mostly driven by the patterns of moisture and
temperature, large proportions of shrubs and grasses are distributed in the northwest and
deciduous broadleaved forests are in the southeast and the north. Agricultural lands lie in the
middle and the southeast.

Datasets for classification
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board the Terra
and the Aqua platforms provide reflectance information across wavelengths of 0.4–14.4 μm for
monitoring LULCC at the spatial resolution of 250 m– 1 km (http://modis-land.gsfc.nasa.gov/
). In this study, the MODIS reflectances and Vegetation Indices (VIs), as well as the phenologi-
cal parameters derived from the MODIS data, were used as the main data source to map the
LULC. We also included topographic information, such as elevation, slope, and aspect, as aux-
iliary data due to their important roles in vegetation distribution.

Specifically we used the MODIS VI product (MOD13Q1, Collection 5) which includes Nor-
malized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), blue, red,
near infrared (NIR), mid-infrared (MIR) reflectances, and pixel quality assurance (QA)
[39,40]. NDVI is derived from the reflectance at red and NIR bands, while EVI further incorpo-
rates the reflectance at blue band to correct for residual aerosol effects and also aims to improve
its sensitivity to high biomass [39]. The gridded level-3 product of the datasets has the time
interval of 16 days and the spatial resolution of about 250 m. Our study area of APTBNC is
covered by the MODIS tiles of H26V04, H26V05, H27V04, and H27V05 (Fig 1). We calculated
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the growing-season statistics of mean, standard deviation, minimum, maximum, and range of
the reflectances and VIs and used them as predicates for further classification.

We then extracted phenological metrics from the time series of MODIS EVI with the aid of
the free software TIMESAT (version 3.1) [41,42]. TIMESAT applies various smoothing func-
tions, e.g. polynomial, harmonic, or asymmetric Gaussian functions, to approximate upper-
envelop seasonal changes imbedded in the satellite VI series, and therefore to reduce the influ-
ence of signal noise in the raw data on phenology pattern. By incorporating VI and QA series
of a target year and adjacent years, the program will apply QA-adjusted weights and derive
phenological parameters in the growing season of the target year. Among the TIMESAT
derived parameters, we used the starting date, mid-season date, growing season length, base,
peak, and amplitude of VI, rates of increase at the beginning and decrease at the end of a sea-
son, and seasonal integrals of VI for further classification analyses [42]. The QA-adjusted
weights are full weight for QA = 0 (good), half weight for QA = 1–2 (marginal), and minimal
weight of 0.1 for QA = 3 (with clouds).

We used the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) at
the spatial resolution of about 90 m, with missing data filled by the Consultative Group for
International Agriculture Research (CGIAR, SRTM 90m DEM Version 4, http://www.srtm.csi.
cgiar.org) [43]. The datasets of DEM and derived slope and aspect were projected and resam-
pled to match the MODIS-derived datasets using a bilinear interpolation method.

Fig 1. Location of the Agro-pasture transition band in northern China (colored according to the
elevation legend). The grids overlaid are the corresponding MODIS tiles (e.g. h26v05).

doi:10.1371/journal.pone.0142113.g001
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Classification scheme and ground reference data collection
Based on our previous studies in this region we chose: urban area (URBN), agricultural land
(AGRI), deciduous broad-leaved (DBLF) and evergreen needle-leaved forests (ENLF), open
(OPSH) and closed shrublands (CLSH), grassland (GRAS), bare ground (BARE), and water
(WATR), as the LULC classes to be recognized by our classification system [12,38,44].

We applied a holistic strategy to collect ground reference data, which includes the historical
vegetation maps, the Google Earth high-resolution imageries (http://www.earth.google.com),
Flora of China (http://www.eflora.cn/), and the field observations. First we used stratified ran-
dom sampling to create random points in each vegetation zone based on the vegetation maps
at 1:1,000,000 scales [45]. We then discarded those points that do not have high-resolution
images available at Google Earth. By overlaying the MODIS grids, we further removed those
points that fall into spatial heterogeneous areas in the target and immediate neighborhood
MODIS grids. Based on the high-resolution Google Earth images and the distribution informa-
tion of dominant species available at Flora of China, we identified ground LULC types for the
remaining points according to the visual interpretation schema in literature [25,46,47,48,49].
Ground observations include those available at the field stations of Chinese Ecological
Research Network (www.cern.ac.cn). This type of ground reference data collection is suitable
for MODIS datasets at the regional scale [25].

Data mining approach and framework
The framework includes three parts (Fig 2): 1) Classification using five commonly-used classi-
fiers, which are artificial neural network (ANN) [50,51], weighted k-nearest neighbors
(WKNN) [52,53], naive Bayes (NB) [54,55], Random Forest (RF) [11,25,27,56,57,58,59], and
support vector machine (SVM) [28,54,60,61]; 2) Integrated classification based on the results
and corresponding uncertainty analysis; 3) LULCC analysis. The classification was carried out
by using the packages of nnet, e1071, randomForest, and kknn of the open source statistical
software R v. 3.1.1 [62]. We set up the parameters of each classifier by using tuning functions
to achieve good performance [63,64]. Details of the parameters of five classifiers used were
listed in S1 Table.

Classification and comparison of five classifiers. We first extracted the abovementioned
statistics of reflectances and VIs, phenological parameters, and topographical information for
the sampled points, which consist of 1,947 points of AGRI, 652 of GRAS, 997 of CLSH, 267 of
OPSH, 653 of DBLF, 186 of ENLF, 548 of URBN, 248 of BARE, and 148 of WATR. Then we
randomly split the sampled data into two datasets, training (70% of points per LULC class) and
testing (30% per class). For each of the five classifiers, we used three different combinations of
variables for the training data as inputs: C1, growing-season statistics of reflectances (blue, red,
NIR, and MIR) and VIs (NDVI and EVI), and topographical information (elevation, slope,
and aspect); C2, phenological parameters and topographical information; and C3, growing-
season statistics of reflectances and VIs, phenological parameters, and topographical informa-
tion. Therefore, we have 15 resultant models (5 classifiers X 3 input combinations). We then
quantified classification accuracy on the test data using overall classification accuracy, produc-
er’s accuracy, user’s accuracy, and Kappa statistics.

In addition to accuracy, robustness is another key point in comparing classifiers. We ana-
lyzed the sensitivity of each classifier to the sample size of training dataset via the following
strategy: 1) we created ten training subsets with 10% to 100% of the samples per class randomly
selected from the training data, in 10% increments; 2) for each of the 10 training subsets, we
trained the five classifiers to derive five models; 3) we evaluated the accuracy of the 50 models
(10 for each classifier corresponding to different training sample size) using the independent
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testing data; 4) we repeated the steps of 1) to 3) for 50 times, so that for each classifier and each
sample size, we have 50 replicates. We then selected three out of the five classifiers based on
high accuracy and robustness to sample size.

Integration of classifiers through Majority-vote and Bayesian-average data fusion meth-
ods. We further integrated the three best models based on the three classifiers selected in Part
I and the full training dataset, via Majority-vote and Bayesian-average data fusion methods.
Classifiers differ in learning algorithm and feature extraction, and can provide complementary
information in classification. Therefore, data fusion of the results from multiple classifiers
could potentially improve accuracy, effectiveness, and robustness in image classification, com-
pared to individual classifiers [65]. The Majority-vote method is a simple data fusion based on
hard classification and the class is defined by the one voted by the majority of multiple classifi-
ers, i.e., at least 2 classifiers voted for the LULC class. The Bayesian average method is based on
soft classification which takes the linear average of probabilities of multiple classifiers for each

Fig 2. The scheme of data mining procedures for LULC classification. (PA, producer’s accuracy; UA,
user’s accuracy; OA, overall accuracy; KC, Kappa coefficient; LC, land cover; CMP, class membership
probability; and PRO, probability).

doi:10.1371/journal.pone.0142113.g002
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class (Eq 1). The final class is determined by the one having the highest average probability (Eq
2).

PðX 2 CiÞ ¼
1

K

XK

k¼1

PkðX 2 CiÞ; i ¼ 1; � � � ;M ð1Þ

LðXÞ ¼ arg max
i¼1;...::;M

ðPðX 2 CiÞÞ ð2Þ

where, Pk(X 2 Ci) is the probability belonging to class i determined by the kth classifier for pixel
X;M and K are the total numbers of classes and classifiers, respectively; and L(X) is the final
class for pixel X [65]. In this study, K = 3 andM = 9.

We evaluate the performance of the Majority-vote and the Bayesian-average integration
methods by quantifying their classification accuracies on the testing data. For Bayesian-average
integration, we also investigated the relationship between the integrated class membership
probability and the classification accuracy for each class.

Finally we applied the integrated models to the entire APTBNC to obtain the LULC maps
and corresponding class membership probability maps in 2013. For the Majority-vote integra-
tion, we evaluated its uncertainty by calculating the number of votes for each pixel. Number 3
indicates the consensus of all three classifiers, while number 1 indicates no common vote (large
uncertainty). We further analyzed the uncertainties of the pixels with number 1 by calculating
the proportions of LULC classes voted by each of the three classifiers, compared to their overall
proportions in the study area, which will allow us to figure out the LULC types that are easily
misclassified in this area. For the Bayesian-average integration, we evaluated its uncertainty
through the corresponding class membership probability map. For the low-probability pixels
indicating large uncertainty, we analyzed again the proportions of LULC classes versus their
overall proportions in the study area, and compared with the corresponding results for the
Majority-vote integration.

LULC changes in APTBNC between 2003 and 2013. To detect the decadal changes in
LULC, we applied the Bayesian-average integrated classification based on RF, SVM, and
WKNN for the years of 2003 and 2013. We then analyzed the decadal trend in each LULC
type. We overlaid the two LULC maps to detect the changes in both location and extent. Finally
we evaluated the conversions between different LULC types using the conversion matrix.

Results

Classification using five individual classifiers
Classification accuracy. The overall accuracies and Kappa statistics clearly showed that

RF, SVM, and WKNN outperformed ANN and NB for any of the three input datasets
(Table 1). Among the three input datasets, RF, SVM, and WKNN all achieved the highest over-
all accuracies with the input dataset C3 including the reflectances, VIs, phenology, and topo-
graphic information. The Kappa statistics for RF, SVM, and WKNN were 84.4%, 86.7%, and
85.5%, respectively, substantially higher than those obtained from the ANN (77.2%) and the
NB (61.6%) classifiers for the input dataset C3. Therefore, we chose the RF, SVM, andWKNN
classifiers and the input dataset C3 for further classification.

For RF, SVM, and WKNN classifiers, the classification accuracies are high for forest, closed
shrubland, grassland, agricultural land, urban area, and water, but relatively low for open
shrubland and bare ground (Table 2). The two forest classes, agricultural land, and urban area
have larger than 90% producer’s accuracies for any of the three classifiers. The omission error
of grassland is about 14±1.8%, due to similar spectral characteristics among dense grass, crops,
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and closed shrubs. The omission error of closed shrubland is 13.6±3.0%, mainly because of the
misclassification as grassland, open shrubland, deciduous forest, or cropland. Bare ground with
67.6±2.7% accuracy is sometimes confused with open shrubland. The class of open shrubland
has the lowest accuracy and tends to be misrecognized as the closed shrubland or the bare
ground.

Sensitivity of classification accuracy to training sample size. The overall accuracies and
Kappa statistics improved with the increase in training sample size (Fig 3). For a small sample
size (i.e. 10% of training samples per class), the overall accuracies (Fig 3A) for RF, SVM, and
WKNN were more than 79%, substantially higher than those of ANN (64%) and NB (68%).
While the accuracies of RF, SVM, and WKNN increase with the sample size, their standard
deviations decrease (Fig 3C and 3D). The differences of overall accuracies and Kappa statistics
among RF, SVM, andWKNN become decreasing when the sample size increases from 10% to
40%, and then become increasing when from 50% to 100%.

The classification accuracies for RF, SVM, and WKNN are consistently greater than those
of NB and ANN, and less sensitive to training sample size than ANN (Fig 3A and 3B), The
overall accuracies for RF, SVM, and WKNN change less than 10% when the training sample
size changes from 10 to 100% of training dataset. Moreover, it only causes a slightly lower over-
all accuracy of the three classifiers by 2±0.6%, compared to the maximums of the curves, when
using 50 to 90% of training dataset. The overall accuracy and Kappa statistics for NB stay very
low and are not sensitive to the sample size. NB assumes strong independent assumption of the
feature variables so that only a small training sample size is needed to represent the feature
space [66]. In reality, the multispectral variables are seldom independent. The low accuracy of
ANNmight be a result of inadequate size of the network.

Integrated LULCmapping and uncertainty analysis
Majority-vote integrated LULC map and uncertainty analysis. The Majority-vote inte-

grated classification improved the producer’s accuracy (Table 3) of agricultural land compared
to all the three individual classifiers, and those of two forest classes, grassland, and urban area

Table 1. Classification accuracies of five classifiers with three input datasets. (UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy;
C1, the growing-season statistics of reflectances, VIs and topographic variables; C2, phenology metrics and topographic variables; and C3, the combination
of C1 and C2).

Input dataset Classifier Average UA (%) Average PA (%) OA (%) Kappa (%)

C1 ANN 81.4 79.1 83.5 79.5

NB 65.0 68.9 68.1 61.4

RF 85.6 82.2 86.6 83.3

SVM 86.9 84.3 88.2 85.3

WKNN 86.7 83.8 87.4 84.3

C2 ANN 68.6 67.3 74.1 67.3

NB 63.9 58.4 64.5 56.9

RF 85.0 79.3 85.5 81.9

SVM 83.3 79.9 84.6 80.8

WKNN 82.2 78.0 83.3 79.2

C3 ANN 76.8 75.6 81.8 77.2

NB 65.8 69.8 68.2 61.6

RF 86.5 83.2 87.5 84.4

SVM 87.2 84.9 89.3 86.7

WKNN 87.2 83.9 88.3 85.5

doi:10.1371/journal.pone.0142113.t001
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compared to two out of the three classifiers (Table 2). However, it did not for the bare ground
and the open shrubland. The overall accuracy and Kappa statistics are higher than those of RF
andWKNN, and close to those of SVM.

We applied the Majority-vote integrated classification to the whole study area of APTBNC
for the year of 2013 (Fig 4A). The uncertainty of the resultant LULC map was assessed using
the number of votes for the labeled class for each pixel (Fig 4B). About 69% of the region is
labeled as 3, which indicates the overall consensus from all the three classifiers. About 28% of

Table 2. Confusion matrix for the classifiers of RF, SVM, andWKNN using the input dataset with all the predictor variables (UA, user’s accuracy;
PA, producer’s accuracy; OA, overall accuracy; Kappa, Kappa statistics).

Reference

AGRI BARE CLSH DBLF ENLF GRAS OPSH URBN WATR UA

RF

AGRI 548 5 10 0 0 19 9 2 0 92.4%

BARE 0 52 3 0 0 0 8 0 1 81.3%

CLSH 5 3 248 6 0 11 22 7 0 82.1%

DBLF 0 0 10 184 1 0 0 0 0 94.4%

ENLF 0 0 1 0 55 0 0 0 0 98.2%

GRAS 26 3 17 0 0 159 4 4 1 74.3%

OPSH 0 9 9 0 0 0 35 0 0 66.0%

URBN 4 2 1 0 0 0 2 151 4 92.1%

WATR 1 0 0 0 0 0 0 0 38 97.4%

PA 93.8% 70.3% 82.9% 96.8% 98.2% 84.1% 43.8% 92.1% 86.4%

Average PA = 83.2%, Average UA = 86.5%, OA = 87.5%, Kappa = 84.4%

SVM

AGRI 555 4 8 0 0 15 6 6 0 93.4%

BARE 2 48 1 0 0 0 10 0 1 77.4%

CLSH 3 5 264 11 0 7 17 3 1 84.9%

DBLF 0 0 6 178 0 0 0 0 0 96.7%

ENLF 0 0 1 0 55 0 0 0 0 98.2%

GRAS 18 4 11 1 0 166 6 2 1 79.4%

OPSH 1 11 6 0 0 1 40 0 0 67.8%

URBN 4 1 1 0 0 0 1 153 0 95.6%

WATR 1 1 1 0 1 0 0 0 41 91.1%

PA 95.0% 64.9% 88.3% 93.7% 98.2% 87.8% 50.0% 93.3% 93.2%

Average PA = 84.9%, Average UA = 87.2%, OA = 89.3%, Kappa = 86.7%

WKNN

AGRI 547 3 5 0 0 11 7 5 0 94.6%

BARE 2 50 3 0 0 0 10 0 0 76.9%

CLSH 12 6 263 11 0 16 16 7 4 78.5%

DBLF 0 0 7 179 0 1 0 0 0 95.7%

ENLF 0 0 0 0 56 0 0 0 0 100%

GRAS 19 1 11 0 0 161 4 3 1 80.5%

OPSH 1 12 9 0 0 0 43 0 0 66.2%

URBN 2 2 1 0 0 0 0 149 3 94.9%

WATR 1 0 0 0 0 0 0 0 36 97.3%

PA 93.7% 67.6% 88.0% 94.2% 100% 85.2% 53.8% 90.9% 81.8%

Average PA = 83.9%, Average UA = 87.2%, OA = 88.3%, Kappa = 85.5%

doi:10.1371/journal.pone.0142113.t002
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the region receives the same vote from 2 out of the 3 classifiers. Only less than 3% of the region
could not reach any common vote, which is left as unclassified.

The unclassified pixels are mainly located in the southwest (Fig 4B), where agricultural
lands, grasslands, and shrublands are interwoven (Fig 4A and Table 4). The ratio of proportion
in unclassified pixels to its corresponding proportion in APTBNC for each class voted by the
three classifiers can be used to detect those classes difficult to be recognized, i.e. those with the
ratio much higher than 1. The classes of bare ground, open shrubland, urban area, and water
have such ratios higher than 3, and therefore are difficult to identify in this area.

Bayesian-average integrated LULC map and uncertainty analysis. The Bayesian-average
integrated classification greatly improved the producer’s accuracies compared to the three indi-
vidual classifiers and the Majority-vote integration, especially for the classes of bare ground
(72% versus 66% for Majority-vote) and grassland (Tables 2 and 3). The exception is for open
shrubland, which is still largely confused with closed shrubland or bare ground. The overall
accuracy and Kappa statistics achieve the highest of 89.9% and 87.5%, respectively.

The mean of integrated class membership probability for each class has statistically signifi-
cant correlations with the corresponding classification accuracies, i.e. with correlation coeffi-
cients of 0.94 for producer’s accuracy and 0.98 for user’s accuracy (Fig 5).

Fig 3. The overall accuracies (left panels) and Kappa statistics (right panels) for the five classifiers using variable training sample size. (dot,
average accuracy statistics of the 50 random samples; error bar, one standard deviation away from the average; two figures below, zoomed from a and b,
respectively, to highlight the trends for the RF, SVM, andWKNN).

doi:10.1371/journal.pone.0142113.g003
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We also applied the Bayesian-average integrated classification to APTBNC for the year of
2013 and evaluated the uncertainty of the map (Fig 4C and 4D). The method exploits the
advantages of soft classification technique, especially in complex landscapes. The membership
probability is larger than 0.5 for about 80% of the region. Only about 7.6% of the region has the
probability lower than 0.4, which is mainly in the southwest (Fig 4D) and coincident with the
unclassified pixels identified by the Majority-vote integration (Fig 4B). The high ratio of pro-
portion in low membership probability area to its corresponding proportion in APTBNC for
each class (Table 4) also points out that the bare ground and the open shrubland are hard to
separate in this area.

Decadal changes in LULC of APTBNC between 2003 and 2013
To detect the decadal changes in LULC, we applied the Bayesian-average integrated classifica-
tion based on RF, SVM, and WKNN to the year of 2003 (Fig 6A) and evaluated the changes by
comparing the map of 2003 to that of 2013 (Fig 4C). During this decade, closed shrubland and
forests experienced significant expansions with 50% and 23% increase, respectively (Fig 6B).
Grassland also expanded 9% in this period. With the expansions of closed shrubland, forests,
and grassland, agricultural land shrank 20%, open shrubland decreased 30%, and bare ground
reduced 15%.

Table 3. Confusion matrix for the Majority-vote and the Bayesian-average integrated classifications based on the classifiers of RF, SVM, and
WKNN. (UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy; Kappa, Kappa statistics; UNCE, unclassified).

Reference

AGRI BARE CLSH DBLF ENLF GRAS OPSH URBN WATR UA

Hard Integration using Majority vote

AGRI 558 2 8 0 0 11 8 4 0 94%

BARE 1 49 2 0 0 0 11 0 0 78%

CLSH 5 3 262 8 0 10 19 5 2 83%

DBLF 0 0 7 182 0 0 0 0 0 96%

ENLF 0 0 1 0 56 0 0 0 0 98%

GRAS 14 2 11 0 0 164 2 2 1 84%

OPSH 0 12 6 0 0 0 37 0 0 67%

URBN 3 1 0 0 0 0 0 152 1 97%

WATR 1 0 0 0 0 0 0 0 38 97%

UNCE 2 5 2 0 0 4 3 1 2

PA 96% 66% 88% 96% 100% 87% 46% 93% 86%

Average PA = 84.1%, Average UA = 88.4%, OA = 89.2%, Kappa = 86.5%

Soft Integration using Bayesian average

AGRI 556 3 5 0 0 9 7 6 0 95%

BARE 1 53 3 0 0 0 11 0 0 78%

CLSH 3 2 265 8 0 11 20 3 2 84%

DBLF 0 0 7 182 0 0 0 0 0 96%

ENLF 0 0 0 0 56 0 0 0 0 100%

GRAS 17 3 9 0 0 169 5 2 1 82%

OPSH 1 11 9 0 0 0 37 0 0 64%

URBN 5 2 1 0 0 0 0 153 1 94%

WATR 1 0 0 0 0 0 0 0 40 98%

PA 95% 72% 89% 96% 100% 89% 46% 93% 91%

Average PA = 85.7%, Average UA = 87.9%, OA = 89.9%, Kappa = 87.5%

doi:10.1371/journal.pone.0142113.t003
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The conversions between different LULC types in 2003–2013 revealed the details on the fact
that the increases in closed shrubland, forest, and grassland are mainly from the decline in agri-
cultural land (the major contributor), as well as the decrease in open shrubland and bare
ground (Table 5). The net changes from AGRI are 34,971 into CLSH, 26,007 into GRAS, 2,825
into forest, 4,196 into bare ground, and 2,195 km2 into open shrubland. Open shrubland was
mainly changed into closed shrubland (8,505 km2) and grassland (1,749 km2), but also received
a net gain of 2,195 km2 from the abandoned agriculture. Bare ground was converted to closed
shrubland (4,507 km2) and grassland (1,344 km2). In addition to the land converted from
abandoned agriculture (2,825 km2), there are also a net of 7,195 of closed shrubland and a net
of 4,392 km2 of grassland changed into forest through succession in this period. Meanwhile,
there is a net of 13,617 km2 of grassland changed into closed shrubland, possibly also via
succession.

Fig 4. LULCmaps in 2013 and their uncertainties using the Majority-vote integration (a & b) and the Bayesian-average integration (c & d) based on
the RF, SVM, andWKNN classifiers. AGRI, agricultural land; BARE, bare ground; CLSH, closed shrubland; DBLF, deciduous broadleaved forest; ENLF,
evergreen needle leaved forest; GRAS, grassland; OPSH, open shrubland; URBN, urban area; WATR, water; UNCE, unclassified; the legend of b, 3
indicates consensus vote from all 3 classifiers, 2 indicates 2 out of 3 classifiers having the same vote, and 1 indicates no common vote; the legend of d, class
membership probability.

doi:10.1371/journal.pone.0142113.g004
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Discussion
With rapid progress in remote sensing techniques, LULC products derived from mid-to-high
resolution satellite imageries, such as MODIS and Landsat TM/ETM, have largely increased
and thus provided key information in continuous monitoring of LULCC, modeling biogeo-
chemical and hydrologic processes, simulating feedbacks to regional climate, and assessing
impacts on biodiversity and ecosystem services. However, it is still a great challenge to produce
accurate and reliable LULC maps over large areas with proper quality assessment, especially
for those areas with complex landscapes. Feature variables and their spatiotemporal resolutions
may be inadequate to discern the pattern and texture among the classes. And the uncertainty
in the classification has to be explicitly analyzed before the classification result can be applied.
Analysis with multiple classifiers has been proved more effective [65] than studies with individ-
ual classifies such as the applications of RF and SVM by Clark et al. [25] and Shao and Lunetta
[67]. In this paper, we presented a robust LULC classification scheme by integrating multiple
classifiers with posterior data fusion, which not only produces multiyear LULC maps with high
accuracy, but also provides pixel-level uncertainties for further analyses.

Table 4. Uncertainty analyses for the LULCmaps of APTBNC in 2013 using the Majority-vote integration and the Bayesian-average integration.
Numbers are proportions among unclassified pixels of Majority-vote integration or proportions among low membership probability pixels of Bayesian-average
integration for each class; The ratio of the above proportion to its corresponding proportion in APTBNC is in the parenthesis; AGRI, agricultural land; BARE,
bare ground; CLSH, closed shrubland; DBLF, deciduous broadleaved forest; ENLF, evergreen needle-leaved forest; GRAS, grassland; OPSH, open shrub-
land; URBN: urban area; WATR, water; and PRO, probability membership.

AGRI BARE CLSH DBLF ENLF GRAS OPSH URBN WATR

unclassified pixels

RF 28 (0.7) 3 (1.8) 19 (0.8) 3 (0.3) 1.6 (2.9) 41 (2.1) 3 (1.4) 2 (2.2) 0.1 (0.2)

SVM 33 (0.8) 7 (4.4) 15 (0.6) 5 (0.5) 0.7 (1.2) 16 (0.8) 13 (6.1) 6 (6.3) 5.5 (8.9)

WKNN 10 (0.3) 7 (4.7) 38 (1.6) 5 (0.5) 0.5 (0.9) 18 (1.0) 17 (8.0) 4 (3.9) 0.2 (0.3)

Mean 24 (0.6) 6 (3.6) 24 (1.0) 4 (0.4) 0.9 (1.7) 25 (1.3) 11 (5.2) 4 (4.1) 1.9 (3.1)

low membership probability pixels

PRO < = 0.3 20 (0.5) 9 (4.8) 23 (1.0) 2 (0.2) 0.5 (0.8) 22 (1.1) 14 (5.8) 6 (4.7) 3.9 (6.0)

PRO < = 0.4 22 (0.5) 7 (4.0) 27 (1.1) 3 (0.3) 0.6 (0.9) 25 (1.3) 10 (4.1) 4 (2.8) 1.6 (2.4)

doi:10.1371/journal.pone.0142113.t004

Fig 5. Themeans of integrated class membership probability (CMP) versus the classification
accuracies (a. producer’s accuracy and b. user’s accuracy) for each LULC class. A, agricultural land; B,
bare ground; C, closed shrubland; D, deciduous broadleaved forest; E, evergreen needle-leaved forest; G,
grassland; O, open shrubland; U, urban area; andW, water.

doi:10.1371/journal.pone.0142113.g005
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Landsat TM/ETM+ spectral data, with finer spatial resolution than MODIS, are frequently
adopted for LULC mapping in regional and recently global scales [68,69]. Although TM/ETM
data provide more detailed spatial information, their low temporal resolution limits accurate
LULC mapping, especially in time, due to cloud contamination, snow, lacking of images in
appropriate season, etc. In our study, the higher temporal resolution of MODIS data is used to
derive temporal-related features, such as growing-season statistics and phenology parameters,
and thus to improve classification accuracy. In addition, high-frequency LULC maps benefit
the investigation of abrupt and gradual LULC changes and provide complete perspective of
LULCC dynamics, which is the key to evaluate the effectiveness of land use policies.

Integrated data fusion methods in LULC classification and uncertainty
analyses
We chose five common-used classifiers, of which RF, SVM, andWKNN achieved the highest
accuracies and are robust to the changes in training sample size. We also compared the overall
accuracy among three combinations of input variables. The overall accuracies and Kappa

Fig 6. LULCmap in 2003 using the Bayesian-average integrated classification (a) and distribution areas in 2003 and 2013 for each LULC type (b).
AGRI, agricultural land; BARE, bare ground; CLSH, closed shrubland; DBLF, deciduous broadleaved forest; ENLF, evergreen needle-leaved forest; GRAS,
grassland; and OPSH, open shrubland.

doi:10.1371/journal.pone.0142113.g006

Table 5. Land conversionmatrix between 2003 and 2013 (km2). AGRI, agricultural land; BARE, bare ground; CLSH, closed shrubland; DBLF, deciduous
broadleaved forest; ENLF, evergreen needle-leaved forest; GRAS, grassland; and OPSH, open shrub.

2013

2003 AGRI BARE CLSH DBLF ENLF GRAS OPSH

AGRI 236,821 6,421 43,901 2,583 592 60,392 4,870

BARE 2,225 4,670 4,810 0 0 1,824 2,219

CLSH 8,930 303 73,201 12,497 997 16,079 2,289

DBLF 336 0.1 5,985 50,959 535 1,098 0.8

ENLF 14 0 314 736 1,897 10 0.2

GRAS 34,385 479 29,696 5,219 281 56,823 1,469

OPSH 2,674 1,671 10,794 2 11 3,218 6,296

doi:10.1371/journal.pone.0142113.t005
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statistics improved when we add phenological parameters to the input dataset. The phenology
information might help distinguish LULC types when phenology parameters are more distinc-
tive among the LULC classes than within the LULC classes, e.g. evergreen versus deciduous
[25].

In our study, the Bayesian-average integration achieved the highest accuracy than the indi-
vidual classifiers and the Majority-vote integration. Beyond the advantage in high accuracy, its
uncertainty map (Fig 4D) also conveys important information on pixel-level quality assess-
ment, spatial variation in uncertainty, and key areas/LULC types for further analysis (Table 4).

LULC classification in large areas with mid-resolution can raise great challenges in quality
assessment partly due to the fact that the sample points are mostly from spatially homogeneous
areas, but there may exist some spatially heterogeneous pixels, i.e. mixed pixels, in reality
[25,70]. Therefore, there may exist considerable spatial variation in uncertainty when applying
to a large area. The pixel-level uncertainty map indexed by class membership probability,
derived from the Bayesian-average data fusion, produces a means of assessing spatial variation
in uncertainty. The high correlation (> 0.9, Fig 5) between the summarized membership prob-
ability and the PA’s or UA’s accuracy indicates that the pixel-level uncertainty map is in agree-
ment with the traditional accuracy assessment.

The uncertainty map pinpoints the areas with high uncertainty in LULC mapping and
allows us to determine the LULC types that are difficult to be distinguished. In this study, the
southwestern area of APTBNC showed up with great uncertainty (Fig 4D), and the open
shrubland is easily confused with the bare ground (Table 4). Special care should be taken for
area with uncertainty when applying the classification results. Further recognition analysis
may be prescribed for the uncertainty areas. Possible solutions may include building a synergy
of MODIS with high resolution imagery (e.g. Landsat TM/ETM) or combining optical imagery
with SAR (Synthetic Aperture Radar) and LiDAR (Light Detection and Ranging) imagers
which can give a vertical domain observation to build 3-D land surface (e.g. the SAR data from
the Advanced Land Observing Satellite and Sentinel 1).

Multi-year LULC mapping is very important for the study of LULCC. However, it is prone
to uncertainty when extrapolation to years without many training sample points derived from
high-resolution images. Therefore, it is necessary to assess how reliable the LULC mapping is
for multiple years. The pixel-level uncertainty map, explicitly derived from the Bayesian-aver-
age data fusion, meets such needs in multi-year LULC mapping. For instance, we applied the
Bayesian-average data fusion in the LULC mapping of APTBNC for the years of 2003, 2008,
and 2013. The histogram of class membership probability by our classification system (Fig 7)
showed that most of the values are greater than 0.95 for the three years, thus having low uncer-
tainty. The probabilities are higher for the years of 2008 and 2013, but a slightly lower for 2003,
the year having the least samples. Hence we can check the robustness of the multi-year LULC
mapping and assess the pixel-level reliability for each year using the uncertainty maps derived
from the Bayesian-average data fusion.

Policy change led to agricultural abandonment and woodland regrowth/
expansion
During 2003–2013, forests, closed shrublands, and grasslands all expanded in APTBNC with
the shrinkages in croplands, bare ground, and open shrublands (Fig 6B). The general trends
align with other small-scale studies in this region during the similar time period [13]. The sig-
nificant decline in agricultural lands and expansion in forests, closed shrublands, and grass-
lands can be attributed to the national policy change aiming environmental protection, such as
the implementation of six Key Forestry Programs (KFPs) on reforestation and ecological
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restoration [71]. APTBNC was covered by such programs due to its fragile and deteriorating
ecosystems (Fig 8). The “Grain for Green” program, covering 99.5% of APTBNC, was imple-
mented by Chinese central government in 1999 [13,37,72,73] to allow farmers to convert ill-
conditioned farmland in steep slopes to forest/shrubland or grassland in the price of equivalent
subsides and other tax relieves. The nationwide Natural Forest Conservation Program (NFCP),
implemented in 1998 and covering 49.1% of APTBNC, protects and conserves forests mainly
by building mountain closures and banned logging [72]. The Beijing and Tianjin Sandstorm
Source Control Project (BTSSCP), implemented in 2000 and covering 27.4% of APTBNC,
intends to reduce sandstorms in areas surrounding Beijing by conversion of cropland and vege-
tation regeneration [74,75].

Forests and closed shrublands increased in all the zones with the implementation of GFGP.
The implementation of NFCP contributed to the highest increases (per area) in dense woody
vegetation, including forests and closed shrublands, i.e. 14% of GFGP & NFCP and 10% of
GFGP & NFCP & BTSSCP. Grassland increased in the zones covered by either NFCP or
BTSSCP, and the BTSSCP brought about the highest increases (per area) in grassland, i.e. 6%
of GFGP & BTSSCP and 11% of GFGP & NFCP & BTSSCP. The areas covered by all three pro-
grams reached the highest increase in combined dense woody and grass vegetation, i.e. 22% of
GFGP & NFCP & BTSSCP converted to forests, closed shrublands, or grassland.

The national rural-to-urban migration might also be related to the LULCC in this region.
Urban population in China increased from 18% to 53% in 1978–2012 and the National New-
type Urbanization Plan released in 2014 set the urbanization rate as 1% per year until urban
population reaches 60% in 2020 [76]. The consequent rural depopulation [77], with most emi-
grants to the developed coastal cities, might lead to agricultural abandonment. Our LULCC in
APTBNC reflected the impacts of the policy changes, as the abandonment of agricultural land
directly led to a net gain of 37,796 into closed shrubland and forests, as well as a net gain of
26,007 km2 into grassland (Table 5). The increased coverage of grass and woody plants would
reduce soil erosion, improve mitigation of climate change, and enhance carbon sequestration
in this region [37,38]. In addition to the policy change, the LULCC also depends on initial

Fig 7. Histograms of the membership probability maps, derived from the Bayesian-average data
fusion, for the years of 2003, 2008 and 2013 in APTBNC.

doi:10.1371/journal.pone.0142113.g007
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vegetation, climate, physical environment, implementation strength of policies, and other
socioeconomic factors.
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